SlideShare a Scribd company logo

SmartNews の Webmining を支えるプラットフォーム

第48回データマイニング+ WEB @東京(#TokyoWebminig 48th)- AWS上での分析基盤アーキテクチャ最前線祭り-「SmartNews の Webmining を支えるプラットフォーム」 speaker: Yuhei Nishioka @SmartNews

1 of 45
Download to read offline
SmartNews の Webmining を支えるプラットフォーム
第48回 データマイニング+WEB @東京
( #TokyoWebmining 48th )
ーAWS上での分析基盤アーキテクチャ最前線 祭りー
西岡悠平 (スマートニュース株式会社)
1
マネージャ データサイエンス・マシンラーニング担当
スマートニュース
● 2003年 京都大学大学院情報学研究科複雑系科学コース修了。
● ネットワーク機器メーカーに入社、 2005年上半期の未踏ソフトウェア創造事業
「スーパークリエータ」に認定される。
● その後、株式会社四次元データ Web技術研究部を経て、 2008年に楽天株式会社に入社。レ
コメンデーションエンジンをはじめとした先端技術の研究開発をリードする。
● 2014年9月にスマートニュース社入社。
西岡悠平
2
アイスブレイク
3
4
後ほど、アップロード
5
後ほど、アップロード
6
後ほど、アップロード
Ad

Recommended

リクルート式 自然言語処理技術の適応事例紹介
リクルート式 自然言語処理技術の適応事例紹介リクルート式 自然言語処理技術の適応事例紹介
リクルート式 自然言語処理技術の適応事例紹介Recruit Technologies
 
AutoGluonではじめるAutoML
AutoGluonではじめるAutoMLAutoGluonではじめるAutoML
AutoGluonではじめるAutoML西岡 賢一郎
 
階層ベイズによるワンToワンマーケティング入門
階層ベイズによるワンToワンマーケティング入門階層ベイズによるワンToワンマーケティング入門
階層ベイズによるワンToワンマーケティング入門shima o
 
Uplift Modelling 入門(1)
Uplift Modelling 入門(1)Uplift Modelling 入門(1)
Uplift Modelling 入門(1)Yohei Sato
 
因果探索: 観察データから 因果仮説を探索する
因果探索: 観察データから因果仮説を探索する因果探索: 観察データから因果仮説を探索する
因果探索: 観察データから 因果仮説を探索するShiga University, RIKEN
 
XAI (説明可能なAI) の必要性
XAI (説明可能なAI) の必要性XAI (説明可能なAI) の必要性
XAI (説明可能なAI) の必要性西岡 賢一郎
 
研究法(Claimとは)
研究法(Claimとは)研究法(Claimとは)
研究法(Claimとは)Jun Rekimoto
 

More Related Content

What's hot

情報検索の基礎 #9適合フィードバックとクエリ拡張
情報検索の基礎 #9適合フィードバックとクエリ拡張情報検索の基礎 #9適合フィードバックとクエリ拡張
情報検索の基礎 #9適合フィードバックとクエリ拡張nishioka1
 
ログの書き方がチームの生産性を爆上げする話
ログの書き方がチームの生産性を爆上げする話ログの書き方がチームの生産性を爆上げする話
ログの書き方がチームの生産性を爆上げする話Tsuyoshi Ushio
 
不均衡データのクラス分類
不均衡データのクラス分類不均衡データのクラス分類
不均衡データのクラス分類Shintaro Fukushima
 
データ中心の時代を生き抜くエンジニアに知ってほしい10?のこと
データ中心の時代を生き抜くエンジニアに知ってほしい10?のことデータ中心の時代を生き抜くエンジニアに知ってほしい10?のこと
データ中心の時代を生き抜くエンジニアに知ってほしい10?のことHideo Terada
 
因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説Shiga University, RIKEN
 
計量時系列分析の立場からビジネスの現場のデータを見てみよう - 30th Tokyo Webmining
計量時系列分析の立場からビジネスの現場のデータを見てみよう - 30th Tokyo Webmining計量時系列分析の立場からビジネスの現場のデータを見てみよう - 30th Tokyo Webmining
計量時系列分析の立場からビジネスの現場のデータを見てみよう - 30th Tokyo WebminingTakashi J OZAKI
 
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展Shiga University, RIKEN
 
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic DatasetsDeep Learning JP
 
点群深層学習 Meta-study
点群深層学習 Meta-study点群深層学習 Meta-study
点群深層学習 Meta-studyNaoya Chiba
 
動作認識におけるディープラーニングの最新動向1 3D-CNN
動作認識におけるディープラーニングの最新動向1 3D-CNN動作認識におけるディープラーニングの最新動向1 3D-CNN
動作認識におけるディープラーニングの最新動向1 3D-CNNTakamitsu Oomasa
 
Amazon AthenaでSageMakerを使った推論
Amazon AthenaでSageMakerを使った推論Amazon AthenaでSageMakerを使った推論
Amazon AthenaでSageMakerを使った推論西岡 賢一郎
 
『バックドア基準の入門』@統数研研究集会
『バックドア基準の入門』@統数研研究集会『バックドア基準の入門』@統数研研究集会
『バックドア基準の入門』@統数研研究集会takehikoihayashi
 
なぜ統計学がビジネスの 意思決定において大事なのか?
なぜ統計学がビジネスの 意思決定において大事なのか?なぜ統計学がビジネスの 意思決定において大事なのか?
なぜ統計学がビジネスの 意思決定において大事なのか?Takashi J OZAKI
 
数式をnumpyに落としこむコツ
数式をnumpyに落としこむコツ数式をnumpyに落としこむコツ
数式をnumpyに落としこむコツShuyo Nakatani
 
失敗から学ぶ機械学習応用
失敗から学ぶ機械学習応用失敗から学ぶ機械学習応用
失敗から学ぶ機械学習応用Hiroyuki Masuda
 
異常検知と変化検知で復習するPRML
異常検知と変化検知で復習するPRML異常検知と変化検知で復習するPRML
異常検知と変化検知で復習するPRMLKatsuya Ito
 
機械学習品質管理・保証の動向と取り組み
機械学習品質管理・保証の動向と取り組み機械学習品質管理・保証の動向と取り組み
機械学習品質管理・保証の動向と取り組みShintaro Fukushima
 
ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介Naoki Hayashi
 
Rで計量時系列分析~CRANパッケージ総ざらい~
Rで計量時系列分析~CRANパッケージ総ざらい~ Rで計量時系列分析~CRANパッケージ総ざらい~
Rで計量時系列分析~CRANパッケージ総ざらい~ Takashi J OZAKI
 

What's hot (20)

情報検索の基礎 #9適合フィードバックとクエリ拡張
情報検索の基礎 #9適合フィードバックとクエリ拡張情報検索の基礎 #9適合フィードバックとクエリ拡張
情報検索の基礎 #9適合フィードバックとクエリ拡張
 
ログの書き方がチームの生産性を爆上げする話
ログの書き方がチームの生産性を爆上げする話ログの書き方がチームの生産性を爆上げする話
ログの書き方がチームの生産性を爆上げする話
 
不均衡データのクラス分類
不均衡データのクラス分類不均衡データのクラス分類
不均衡データのクラス分類
 
データ中心の時代を生き抜くエンジニアに知ってほしい10?のこと
データ中心の時代を生き抜くエンジニアに知ってほしい10?のことデータ中心の時代を生き抜くエンジニアに知ってほしい10?のこと
データ中心の時代を生き抜くエンジニアに知ってほしい10?のこと
 
因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説
 
計量時系列分析の立場からビジネスの現場のデータを見てみよう - 30th Tokyo Webmining
計量時系列分析の立場からビジネスの現場のデータを見てみよう - 30th Tokyo Webmining計量時系列分析の立場からビジネスの現場のデータを見てみよう - 30th Tokyo Webmining
計量時系列分析の立場からビジネスの現場のデータを見てみよう - 30th Tokyo Webmining
 
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
 
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
 
正準相関分析
正準相関分析正準相関分析
正準相関分析
 
点群深層学習 Meta-study
点群深層学習 Meta-study点群深層学習 Meta-study
点群深層学習 Meta-study
 
動作認識におけるディープラーニングの最新動向1 3D-CNN
動作認識におけるディープラーニングの最新動向1 3D-CNN動作認識におけるディープラーニングの最新動向1 3D-CNN
動作認識におけるディープラーニングの最新動向1 3D-CNN
 
Amazon AthenaでSageMakerを使った推論
Amazon AthenaでSageMakerを使った推論Amazon AthenaでSageMakerを使った推論
Amazon AthenaでSageMakerを使った推論
 
『バックドア基準の入門』@統数研研究集会
『バックドア基準の入門』@統数研研究集会『バックドア基準の入門』@統数研研究集会
『バックドア基準の入門』@統数研研究集会
 
なぜ統計学がビジネスの 意思決定において大事なのか?
なぜ統計学がビジネスの 意思決定において大事なのか?なぜ統計学がビジネスの 意思決定において大事なのか?
なぜ統計学がビジネスの 意思決定において大事なのか?
 
数式をnumpyに落としこむコツ
数式をnumpyに落としこむコツ数式をnumpyに落としこむコツ
数式をnumpyに落としこむコツ
 
失敗から学ぶ機械学習応用
失敗から学ぶ機械学習応用失敗から学ぶ機械学習応用
失敗から学ぶ機械学習応用
 
異常検知と変化検知で復習するPRML
異常検知と変化検知で復習するPRML異常検知と変化検知で復習するPRML
異常検知と変化検知で復習するPRML
 
機械学習品質管理・保証の動向と取り組み
機械学習品質管理・保証の動向と取り組み機械学習品質管理・保証の動向と取り組み
機械学習品質管理・保証の動向と取り組み
 
ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介
 
Rで計量時系列分析~CRANパッケージ総ざらい~
Rで計量時系列分析~CRANパッケージ総ざらい~ Rで計量時系列分析~CRANパッケージ総ざらい~
Rで計量時系列分析~CRANパッケージ総ざらい~
 

Viewers also liked

オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京
オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京
オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京Koichi Hamada
 
1000人規模で使う分析基盤構築 〜redshiftを活用したeuc
1000人規模で使う分析基盤構築  〜redshiftを活用したeuc1000人規模で使う分析基盤構築  〜redshiftを活用したeuc
1000人規模で使う分析基盤構築 〜redshiftを活用したeucKazuhiro Miyajima
 
○○でかんたんお部屋探し!
○○でかんたんお部屋探し!○○でかんたんお部屋探し!
○○でかんたんお部屋探し!Tohru Kobayashi
 
「Japan.R開催のお知らせ 」と 「Rでワンライナー」
「Japan.R開催のお知らせ」と「Rでワンライナー」「Japan.R開催のお知らせ」と「Rでワンライナー」
「Japan.R開催のお知らせ 」と 「Rでワンライナー」Atsushi Hayakawa
 
lubridateパッケージ入門
lubridateパッケージ入門lubridateパッケージ入門
lubridateパッケージ入門Takashi Kitano
 
RStanとShinyStanによるベイズ統計モデリング入門
RStanとShinyStanによるベイズ統計モデリング入門RStanとShinyStanによるベイズ統計モデリング入門
RStanとShinyStanによるベイズ統計モデリング入門Masaki Tsuda
 
機械の体を手に入れるのよ、 鉄郎!!!
機械の体を手に入れるのよ、鉄郎!!!機械の体を手に入れるのよ、鉄郎!!!
機械の体を手に入れるのよ、 鉄郎!!!Nagi Teramo
 
SmartNews TechNight Vol5 : SmartNews AdServer 解体新書 / ポストモーテム
SmartNews TechNight Vol5 : SmartNews AdServer 解体新書 / ポストモーテムSmartNews TechNight Vol5 : SmartNews AdServer 解体新書 / ポストモーテム
SmartNews TechNight Vol5 : SmartNews AdServer 解体新書 / ポストモーテムSmartNews, Inc.
 
Amazon Redshiftによるリアルタイム分析サービスの構築
Amazon Redshiftによるリアルタイム分析サービスの構築Amazon Redshiftによるリアルタイム分析サービスの構築
Amazon Redshiftによるリアルタイム分析サービスの構築Minero Aoki
 
SpringOne Platform 2016 報告会「A Lite Rx API for the JVM」/ 井口 貝 @ SmartNews, Inc.
SpringOne Platform 2016 報告会「A Lite Rx API for the JVM」/ 井口 貝 @ SmartNews, Inc.SpringOne Platform 2016 報告会「A Lite Rx API for the JVM」/ 井口 貝 @ SmartNews, Inc.
SpringOne Platform 2016 報告会「A Lite Rx API for the JVM」/ 井口 貝 @ SmartNews, Inc.SmartNews, Inc.
 
SmartNews's journey into microservices
SmartNews's journey into microservicesSmartNews's journey into microservices
SmartNews's journey into microservicesSmartNews, Inc.
 
Spring で実現する SmartNews のニュース配信基盤
Spring で実現する SmartNews のニュース配信基盤Spring で実現する SmartNews のニュース配信基盤
Spring で実現する SmartNews のニュース配信基盤SmartNews, Inc.
 
Strem処理(Spark Streaming + Kinesis)とOffline処理(Hive)の統合
Strem処理(Spark Streaming + Kinesis)とOffline処理(Hive)の統合Strem処理(Spark Streaming + Kinesis)とOffline処理(Hive)の統合
Strem処理(Spark Streaming + Kinesis)とOffline処理(Hive)の統合SmartNews, Inc.
 
SmartNewsのニュース配信を支えるサーバ技術 / Kazhiro Sera @ SmartNews,Inc. #jjug_ccc
SmartNewsのニュース配信を支えるサーバ技術 / Kazhiro Sera @ SmartNews,Inc. #jjug_cccSmartNewsのニュース配信を支えるサーバ技術 / Kazhiro Sera @ SmartNews,Inc. #jjug_ccc
SmartNewsのニュース配信を支えるサーバ技術 / Kazhiro Sera @ SmartNews,Inc. #jjug_cccSmartNews, Inc.
 
AWSの進化とSmartNewsの裏側
AWSの進化とSmartNewsの裏側AWSの進化とSmartNewsの裏側
AWSの進化とSmartNewsの裏側SmartNews, Inc.
 
Stream Processing in SmartNews #jawsdays
Stream Processing in SmartNews #jawsdaysStream Processing in SmartNews #jawsdays
Stream Processing in SmartNews #jawsdaysSmartNews, Inc.
 
Smartnews Product Manager Night
Smartnews Product Manager NightSmartnews Product Manager Night
Smartnews Product Manager NightSmartNews, Inc.
 

Viewers also liked (20)

AWSでのビッグデータ分析
AWSでのビッグデータ分析AWSでのビッグデータ分析
AWSでのビッグデータ分析
 
オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京
オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京
オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京
 
1000人規模で使う分析基盤構築 〜redshiftを活用したeuc
1000人規模で使う分析基盤構築  〜redshiftを活用したeuc1000人規模で使う分析基盤構築  〜redshiftを活用したeuc
1000人規模で使う分析基盤構築 〜redshiftを活用したeuc
 
Tokyo r49 beginner
Tokyo r49 beginnerTokyo r49 beginner
Tokyo r49 beginner
 
○○でかんたんお部屋探し!
○○でかんたんお部屋探し!○○でかんたんお部屋探し!
○○でかんたんお部屋探し!
 
「Japan.R開催のお知らせ 」と 「Rでワンライナー」
「Japan.R開催のお知らせ」と「Rでワンライナー」「Japan.R開催のお知らせ」と「Rでワンライナー」
「Japan.R開催のお知らせ 」と 「Rでワンライナー」
 
lubridateパッケージ入門
lubridateパッケージ入門lubridateパッケージ入門
lubridateパッケージ入門
 
RStanとShinyStanによるベイズ統計モデリング入門
RStanとShinyStanによるベイズ統計モデリング入門RStanとShinyStanによるベイズ統計モデリング入門
RStanとShinyStanによるベイズ統計モデリング入門
 
機械の体を手に入れるのよ、 鉄郎!!!
機械の体を手に入れるのよ、鉄郎!!!機械の体を手に入れるのよ、鉄郎!!!
機械の体を手に入れるのよ、 鉄郎!!!
 
SmartNews TechNight Vol5 : SmartNews AdServer 解体新書 / ポストモーテム
SmartNews TechNight Vol5 : SmartNews AdServer 解体新書 / ポストモーテムSmartNews TechNight Vol5 : SmartNews AdServer 解体新書 / ポストモーテム
SmartNews TechNight Vol5 : SmartNews AdServer 解体新書 / ポストモーテム
 
Amazon Redshiftによるリアルタイム分析サービスの構築
Amazon Redshiftによるリアルタイム分析サービスの構築Amazon Redshiftによるリアルタイム分析サービスの構築
Amazon Redshiftによるリアルタイム分析サービスの構築
 
NLP in SmartNews
NLP in SmartNewsNLP in SmartNews
NLP in SmartNews
 
SpringOne Platform 2016 報告会「A Lite Rx API for the JVM」/ 井口 貝 @ SmartNews, Inc.
SpringOne Platform 2016 報告会「A Lite Rx API for the JVM」/ 井口 貝 @ SmartNews, Inc.SpringOne Platform 2016 報告会「A Lite Rx API for the JVM」/ 井口 貝 @ SmartNews, Inc.
SpringOne Platform 2016 報告会「A Lite Rx API for the JVM」/ 井口 貝 @ SmartNews, Inc.
 
SmartNews's journey into microservices
SmartNews's journey into microservicesSmartNews's journey into microservices
SmartNews's journey into microservices
 
Spring で実現する SmartNews のニュース配信基盤
Spring で実現する SmartNews のニュース配信基盤Spring で実現する SmartNews のニュース配信基盤
Spring で実現する SmartNews のニュース配信基盤
 
Strem処理(Spark Streaming + Kinesis)とOffline処理(Hive)の統合
Strem処理(Spark Streaming + Kinesis)とOffline処理(Hive)の統合Strem処理(Spark Streaming + Kinesis)とOffline処理(Hive)の統合
Strem処理(Spark Streaming + Kinesis)とOffline処理(Hive)の統合
 
SmartNewsのニュース配信を支えるサーバ技術 / Kazhiro Sera @ SmartNews,Inc. #jjug_ccc
SmartNewsのニュース配信を支えるサーバ技術 / Kazhiro Sera @ SmartNews,Inc. #jjug_cccSmartNewsのニュース配信を支えるサーバ技術 / Kazhiro Sera @ SmartNews,Inc. #jjug_ccc
SmartNewsのニュース配信を支えるサーバ技術 / Kazhiro Sera @ SmartNews,Inc. #jjug_ccc
 
AWSの進化とSmartNewsの裏側
AWSの進化とSmartNewsの裏側AWSの進化とSmartNewsの裏側
AWSの進化とSmartNewsの裏側
 
Stream Processing in SmartNews #jawsdays
Stream Processing in SmartNews #jawsdaysStream Processing in SmartNews #jawsdays
Stream Processing in SmartNews #jawsdays
 
Smartnews Product Manager Night
Smartnews Product Manager NightSmartnews Product Manager Night
Smartnews Product Manager Night
 

Similar to SmartNews の Webmining を支えるプラットフォーム

Jslug2 nagoya-shibata
Jslug2 nagoya-shibataJslug2 nagoya-shibata
Jslug2 nagoya-shibataNaoki Shibata
 
とあるメーカーのRedmine活用事例
とあるメーカーのRedmine活用事例とあるメーカーのRedmine活用事例
とあるメーカーのRedmine活用事例Shinji Tamura
 
デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~
デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~
デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~Daiyu Hatakeyama
 
Microsoft open tech night 2020 feb18
Microsoft open tech night 2020 feb18Microsoft open tech night 2020 feb18
Microsoft open tech night 2020 feb18Masatomo Ito
 
複数DBのバックアップ・切り戻し運用手順が異なって大変?!運用性の大幅改善、その先に。。
複数DBのバックアップ・切り戻し運用手順が異なって大変?!運用性の大幅改善、その先に。。 複数DBのバックアップ・切り戻し運用手順が異なって大変?!運用性の大幅改善、その先に。。
複数DBのバックアップ・切り戻し運用手順が異なって大変?!運用性の大幅改善、その先に。。 Insight Technology, Inc.
 
20140220 gumistudy cloudformation
20140220 gumistudy cloudformation20140220 gumistudy cloudformation
20140220 gumistudy cloudformationKazuki Ueki
 
2014年を振り返る 今年の技術トレンドとDockerについて
2014年を振り返る 今年の技術トレンドとDockerについて2014年を振り返る 今年の技術トレンドとDockerについて
2014年を振り返る 今年の技術トレンドとDockerについてMasahito Zembutsu
 
Reactive Workflow Argo Eventsの紹介
Reactive Workflow Argo Eventsの紹介Reactive Workflow Argo Eventsの紹介
Reactive Workflow Argo Eventsの紹介Daisuke Taniwaki
 
.NET の過去、現在、そして未来
.NET の過去、現在、そして未来.NET の過去、現在、そして未来
.NET の過去、現在、そして未来Akira Inoue
 
SORACOM UG 信州 #3 | About SORACOM & Updates
SORACOM UG 信州 #3 | About SORACOM & UpdatesSORACOM UG 信州 #3 | About SORACOM & Updates
SORACOM UG 信州 #3 | About SORACOM & UpdatesSORACOM,INC
 
ONIC2017 プログラマブル・データプレーン時代に向けた ネットワーク・オペレーションスタック
ONIC2017 プログラマブル・データプレーン時代に向けた ネットワーク・オペレーションスタックONIC2017 プログラマブル・データプレーン時代に向けた ネットワーク・オペレーションスタック
ONIC2017 プログラマブル・データプレーン時代に向けた ネットワーク・オペレーションスタックKentaro Ebisawa
 
最新アドテク×Java script実践活用術
最新アドテク×Java script実践活用術最新アドテク×Java script実践活用術
最新アドテク×Java script実践活用術Nagao Shun
 
ぐるなびが活用するElastic Cloud
ぐるなびが活用するElastic Cloudぐるなびが活用するElastic Cloud
ぐるなびが活用するElastic CloudElasticsearch
 
Introducing microsoft learn
 Introducing microsoft learn Introducing microsoft learn
Introducing microsoft learnru pic
 
Redmineの情報を自分好みに見える化した話
Redmineの情報を自分好みに見える化した話Redmineの情報を自分好みに見える化した話
Redmineの情報を自分好みに見える化した話ToshiharuSakai
 
Microsoft learnご紹介vol2
Microsoft learnご紹介vol2Microsoft learnご紹介vol2
Microsoft learnご紹介vol2ru pic
 
機械学習 (AI/ML) 勉強会 #1 基本編
機械学習 (AI/ML) 勉強会 #1 基本編機械学習 (AI/ML) 勉強会 #1 基本編
機械学習 (AI/ML) 勉強会 #1 基本編Fujio Kojima
 
[AI08] 深層学習フレームワーク Chainer × Microsoft で広がる応用
[AI08] 深層学習フレームワーク Chainer × Microsoft で広がる応用[AI08] 深層学習フレームワーク Chainer × Microsoft で広がる応用
[AI08] 深層学習フレームワーク Chainer × Microsoft で広がる応用de:code 2017
 

Similar to SmartNews の Webmining を支えるプラットフォーム (20)

Jslug2 nagoya-shibata
Jslug2 nagoya-shibataJslug2 nagoya-shibata
Jslug2 nagoya-shibata
 
とあるメーカーのRedmine活用事例
とあるメーカーのRedmine活用事例とあるメーカーのRedmine活用事例
とあるメーカーのRedmine活用事例
 
デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~
デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~
デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~
 
Microsoft open tech night 2020 feb18
Microsoft open tech night 2020 feb18Microsoft open tech night 2020 feb18
Microsoft open tech night 2020 feb18
 
複数DBのバックアップ・切り戻し運用手順が異なって大変?!運用性の大幅改善、その先に。。
複数DBのバックアップ・切り戻し運用手順が異なって大変?!運用性の大幅改善、その先に。。 複数DBのバックアップ・切り戻し運用手順が異なって大変?!運用性の大幅改善、その先に。。
複数DBのバックアップ・切り戻し運用手順が異なって大変?!運用性の大幅改善、その先に。。
 
Angularreflex20141210
Angularreflex20141210Angularreflex20141210
Angularreflex20141210
 
20140220 gumistudy cloudformation
20140220 gumistudy cloudformation20140220 gumistudy cloudformation
20140220 gumistudy cloudformation
 
2014年を振り返る 今年の技術トレンドとDockerについて
2014年を振り返る 今年の技術トレンドとDockerについて2014年を振り返る 今年の技術トレンドとDockerについて
2014年を振り返る 今年の技術トレンドとDockerについて
 
Reactive Workflow Argo Eventsの紹介
Reactive Workflow Argo Eventsの紹介Reactive Workflow Argo Eventsの紹介
Reactive Workflow Argo Eventsの紹介
 
.NET の過去、現在、そして未来
.NET の過去、現在、そして未来.NET の過去、現在、そして未来
.NET の過去、現在、そして未来
 
SORACOM UG 信州 #3 | About SORACOM & Updates
SORACOM UG 信州 #3 | About SORACOM & UpdatesSORACOM UG 信州 #3 | About SORACOM & Updates
SORACOM UG 信州 #3 | About SORACOM & Updates
 
ONIC2017 プログラマブル・データプレーン時代に向けた ネットワーク・オペレーションスタック
ONIC2017 プログラマブル・データプレーン時代に向けた ネットワーク・オペレーションスタックONIC2017 プログラマブル・データプレーン時代に向けた ネットワーク・オペレーションスタック
ONIC2017 プログラマブル・データプレーン時代に向けた ネットワーク・オペレーションスタック
 
最新アドテク×Java script実践活用術
最新アドテク×Java script実践活用術最新アドテク×Java script実践活用術
最新アドテク×Java script実践活用術
 
ぐるなびが活用するElastic Cloud
ぐるなびが活用するElastic Cloudぐるなびが活用するElastic Cloud
ぐるなびが活用するElastic Cloud
 
Introducing microsoft learn
 Introducing microsoft learn Introducing microsoft learn
Introducing microsoft learn
 
Redmineの情報を自分好みに見える化した話
Redmineの情報を自分好みに見える化した話Redmineの情報を自分好みに見える化した話
Redmineの情報を自分好みに見える化した話
 
Microsoft learnご紹介vol2
Microsoft learnご紹介vol2Microsoft learnご紹介vol2
Microsoft learnご紹介vol2
 
機械学習 (AI/ML) 勉強会 #1 基本編
機械学習 (AI/ML) 勉強会 #1 基本編機械学習 (AI/ML) 勉強会 #1 基本編
機械学習 (AI/ML) 勉強会 #1 基本編
 
[AI08] 深層学習フレームワーク Chainer × Microsoft で広がる応用
[AI08] 深層学習フレームワーク Chainer × Microsoft で広がる応用[AI08] 深層学習フレームワーク Chainer × Microsoft で広がる応用
[AI08] 深層学習フレームワーク Chainer × Microsoft で広がる応用
 
インフラチームの歴史とこれから
インフラチームの歴史とこれからインフラチームの歴史とこれから
インフラチームの歴史とこれから
 

More from SmartNews, Inc.

SmartNewsを支えるデータパイプラインとその運用
SmartNewsを支えるデータパイプラインとその運用SmartNewsを支えるデータパイプラインとその運用
SmartNewsを支えるデータパイプラインとその運用SmartNews, Inc.
 
エンジニアからプロダクトマネージャーへ
エンジニアからプロダクトマネージャーへエンジニアからプロダクトマネージャーへ
エンジニアからプロダクトマネージャーへSmartNews, Inc.
 
Building a Sustainable Data Platform on AWS
Building a Sustainable Data Platform on AWSBuilding a Sustainable Data Platform on AWS
Building a Sustainable Data Platform on AWSSmartNews, Inc.
 
SmartNews TechNight Vol.5 : AD Data Engineering in practice: SmartNews Ads裏のデ...
SmartNews TechNight Vol.5 : AD Data Engineering in practice: SmartNews Ads裏のデ...SmartNews TechNight Vol.5 : AD Data Engineering in practice: SmartNews Ads裏のデ...
SmartNews TechNight Vol.5 : AD Data Engineering in practice: SmartNews Ads裏のデ...SmartNews, Inc.
 
SmartNews TechNight Vol.5 : SmartNews Ads の配信最適化の仕組みはどうなってるの? (エンジニア / SmartN...
SmartNews TechNight Vol.5 : SmartNews Ads の配信最適化の仕組みはどうなってるの? (エンジニア / SmartN...SmartNews TechNight Vol.5 : SmartNews Ads の配信最適化の仕組みはどうなってるの? (エンジニア / SmartN...
SmartNews TechNight Vol.5 : SmartNews Ads の配信最適化の仕組みはどうなってるの? (エンジニア / SmartN...SmartNews, Inc.
 
SmartNews TechNight vol5 SmartNews Ads大図解
SmartNews TechNight vol5 SmartNews Ads大図解SmartNews TechNight vol5 SmartNews Ads大図解
SmartNews TechNight vol5 SmartNews Ads大図解SmartNews, Inc.
 
AWS meetup「Apache Spark on EMR」
AWS meetup「Apache Spark on EMR」AWS meetup「Apache Spark on EMR」
AWS meetup「Apache Spark on EMR」SmartNews, Inc.
 
SmartNews Ads System - AWS Summit Tokyo 2015
SmartNews Ads System - AWS Summit Tokyo 2015SmartNews Ads System - AWS Summit Tokyo 2015
SmartNews Ads System - AWS Summit Tokyo 2015SmartNews, Inc.
 
インフラ専任エンジニアが一人もいないSmartNewsにおけるクラウド活用法
インフラ専任エンジニアが一人もいないSmartNewsにおけるクラウド活用法インフラ専任エンジニアが一人もいないSmartNewsにおけるクラウド活用法
インフラ専任エンジニアが一人もいないSmartNewsにおけるクラウド活用法SmartNews, Inc.
 

More from SmartNews, Inc. (9)

SmartNewsを支えるデータパイプラインとその運用
SmartNewsを支えるデータパイプラインとその運用SmartNewsを支えるデータパイプラインとその運用
SmartNewsを支えるデータパイプラインとその運用
 
エンジニアからプロダクトマネージャーへ
エンジニアからプロダクトマネージャーへエンジニアからプロダクトマネージャーへ
エンジニアからプロダクトマネージャーへ
 
Building a Sustainable Data Platform on AWS
Building a Sustainable Data Platform on AWSBuilding a Sustainable Data Platform on AWS
Building a Sustainable Data Platform on AWS
 
SmartNews TechNight Vol.5 : AD Data Engineering in practice: SmartNews Ads裏のデ...
SmartNews TechNight Vol.5 : AD Data Engineering in practice: SmartNews Ads裏のデ...SmartNews TechNight Vol.5 : AD Data Engineering in practice: SmartNews Ads裏のデ...
SmartNews TechNight Vol.5 : AD Data Engineering in practice: SmartNews Ads裏のデ...
 
SmartNews TechNight Vol.5 : SmartNews Ads の配信最適化の仕組みはどうなってるの? (エンジニア / SmartN...
SmartNews TechNight Vol.5 : SmartNews Ads の配信最適化の仕組みはどうなってるの? (エンジニア / SmartN...SmartNews TechNight Vol.5 : SmartNews Ads の配信最適化の仕組みはどうなってるの? (エンジニア / SmartN...
SmartNews TechNight Vol.5 : SmartNews Ads の配信最適化の仕組みはどうなってるの? (エンジニア / SmartN...
 
SmartNews TechNight vol5 SmartNews Ads大図解
SmartNews TechNight vol5 SmartNews Ads大図解SmartNews TechNight vol5 SmartNews Ads大図解
SmartNews TechNight vol5 SmartNews Ads大図解
 
AWS meetup「Apache Spark on EMR」
AWS meetup「Apache Spark on EMR」AWS meetup「Apache Spark on EMR」
AWS meetup「Apache Spark on EMR」
 
SmartNews Ads System - AWS Summit Tokyo 2015
SmartNews Ads System - AWS Summit Tokyo 2015SmartNews Ads System - AWS Summit Tokyo 2015
SmartNews Ads System - AWS Summit Tokyo 2015
 
インフラ専任エンジニアが一人もいないSmartNewsにおけるクラウド活用法
インフラ専任エンジニアが一人もいないSmartNewsにおけるクラウド活用法インフラ専任エンジニアが一人もいないSmartNewsにおけるクラウド活用法
インフラ専任エンジニアが一人もいないSmartNewsにおけるクラウド活用法
 

SmartNews の Webmining を支えるプラットフォーム