SlideShare a Scribd company logo
Statistics for goods income tests with zero response
Zero response
If n tested items of the LOT show a zero response, i.e. zero non-conforming items
are found, a probability exists that non-conforming items are still in the LOT. For
n/M ≤ 0.05, i.e. large LOT size compared to the sample size, the binomial
distribution can be used to calculate the upper limit of non-conforming items for a
given confidence level C: [1]
P(k) =
n
k
pk
(1 − p)n−k
(1)
with n the sample size, k the number of non-conforming items and p the fraction of
non-conforming items in a LOT. For k = 0:
P(0) = (1 − p)n
. (2)
0.5 0.6 0.7 0.8 0.9 1.0
0.00.10.20.30.4
n = 11
Confidence level
Fractionofnon−conformingitems
Figure 1: Confidence level versus upper fraction of non-conforming items for n =
11.
Title: Zero response
Revision: 1
Effective: 2015-10-25
Page 1 of 3
ID-Number:
Author: Dr. Peter Drechsler
Developed: 2015-10-25
Phone: +49 711 46 92 73 40
Mobile: +49 173 2462720
peter.drechsler@qtec-group.com
qtec group R
qtec services GmbH
Humboldtstr. 30
70771 Leinfelden-Echterdingen
Germany
Statistics for goods income tests with zero response
Table 1: Maximal fraction of non-conforming items in a LOT in percent as a function
of samples n taken and zero non-compliance items k are found for
confidence intervals between 75% and 99%.
Samples Confidence limit
n 0.75 0.90 0.95 0.975 0.99
1 75.00 90.00 95.00 97.50 99.00
3 37.00 53.58 63.16 70.76 78.46
5 24.21 36.90 45.07 52.18 60.19
7 17.97 28.03 34.82 40.96 48.21
9 14.28 22.57 28.31 33.63 40.05
11 11.84 18.89 23.84 28.49 34.21
17 7.83 12.67 16.16 19.51 23.73
21 6.39 10.38 13.29 16.11 19.69
25 5.39 8.80 11.29 13.72 16.82
50 2.73 4.50 5.82 7.11 8.80
100 1.38 2.28 2.95 3.62 4.50
150 0.92 1.52 1.98 2.43 3.02
200 0.69 1.14 1.49 1.83 2.28
250 0.55 0.92 1.19 1.46 1.83
300 0.46 0.76 0.99 1.22 1.52
400 0.35 0.57 0.75 0.92 1.14
500 0.28 0.46 0.60 0.74 0.92
1000 0.14 0.23 0.30 0.37 0.46
and a upper fraction of non-conforming items 1 − C. This leads to
Cn
+ C − 1 = 0. (3)
Solved for n:
n =
ln(1 − C)
ln(C)
. (4)
One can ask for the largest p the makes P(0) reasonably small. Therefore, we set
P(0) = 1 − C, where C is the confidence level for the upper limit of non-conforming
items pu:
1 − C = (1 − pu)n
(5)
or
pu = 1 − n
√
1 − C (6)
Title: Zero response
Revision: 1
Effective: 2015-10-25
Page 2 of 3
ID-Number:
Author: Dr. Peter Drechsler
Developed: 2015-10-25
Phone: +49 711 46 92 73 40
Mobile: +49 173 2462720
peter.drechsler@qtec-group.com
qtec group R
qtec services GmbH
Humboldtstr. 30
70771 Leinfelden-Echterdingen
Germany
Statistics for goods income tests with zero response
Table 2: Sample size n for a given confidence level C.
C/% pu n
99.99 0.0001 92099
99.90 0.0010 6904
99.5 0.0050 1057
99 0.0100 458
97 0.0300 115
95 0.0500 58
93 0.0700 37
90 0.1000 22
70 0.3000 4
50 0.5000 1
Sometimes it’s very convienient to calculate the sample size n for a given
confidence level C
References
[1] ASTM E 2334-09. Standard practice for setting an upper confidence bound for
a fraction or number of non-conforming items, or a rate of occurence for
non-conformities, using attribute data, when there is a zero response in the
sample, 2009.
Title: Zero response
Revision: 1
Effective: 2015-10-25
Page 3 of 3
ID-Number:
Author: Dr. Peter Drechsler
Developed: 2015-10-25
Phone: +49 711 46 92 73 40
Mobile: +49 173 2462720
peter.drechsler@qtec-group.com
qtec group R
qtec services GmbH
Humboldtstr. 30
70771 Leinfelden-Echterdingen
Germany

More Related Content

What's hot

Factoring
FactoringFactoring
Factoring
daisyrock
 
P13 020
P13 020P13 020
P13 020
Léo Ribeiro
 
Factoring Activity 3.09
Factoring Activity 3.09Factoring Activity 3.09
Factoring Activity 3.09
Mershon Moore
 
4.4 day 1
4.4 day 14.4 day 1
4.4 day 1
leblance
 
trapezoidal and simpson's 1/3 and 3/8 rule
trapezoidal and simpson's 1/3 and 3/8 ruletrapezoidal and simpson's 1/3 and 3/8 rule
trapezoidal and simpson's 1/3 and 3/8 rule
hitarth shah
 
Pseudo Random Number Generators
Pseudo Random Number GeneratorsPseudo Random Number Generators
Pseudo Random Number Generators
Darshini Parikh
 
Bc0052 – theory of computer science
Bc0052 – theory of computer scienceBc0052 – theory of computer science
Bc0052 – theory of computer science
smumbahelp
 
Real numbers
Real numbers Real numbers
Real numbers
Shraddha Mantri
 
Algo sobre gravitacion ingles
Algo sobre gravitacion inglesAlgo sobre gravitacion ingles
Algo sobre gravitacion ingles
Antonio Gutierrez
 
Riemann sumsdefiniteintegrals
Riemann sumsdefiniteintegralsRiemann sumsdefiniteintegrals
Riemann sumsdefiniteintegrals
Dr. Jennifer Chang Wathall
 
Hprec7.1
Hprec7.1Hprec7.1
Hprec7.1
stevenhbills
 

What's hot (11)

Factoring
FactoringFactoring
Factoring
 
P13 020
P13 020P13 020
P13 020
 
Factoring Activity 3.09
Factoring Activity 3.09Factoring Activity 3.09
Factoring Activity 3.09
 
4.4 day 1
4.4 day 14.4 day 1
4.4 day 1
 
trapezoidal and simpson's 1/3 and 3/8 rule
trapezoidal and simpson's 1/3 and 3/8 ruletrapezoidal and simpson's 1/3 and 3/8 rule
trapezoidal and simpson's 1/3 and 3/8 rule
 
Pseudo Random Number Generators
Pseudo Random Number GeneratorsPseudo Random Number Generators
Pseudo Random Number Generators
 
Bc0052 – theory of computer science
Bc0052 – theory of computer scienceBc0052 – theory of computer science
Bc0052 – theory of computer science
 
Real numbers
Real numbers Real numbers
Real numbers
 
Algo sobre gravitacion ingles
Algo sobre gravitacion inglesAlgo sobre gravitacion ingles
Algo sobre gravitacion ingles
 
Riemann sumsdefiniteintegrals
Riemann sumsdefiniteintegralsRiemann sumsdefiniteintegrals
Riemann sumsdefiniteintegrals
 
Hprec7.1
Hprec7.1Hprec7.1
Hprec7.1
 

Similar to statsforusab

zero_response
zero_responsezero_response
zero_response
Dr. Peter Drechsler
 
whitehead-logistic-regression.ppt
whitehead-logistic-regression.pptwhitehead-logistic-regression.ppt
whitehead-logistic-regression.ppt
19DSMA012HarshSingh
 
Solution to the practice test ch 8 hypothesis testing ch 9 two populations
Solution to the practice test ch 8 hypothesis testing ch 9 two populationsSolution to the practice test ch 8 hypothesis testing ch 9 two populations
Solution to the practice test ch 8 hypothesis testing ch 9 two populations
Long Beach City College
 
statistics assignment help
statistics assignment helpstatistics assignment help
statistics assignment help
Statistics Homework Helper
 
Solution manual for design and analysis of experiments 9th edition douglas ...
Solution manual for design and analysis of experiments 9th edition   douglas ...Solution manual for design and analysis of experiments 9th edition   douglas ...
Solution manual for design and analysis of experiments 9th edition douglas ...
Salehkhanovic
 
Inferences about Two Proportions
 Inferences about Two Proportions Inferences about Two Proportions
Inferences about Two Proportions
Long Beach City College
 
Cs221 lecture4-fall11
Cs221 lecture4-fall11Cs221 lecture4-fall11
Cs221 lecture4-fall11
darwinrlo
 
Chapter4
Chapter4Chapter4
Chapter4
Vu Vo
 
The Log-Linear Return Approximation, Bubbles, and Predictability
The Log-Linear Return Approximation, Bubbles, and PredictabilityThe Log-Linear Return Approximation, Bubbles, and Predictability
The Log-Linear Return Approximation, Bubbles, and Predictability
Michael-Paul James
 
Stats Coursework
Stats CourseworkStats Coursework
Stats Coursework
Jed Fletcher
 
Advanced Statistics Homework Help
Advanced Statistics Homework HelpAdvanced Statistics Homework Help
Advanced Statistics Homework Help
Statistics Homework Helper
 
Good
GoodGood
C2 st lecture 10 basic statistics and the z test handout
C2 st lecture 10   basic statistics and the z test handoutC2 st lecture 10   basic statistics and the z test handout
C2 st lecture 10 basic statistics and the z test handout
fatima d
 
Units and Measurement
Units and MeasurementUnits and Measurement
Units and Measurement
CareerLauncher
 
Correlation continued
Correlation continuedCorrelation continued
Correlation continued
Nelsie Grace Pineda
 
Matlab polynimials and curve fitting
Matlab polynimials and curve fittingMatlab polynimials and curve fitting
Matlab polynimials and curve fitting
Ameen San
 
9_Poisson_printable.pdf
9_Poisson_printable.pdf9_Poisson_printable.pdf
9_Poisson_printable.pdf
Elio Laureano
 
DMA_Induction (2).pptx nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
DMA_Induction (2).pptx nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnDMA_Induction (2).pptx nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
DMA_Induction (2).pptx nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
huong996275
 
Number theory
Number theory Number theory
Number theory
tes31
 
Chapter 1 digital systems and binary numbers
Chapter 1 digital systems and binary numbersChapter 1 digital systems and binary numbers
Chapter 1 digital systems and binary numbers
Mohammad Bashartullah
 

Similar to statsforusab (20)

zero_response
zero_responsezero_response
zero_response
 
whitehead-logistic-regression.ppt
whitehead-logistic-regression.pptwhitehead-logistic-regression.ppt
whitehead-logistic-regression.ppt
 
Solution to the practice test ch 8 hypothesis testing ch 9 two populations
Solution to the practice test ch 8 hypothesis testing ch 9 two populationsSolution to the practice test ch 8 hypothesis testing ch 9 two populations
Solution to the practice test ch 8 hypothesis testing ch 9 two populations
 
statistics assignment help
statistics assignment helpstatistics assignment help
statistics assignment help
 
Solution manual for design and analysis of experiments 9th edition douglas ...
Solution manual for design and analysis of experiments 9th edition   douglas ...Solution manual for design and analysis of experiments 9th edition   douglas ...
Solution manual for design and analysis of experiments 9th edition douglas ...
 
Inferences about Two Proportions
 Inferences about Two Proportions Inferences about Two Proportions
Inferences about Two Proportions
 
Cs221 lecture4-fall11
Cs221 lecture4-fall11Cs221 lecture4-fall11
Cs221 lecture4-fall11
 
Chapter4
Chapter4Chapter4
Chapter4
 
The Log-Linear Return Approximation, Bubbles, and Predictability
The Log-Linear Return Approximation, Bubbles, and PredictabilityThe Log-Linear Return Approximation, Bubbles, and Predictability
The Log-Linear Return Approximation, Bubbles, and Predictability
 
Stats Coursework
Stats CourseworkStats Coursework
Stats Coursework
 
Advanced Statistics Homework Help
Advanced Statistics Homework HelpAdvanced Statistics Homework Help
Advanced Statistics Homework Help
 
Good
GoodGood
Good
 
C2 st lecture 10 basic statistics and the z test handout
C2 st lecture 10   basic statistics and the z test handoutC2 st lecture 10   basic statistics and the z test handout
C2 st lecture 10 basic statistics and the z test handout
 
Units and Measurement
Units and MeasurementUnits and Measurement
Units and Measurement
 
Correlation continued
Correlation continuedCorrelation continued
Correlation continued
 
Matlab polynimials and curve fitting
Matlab polynimials and curve fittingMatlab polynimials and curve fitting
Matlab polynimials and curve fitting
 
9_Poisson_printable.pdf
9_Poisson_printable.pdf9_Poisson_printable.pdf
9_Poisson_printable.pdf
 
DMA_Induction (2).pptx nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
DMA_Induction (2).pptx nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnDMA_Induction (2).pptx nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
DMA_Induction (2).pptx nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
 
Number theory
Number theory Number theory
Number theory
 
Chapter 1 digital systems and binary numbers
Chapter 1 digital systems and binary numbersChapter 1 digital systems and binary numbers
Chapter 1 digital systems and binary numbers
 

statsforusab

  • 1. Statistics for goods income tests with zero response Zero response If n tested items of the LOT show a zero response, i.e. zero non-conforming items are found, a probability exists that non-conforming items are still in the LOT. For n/M ≤ 0.05, i.e. large LOT size compared to the sample size, the binomial distribution can be used to calculate the upper limit of non-conforming items for a given confidence level C: [1] P(k) = n k pk (1 − p)n−k (1) with n the sample size, k the number of non-conforming items and p the fraction of non-conforming items in a LOT. For k = 0: P(0) = (1 − p)n . (2) 0.5 0.6 0.7 0.8 0.9 1.0 0.00.10.20.30.4 n = 11 Confidence level Fractionofnon−conformingitems Figure 1: Confidence level versus upper fraction of non-conforming items for n = 11. Title: Zero response Revision: 1 Effective: 2015-10-25 Page 1 of 3 ID-Number: Author: Dr. Peter Drechsler Developed: 2015-10-25 Phone: +49 711 46 92 73 40 Mobile: +49 173 2462720 peter.drechsler@qtec-group.com qtec group R qtec services GmbH Humboldtstr. 30 70771 Leinfelden-Echterdingen Germany
  • 2. Statistics for goods income tests with zero response Table 1: Maximal fraction of non-conforming items in a LOT in percent as a function of samples n taken and zero non-compliance items k are found for confidence intervals between 75% and 99%. Samples Confidence limit n 0.75 0.90 0.95 0.975 0.99 1 75.00 90.00 95.00 97.50 99.00 3 37.00 53.58 63.16 70.76 78.46 5 24.21 36.90 45.07 52.18 60.19 7 17.97 28.03 34.82 40.96 48.21 9 14.28 22.57 28.31 33.63 40.05 11 11.84 18.89 23.84 28.49 34.21 17 7.83 12.67 16.16 19.51 23.73 21 6.39 10.38 13.29 16.11 19.69 25 5.39 8.80 11.29 13.72 16.82 50 2.73 4.50 5.82 7.11 8.80 100 1.38 2.28 2.95 3.62 4.50 150 0.92 1.52 1.98 2.43 3.02 200 0.69 1.14 1.49 1.83 2.28 250 0.55 0.92 1.19 1.46 1.83 300 0.46 0.76 0.99 1.22 1.52 400 0.35 0.57 0.75 0.92 1.14 500 0.28 0.46 0.60 0.74 0.92 1000 0.14 0.23 0.30 0.37 0.46 and a upper fraction of non-conforming items 1 − C. This leads to Cn + C − 1 = 0. (3) Solved for n: n = ln(1 − C) ln(C) . (4) One can ask for the largest p the makes P(0) reasonably small. Therefore, we set P(0) = 1 − C, where C is the confidence level for the upper limit of non-conforming items pu: 1 − C = (1 − pu)n (5) or pu = 1 − n √ 1 − C (6) Title: Zero response Revision: 1 Effective: 2015-10-25 Page 2 of 3 ID-Number: Author: Dr. Peter Drechsler Developed: 2015-10-25 Phone: +49 711 46 92 73 40 Mobile: +49 173 2462720 peter.drechsler@qtec-group.com qtec group R qtec services GmbH Humboldtstr. 30 70771 Leinfelden-Echterdingen Germany
  • 3. Statistics for goods income tests with zero response Table 2: Sample size n for a given confidence level C. C/% pu n 99.99 0.0001 92099 99.90 0.0010 6904 99.5 0.0050 1057 99 0.0100 458 97 0.0300 115 95 0.0500 58 93 0.0700 37 90 0.1000 22 70 0.3000 4 50 0.5000 1 Sometimes it’s very convienient to calculate the sample size n for a given confidence level C References [1] ASTM E 2334-09. Standard practice for setting an upper confidence bound for a fraction or number of non-conforming items, or a rate of occurence for non-conformities, using attribute data, when there is a zero response in the sample, 2009. Title: Zero response Revision: 1 Effective: 2015-10-25 Page 3 of 3 ID-Number: Author: Dr. Peter Drechsler Developed: 2015-10-25 Phone: +49 711 46 92 73 40 Mobile: +49 173 2462720 peter.drechsler@qtec-group.com qtec group R qtec services GmbH Humboldtstr. 30 70771 Leinfelden-Echterdingen Germany