Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Supporting Emergence: Interaction Design for Visual Analytics Approach to ESDA


Published on

Published in: Education, Technology
  • Be the first to comment

  • Be the first to like this

Supporting Emergence: Interaction Design for Visual Analytics Approach to ESDA

  1. 1. NSF  Workshop  on    From  OpenSHAPA  to    Open  Data  Sharing  Arlington,  VA,  15-­‐16  Sep  2011   Suppor&ng  Emergence:    Interac&on  Design  for  Visual  Analy&cs   Approach  to  ESDA   William  Wong   Head,  Interac&on  Design  Center   Middlesex  University   London,  UK   15  September  2011     1  
  2. 2. 2  
  3. 3. What  we  do  in  ESDA  •  Tool  usage  in  observa&on,  data  analysis  and  interpreta&on   –  The  resolu,on  (wing  touch),  tool  differences  and  hence  what  can  be  done,  in   different  contexts  eg  development,  learning,  teaching  etc  •  Sharing  of  collected  data   –  Why  would  I  want  to  share   –  If  I  could  share,  what  problems  and  hinderances  •  Very  insighMul  of  the  specific  challenges  and  nuances  of  use  in  each   domain  of  use  •  What  can  we  learn  from  a  different  form  of  “ESDA”  for  a  future   OpenSHAPA  /  OpenSHARE?   –  From  security  and  library  domains   –  Data  sharing  –  ‘common  source’  but  used  by  different  analysts   –  While  analysis  is  crucial,  sense-­‐making  to  draw  conclusions  based  on  assembled   evidence  for  making  decisions  is  paramount   –  Use  Interac,ve  Visualisa,on  to  couple  intelligent  analysis  (e.g.  automa,c  en,ty   extrac,on,  automa,c  thema,c  analysis)  with  emergence  driven  user  interface   design   3  
  4. 4. Learning  from  a  Security  and  Library   Perspec&ve  •  Making  Sense   –  EPSRC,  9  UK  Universi,es;  Imperial  College  PI,  MU  Deputy  PI   –   Mul,-­‐disciplinary  approach,  as  the  problem  cannot  be  addressed  by  a  single   discipline  e.g.  image  analysis,  corpus  linguis,cs  and  automated  en,ty  extrac,on,   soVware  forensics,  systems  engineering,  representa,on  design,  psychology,  law    •  UKVAC  Phase  2   –  US  DHS  and  UK  HM  Government,  5  UK  Universi,es,  Coordinator  MU   –  Mul,-­‐disciplinary  approach  to  Nobel  Laureate  and  FAA  Flight  Data  Problem  •  INVISQUE   –  JISC  Rapid  Innova,on  Programme,  MU  PI   –  Conceived  as  next  genera,on  alterna,ve  to  difficult-­‐to-­‐use  library  e-­‐resources  =>   tangible  reasoning  workspace   –  Taylor  and  Francis    •  Visual  Analy&cs  BLWWong©2011   4  
  5. 5. What  is  Visual  Analy&cs?  •  Visual  analy&cs  is  the  science  of  analy&cal  reasoning  facilitated  by   interac&ve  visual  interfaces  (Thomas  and  Cook,  2005).   –  Integra,ng  tools  for  interac,ng    with  the  abstract  human  thinking  and   reasoning  processes   –  Manipula,on  helps  in  reasoning  by  enabling  the  user  to  re-­‐arrange  the   problem  space  (Maglio  et  al,  1999)  •  Data  graphics  or  info  vis  are  sta&c  •  VA  combines  interac5ve  visualiza5ons  based  on  analy5c  tools  to   enable  rapid  querying  and  interroga&on  of  informa&on  …   –  Visual  form  includes  charts,  network  graphs,  rela,onships  over  ,me  and/ or  (geographical)  space   –  enables  explora,on  through  rapid  and  repeated  querying   –  access  to  original  data,   –  analysis  of  data     –  genera,on  of  hypotheses     –  construc,on  of  conclusion  pathways  •  …  for  the  purpose  of  sense-­‐making   –  The  ability  to  rapidly  (and  visually)  process  and  assemble  evidence  to   enable  genera,on  of  explana,ons  or  conclusions,  enabling  decisions   5  
  6. 6. The  Visual  Analy&cs  Problem:  Emergence,   Search  and  Explana&on   Visually  supported  analy,c  reasoning   Varied  media,  varied  analysis  and  presenta,on  tools   Frame  of   Reference   Lack  of  the  ‘big  picture’   Keyhole   problem   Jig-­‐saw  puzzle   (not  one,  but  many)  Large  data  sets:  mul,-­‐sourced,  mixed-­‐format,  silo-­‐based,  sta,c/stream,  out  of  sequence,  uncertain  and  varying  quality   BLWWong©2011  
  7. 7. 20  Representa&on  and  Analy&c  Problems  1.  The  problem  of  seeing  a  large  data  set  and  reasoning  space  through  a  small  keyhole.  2.  The  problem  of  handling  missing  data.  3.  The  problem  of  handling  decep&ve  /  misleading  data.  4.  The  problem  of  handling  contradictory  data.  5.  The  problem  of  aggrega&ng  and  reconciling  mul&ple  points  of  view  or  predic&ons.  6.  The  problem  of  evidence  colla&on  and  eviden&al  reasoning.  7.  The  problem  of  provenance  and  tracing  analy&c  reasoning.  8.  The  problem  of  integra&ng  data  space,  analy&c  space  and  hypothesis  spaces.  9.  The  problem  of  handling  strength  of  evidence  (including  subjec&ve  and  objec&ve  measures  of  strength)  +   contribu&on  of  different  pieces  of  evidence  to  a  conclusion.  10.  The  problem  of  handling  uncertainty  in  data  and  /  or  informa&on.  11.  The  problem  of  represen&ng  and  handling  evidence  over  &me  and  space.  12.  The  problem  of  annota&ng,  remembering,  re-­‐visi&ng,  and  sehng  aside.  13.  The  problem  of  developing  a  sense  of  what  is  in  the  data  –  exploring  what  is  there.  14.  The  problem  of  predic&ng  and  represen&ng  emergent  behaviour.  15.  The  problem  of  Iden&fying  and  represen&ng  trends.  16.  The  problem  of  recognising  and  represen&ng  anomalous  data.  17.  The  problem  of  finding  the  needle  in  the  haystack  (or  knowing  what  is  chaff  –  i.e.  info  of  no  or  low  value)  18.  The  problem  of  predic&ng  the  path  of  cascading  failures  or  effects.  19.  The  problem  or  represen&ng  the  sta&c  and  dynamic  rela&onship  between  the  data  /  informa&on.  20.  The  problem  of  scalability  and  reusability.     7  BLWWong©2011    
  8. 8. Visual  Analy&cs  Concept   Interac,ve  Dynamic  querying   Visualiza,on  of  Output   Palerns  and  commonali,es   Filters   Seman,c  Extrac,on   Data  integra,on   &  transforma,on   Many  tools   Sensors  /  Surveillance  /  Data  collec,on   “SoV”  Data   “Hard”  Data   Social  networks,  interac,ons,  ac,vi,es  BLWWong(c)2010   8  
  9. 9. Architecture:  Many  Tools  
  10. 10. Indexing,  Structuring  and  Theorizing:   Visual  Analy&cs  and  OpenSHAPA     Indexing   Structuring   Theorizing  Data  Sets   Automated   Schema,za,on   Explana,ons  -­‐  Structured   en,ty  extrac,on   Search  and  query   Hypothesis   and   Analy,cal  tools   tes,ng   unstructured   Colla,on   for  topical,   Eviden,al   text   geospa,al,   Thema,c  analysis  -­‐  Video   reasoning   temporal,  -­‐  Speech   Conclusion   network  analysis  Not  just  reports   pathways  and  video,  but  also  social  media   Provenance  –  data,  processes,  and  reasoning:  Traceability,  how  did  we  get  here?   10  
  11. 11. Emergent  Themes  Analysis   Representation Broad Themes Design Concepts Related excerpts from transcripts e.g. Goals Decision StrategiesTranscripts Interpret & Conceptualise e.g. Planning Specific themes Excerpts relating to specific Narratives concepts in a theme, e.g. types of activities, examples of cues e.g. Assessment of Resources Activities Cues Knowledge Difficulties Identify, Index & e.g. Assessment Collate e.g. Control e.g. Assessment of Structuring & Situation Data reduction  Wong©2004   11  
  12. 12. INVISQUE  demo:  Interac&on  Design  for   Suppor&ng  Emergence  •  INterac&ve  VIsual  Search  and  QUery  Environment   –  Visual  forms  alempt  to  create  palerns  that  reinforce   relaIonships  (CSE)   –  Interac,on  designed  to  support  emergence  in  themaIc   analysis  •  INVISQUE  JISC  Library  Version   –  Suppor,ng  sense-­‐making  –  Data-­‐Frame  Model   –  Using  the  basic  interac,ve  visualiza,on  techniques   developed  here  to  support  sense-­‐making  in  inves,ga,ve   domains   12  
  13. 13. The  Interac&ve  Visualiza&on  Approach  •  Informa&on  Design  Principles   –  Focus+Context   –  Proximity-­‐Compa,bility  Principle   –  Gestalt  Principles  of  Form  Percep,on   –  Principle  of  Visual  Affordances   –  Ecological  Interface  Design   –  Representa,on  of  Func,onal  Rela,onships     13  
  14. 14. The  Interac&ve  Visualiza&on  Approach  •  Principles  implemented  in  design  by   –  Anima,on,  transparency,  informa,on  layering,  spa,al   layout,  palern  crea,on   –  Emphasizing  the  representa,on  of  rela,onships  within  the   data   –  Discovery  of  expected  and  un-­‐an,cipated  rela,onships   –  Interac,on  techniques  enable  rapid  and  con,nuous   itera,ve  querying  and  searching  while  keeping  visible  the   context  of  search   –  Minimizing  WWILF-­‐ing,  or  the  ‘What  Was  I  Looking  For?’   problem   14  
  15. 15. The  Data-­‐Frame  Model    Guides  Interac&on  Design     Klein  et  al,  2007   15  
  16. 16. Reasoning  workspace  framework:   Mapping  and  design  and  of  reasoning  work  to  the  “keyhole”     Hypothesis  Space   Depic,on  of   -­‐ Collate,  assemble,  marshal   “reasoning  and   -­‐ Formula,on     search  process”   -­‐ Tes,ng  and  simula,on   -­‐ arguments,  conclusions,   “brushing”   evidence  Depic,on  of  “Data  terrain”   Conclusion  Pathways   Data  Space   Analysis  Space   -­‐ Tools  and  algorithms   -­‐ what’s  available?     -­‐ Behaviours,  rela,onships   -­‐ What’s  changed?   and  palerns   -­‐ Awareness:  what’s  in  there?   -­‐ what’s  going  on  in  there?   Transla&on  into  Design   BLWWong(c)2010   16  
  17. 17. Conclusion:  Some  Ques&ons  •  What  can  we  do  for  a  future  OpenSHAPA  and  OpenSHARE?   –  indexing,  structuring,  bearing  in  mind  future  will  have  lots  of  “smart”   analysis  technologies  that  can  support  the  lower  levels  of  analysis,   par,cularly  indexing  •  What  System  Architecture?   –  that  combines  data  from  different  sources,  and  allows  a  variety  of   tools  to  analyse  and  make  sense  of  data  •  Alterna&ve  designs  for  structuring  and  theorizing  that  more   directly  support  sense-­‐making?   –  Adopt  /  adapt  an  interac,ve  visualisa,on  interface  design   –  Focus  on  emergence,  search  and  sense-­‐making   •  Emergence  techniques  such  as  “Temporal  narra,ves”   •  Mul,ple  threads  /  parallel  lines  of  enquiry  and  finding  intersec,ng  storylines   –  Reasoning  workspace  for  assembling  our  thoughts  and  conclusions  •  Future  work:  Collabora&ve  Sense-­‐making  environments   17  
  18. 18. End   18