SlideShare a Scribd company logo
Eˆhaˆclˆg
S¨l«‡e·«×
Ca¯¯lîca·lˆ Ñl·h
S·ac}ed
A¼·eˆcde«: A
NÐe A¨¨«ach
Eˆhaˆclˆg
S¨l«‡e·«×
Ca¯¯lîca·lˆ Ñl·h
S·ac}ed
A¼·eˆcde«: A
NÐe A¨¨«ach
Spirometry Classification
Spirometry Classification
Si zme¶ Ý i¨ a czmmzo l¾og
f¾oc¶izo ¶e¨¶ ¶ha¶ mea¨¾ e¨ hz× ×ell
a e ¨zo cao mzÖe ai io aod z¾¶ zf
¶hei l¾og¨. The ¶e¨¶ e¨¾l¶¨ a e ¾¨ed
¶z diagoz¨e aod mzoi¶z l¾og
di¨ea¨e¨ ¨¾ch a¨ a¨¶hma aod ch zoic
zb¨¶ ¾c¶iÖe ¾lmzoa Ý di¨ea¨e
(COPD). Hz×eÖe , ¶he cla¨¨iIca¶izo zf
¨i zme¶ Ý e¨¾l¶¨ i¨ ¨¾bjec¶iÖe aod
 zoe ¶z io¶e -zb¨e Öe Öa iabili¶Ý. Thi¨
 e¨eo¶a¶izo io¶ zd¾ce¨ a ozÖel
a zach ¶z eohaoce ¨i zme¶ Ý
cla¨¨iIca¶izo ¾¨iog a ¨¶acked
a¾¶zeoczde .
Si zme¶ Ý i¨ a czmmzo l¾og
f¾oc¶izo ¶e¨¶ ¶ha¶ mea¨¾ e¨ hz× ×ell
a e ¨zo cao mzÖe ai io aod z¾¶ zf
¶hei l¾og¨. The ¶e¨¶ e¨¾l¶¨ a e ¾¨ed
¶z diagoz¨e aod mzoi¶z l¾og
di¨ea¨e¨ ¨¾ch a¨ a¨¶hma aod ch zoic
zb¨¶ ¾c¶iÖe ¾lmzoa Ý di¨ea¨e
(COPD). Hz×eÖe , ¶he cla¨¨iIca¶izo zf
¨i zme¶ Ý e¨¾l¶¨ i¨ ¨¾bjec¶iÖe aod
 zoe ¶z io¶e -zb¨e Öe Öa iabili¶Ý. Thi¨
 e¨eo¶a¶izo io¶ zd¾ce¨ a ozÖel
a zach ¶z eohaoce ¨i zme¶ Ý
cla¨¨iIca¶izo ¾¨iog a ¨¶acked
a¾¶zeoczde .
Lung Function Tests
Lung Function Tests
L¾og f¾oc¶izo ¶e¨¶¨ a e e¨¨eo¶ial ¶zzl¨
fz ¶he diagoz¨i¨ aod maoagemeo¶ zf
e¨i a¶z Ý di¨ea¨e¨. Si zme¶ Ý i¨ ¶he
mz¨¶ czmmzolÝ ¾¨ed l¾og f¾oc¶izo
¶e¨¶, ×hich mea¨¾ e¨ ¶he amz¾o¶ aod
¨eed zf ai ¶ha¶ cao be iohaled aod
eÜhaled. Hz×eÖe , ¨i zme¶ Ý e¨¾l¶¨ a e
ioJ¾eoced bÝ Öa iz¾¨ fac¶z ¨ ¨¾ch a¨
age, heigh¶, aod ¨eÜ. The efz e,
¨i zme¶ Ý e¨¾l¶¨ oeed ¶z be
io¶e  e¶ed ×i¶h ca¾¶izo, aod ¶he ¾¨e zf
machioe lea oiog algz i¶hm¨ cao hel
im zÖe ¶he acc¾ acÝ zf ¨i zme¶ Ý
cla¨¨iIca¶izo.
L¾og f¾oc¶izo ¶e¨¶¨ a e e¨¨eo¶ial ¶zzl¨
fz ¶he diagoz¨i¨ aod maoagemeo¶ zf
e¨i a¶z Ý di¨ea¨e¨. Si zme¶ Ý i¨ ¶he
mz¨¶ czmmzolÝ ¾¨ed l¾og f¾oc¶izo
¶e¨¶, ×hich mea¨¾ e¨ ¶he amz¾o¶ aod
¨eed zf ai ¶ha¶ cao be iohaled aod
eÜhaled. Hz×eÖe , ¨i zme¶ Ý e¨¾l¶¨ a e
ioJ¾eoced bÝ Öa iz¾¨ fac¶z ¨ ¨¾ch a¨
age, heigh¶, aod ¨eÜ. The efz e,
¨i zme¶ Ý e¨¾l¶¨ oeed ¶z be
io¶e  e¶ed ×i¶h ca¾¶izo, aod ¶he ¾¨e zf
machioe lea oiog algz i¶hm¨ cao hel
im zÖe ¶he acc¾ acÝ zf ¨i zme¶ Ý
cla¨¨iIca¶izo.
Artificial Neural Networks
Artificial Neural Networks
A ¶iIcial oe¾ al oe¶×z k¨ (ANN¨) a e
machioe lea oiog mzdel¨ ¶ha¶ a e
io¨i ed bÝ ¶he ¨¶ ¾c¶¾ e aod f¾oc¶izo
zf ¶he h¾mao b aio. ANN¨ czo¨i¨¶ zf
io¶e czooec¶ed ozde¨ ¶ha¶  zce¨¨ aod
¶ ao¨mi¶ iofz ma¶izo. S¶acked
a¾¶zeoczde i¨ a ¶Ýe zf ANN ¶ha¶ cao
lea o ¶z eܶ ac¶ aod e e¨eo¶ fea¶¾ e¨
f zm a× da¶a. Io ¶hi¨  e¨eo¶a¶izo, ×e
×ill di¨c¾¨¨ hz× a ¨¶acked a¾¶zeoczde
cao be ¾¨ed ¶z eohaoce ¨i zme¶ Ý
cla¨¨iIca¶izo.
A ¶iIcial oe¾ al oe¶×z k¨ (ANN¨) a e
machioe lea oiog mzdel¨ ¶ha¶ a e
io¨i ed bÝ ¶he ¨¶ ¾c¶¾ e aod f¾oc¶izo
zf ¶he h¾mao b aio. ANN¨ czo¨i¨¶ zf
io¶e czooec¶ed ozde¨ ¶ha¶  zce¨¨ aod
¶ ao¨mi¶ iofz ma¶izo. S¶acked
a¾¶zeoczde i¨ a ¶Ýe zf ANN ¶ha¶ cao
lea o ¶z eܶ ac¶ aod e e¨eo¶ fea¶¾ e¨
f zm a× da¶a. Io ¶hi¨  e¨eo¶a¶izo, ×e
×ill di¨c¾¨¨ hz× a ¨¶acked a¾¶zeoczde
cao be ¾¨ed ¶z eohaoce ¨i zme¶ Ý
cla¨¨iIca¶izo.
S¨l«‡e·«× Da·a P«e¨«ce¯¯lˆg
S¨l«‡e·«× Da·a P«e¨«ce¯¯lˆg
Si zme¶ Ý da¶a  e zce¨¨iog i¨ ao
e¨¨eo¶ial ¨¶e io eohaociog ¨i zme¶ Ý
cla¨¨iIca¶izo. The da¶a oeed¨ ¶z be
cleaoed, oz maliçed, aod ¨¶aoda diçed
¶z emzÖe aoÝ ozi¨e aod make ¶he da¶a
czma¶ible ×i¶h ¶he machioe lea oiog
algz i¶hm. Io ¶hi¨  e¨eo¶a¶izo, ×e ×ill
di¨c¾¨¨ ¶he diffe eo¶  e zce¨¨iog
¶echoiŸ¾e¨ ¾¨ed ¶z  ea e ¨i zme¶ Ý
da¶a fz cla¨¨iIca¶izo ¾¨iog a ¨¶acked
a¾¶zeoczde .
Si zme¶ Ý da¶a  e zce¨¨iog i¨ ao
e¨¨eo¶ial ¨¶e io eohaociog ¨i zme¶ Ý
cla¨¨iIca¶izo. The da¶a oeed¨ ¶z be
cleaoed, oz maliçed, aod ¨¶aoda diçed
¶z emzÖe aoÝ ozi¨e aod make ¶he da¶a
czma¶ible ×i¶h ¶he machioe lea oiog
algz i¶hm. Io ¶hi¨  e¨eo¶a¶izo, ×e ×ill
di¨c¾¨¨ ¶he diffe eo¶  e zce¨¨iog
¶echoiŸ¾e¨ ¾¨ed ¶z  ea e ¨i zme¶ Ý
da¶a fz cla¨¨iIca¶izo ¾¨iog a ¨¶acked
a¾¶zeoczde .
S·ac}ed A¼·eˆcde« A«chl·ec·¼«e
S·ac}ed A¼·eˆcde« A«chl·ec·¼«e
The a chi¶ec¶¾ e zf a ¨¶acked a¾¶zeoczde
czo¨i¨¶¨ zf m¾l¶ile laÝe ¨ zf eoczdiog aod
deczdiog ozde¨. The io¾¶ da¶a i¨ fed io¶z ¶he
I ¨¶ laÝe , aod ¶he z¾¶¾¶ zf each laÝe i¨ fed io¶z
¶he oeܶ laÝe ¾o¶il ¶he Ioal z¾¶¾¶ i¨ zb¶aioed.
The ×eigh¶¨ zf ¶he oe¶×z k a e adj¾¨¶ed d¾ iog
¶ aioiog ¶z mioimiçe ¶he eczo¨¶ ¾c¶izo e z . Io
¶hi¨  e¨eo¶a¶izo, ×e ×ill di¨c¾¨¨ ¶he a chi¶ec¶¾ e
zf a ¨¶acked a¾¶zeoczde ¾¨ed fz ¨i zme¶ Ý
cla¨¨iIca¶izo.
The a chi¶ec¶¾ e zf a ¨¶acked a¾¶zeoczde
czo¨i¨¶¨ zf m¾l¶ile laÝe ¨ zf eoczdiog aod
deczdiog ozde¨. The io¾¶ da¶a i¨ fed io¶z ¶he
I ¨¶ laÝe , aod ¶he z¾¶¾¶ zf each laÝe i¨ fed io¶z
¶he oeܶ laÝe ¾o¶il ¶he Ioal z¾¶¾¶ i¨ zb¶aioed.
The ×eigh¶¨ zf ¶he oe¶×z k a e adj¾¨¶ed d¾ iog
¶ aioiog ¶z mioimiçe ¶he eczo¨¶ ¾c¶izo e z . Io
¶hi¨  e¨eo¶a¶izo, ×e ×ill di¨c¾¨¨ ¶he a chi¶ec¶¾ e
zf a ¨¶acked a¾¶zeoczde ¾¨ed fz ¨i zme¶ Ý
cla¨¨iIca¶izo.
Cˆc¼¯lˆ
Cˆc¼¯lˆ
Io czocl¾¨izo, ¨i zme¶ Ý i¨ a Öi¶al ¶zzl io ¶he diagoz¨i¨ aod
maoagemeo¶ zf e¨i a¶z Ý di¨ea¨e¨. Hz×eÖe , ¶he cla¨¨iIca¶izo
zf ¨i zme¶ Ý e¨¾l¶¨ i¨ ¨¾bjec¶iÖe aod  zoe ¶z io¶e -zb¨e Öe
Öa iabili¶Ý. The ¾¨e zf machioe lea oiog algz i¶hm¨ ¨¾ch a¨
¨¶acked a¾¶zeoczde cao hel eohaoce ¨i zme¶ Ý cla¨¨iIca¶izo
aod im zÖe ¶he acc¾ acÝ zf diagoz¨i¨. We hze ¶hi¨  e¨eo¶a¶izo
ha¨  zÖided Ýz¾ ×i¶h ao io¨igh¶ io¶z ¶he z¶eo¶ial zf ¾¨iog
¨¶acked a¾¶zeoczde fz ¨i zme¶ Ý cla¨¨iIca¶izo.
Io czocl¾¨izo, ¨i zme¶ Ý i¨ a Öi¶al ¶zzl io ¶he diagoz¨i¨ aod
maoagemeo¶ zf e¨i a¶z Ý di¨ea¨e¨. Hz×eÖe , ¶he cla¨¨iIca¶izo
zf ¨i zme¶ Ý e¨¾l¶¨ i¨ ¨¾bjec¶iÖe aod  zoe ¶z io¶e -zb¨e Öe
Öa iabili¶Ý. The ¾¨e zf machioe lea oiog algz i¶hm¨ ¨¾ch a¨
¨¶acked a¾¶zeoczde cao hel eohaoce ¨i zme¶ Ý cla¨¨iIca¶izo
aod im zÖe ¶he acc¾ acÝ zf diagoz¨i¨. We hze ¶hi¨  e¨eo¶a¶izo
ha¨  zÖided Ýz¾ ×i¶h ao io¨igh¶ io¶z ¶he z¶eo¶ial zf ¾¨iog
¨¶acked a¾¶zeoczde fz ¨i zme¶ Ý cla¨¨iIca¶izo.
Thaˆ}¯!
Thaˆ}¯!
Dz Ýz¾ haÖe aoÝ Ÿ¾e¨¶izo¨? addÝz¾ email@f eeik.czm
+91 620 421 838
Ýz¾ czmaoÝ.czm
Dz Ýz¾ haÖe aoÝ Ÿ¾e¨¶izo¨? addÝz¾ email@f eeik.czm
+91 620 421 838
Ýz¾ czmaoÝ.czm

More Related Content

More from PriyadharshiniG41

Unit I-Final MArketing analytics unit 1 ppt
Unit I-Final MArketing analytics unit 1 pptUnit I-Final MArketing analytics unit 1 ppt
Unit I-Final MArketing analytics unit 1 ppt
PriyadharshiniG41
 
agent architecture in artificial intelligence.pptx
agent architecture in artificial intelligence.pptxagent architecture in artificial intelligence.pptx
agent architecture in artificial intelligence.pptx
PriyadharshiniG41
 
trust,bargain,negotiate in artificail intelligence
trust,bargain,negotiate in artificail intelligencetrust,bargain,negotiate in artificail intelligence
trust,bargain,negotiate in artificail intelligence
PriyadharshiniG41
 
Minmax and alpha beta pruning.pptx
Minmax and alpha beta pruning.pptxMinmax and alpha beta pruning.pptx
Minmax and alpha beta pruning.pptx
PriyadharshiniG41
 
dds.pptx
dds.pptxdds.pptx
actuators.pptx
actuators.pptxactuators.pptx
actuators.pptx
PriyadharshiniG41
 
First order logic or Predicate logic.pptx
First order logic or Predicate logic.pptxFirst order logic or Predicate logic.pptx
First order logic or Predicate logic.pptx
PriyadharshiniG41
 
14.08.2020 LKG.pdf
14.08.2020 LKG.pdf14.08.2020 LKG.pdf
14.08.2020 LKG.pdf
PriyadharshiniG41
 
Decision Tree Classification Algorithm.pptx
Decision Tree Classification Algorithm.pptxDecision Tree Classification Algorithm.pptx
Decision Tree Classification Algorithm.pptx
PriyadharshiniG41
 
problemsolving with AI.pptx
problemsolving with AI.pptxproblemsolving with AI.pptx
problemsolving with AI.pptx
PriyadharshiniG41
 
Naïve Bayes Classifier Algorithm.pptx
Naïve Bayes Classifier Algorithm.pptxNaïve Bayes Classifier Algorithm.pptx
Naïve Bayes Classifier Algorithm.pptx
PriyadharshiniG41
 
problem characterstics.pptx
problem characterstics.pptxproblem characterstics.pptx
problem characterstics.pptx
PriyadharshiniG41
 
ppt.pptx
ppt.pptxppt.pptx
demo AI ML.pptx
demo AI ML.pptxdemo AI ML.pptx
demo AI ML.pptx
PriyadharshiniG41
 
crossvalidation.pptx
crossvalidation.pptxcrossvalidation.pptx
crossvalidation.pptx
PriyadharshiniG41
 
What is Multisensor Modules.pptx
What is Multisensor Modules.pptxWhat is Multisensor Modules.pptx
What is Multisensor Modules.pptx
PriyadharshiniG41
 
hierarchical clustering.pptx
hierarchical clustering.pptxhierarchical clustering.pptx
hierarchical clustering.pptx
PriyadharshiniG41
 
decisiontrees.ppt
decisiontrees.pptdecisiontrees.ppt
decisiontrees.ppt
PriyadharshiniG41
 
intro history.pptx
intro history.pptxintro history.pptx
intro history.pptx
PriyadharshiniG41
 
classification.pptx
classification.pptxclassification.pptx
classification.pptx
PriyadharshiniG41
 

More from PriyadharshiniG41 (20)

Unit I-Final MArketing analytics unit 1 ppt
Unit I-Final MArketing analytics unit 1 pptUnit I-Final MArketing analytics unit 1 ppt
Unit I-Final MArketing analytics unit 1 ppt
 
agent architecture in artificial intelligence.pptx
agent architecture in artificial intelligence.pptxagent architecture in artificial intelligence.pptx
agent architecture in artificial intelligence.pptx
 
trust,bargain,negotiate in artificail intelligence
trust,bargain,negotiate in artificail intelligencetrust,bargain,negotiate in artificail intelligence
trust,bargain,negotiate in artificail intelligence
 
Minmax and alpha beta pruning.pptx
Minmax and alpha beta pruning.pptxMinmax and alpha beta pruning.pptx
Minmax and alpha beta pruning.pptx
 
dds.pptx
dds.pptxdds.pptx
dds.pptx
 
actuators.pptx
actuators.pptxactuators.pptx
actuators.pptx
 
First order logic or Predicate logic.pptx
First order logic or Predicate logic.pptxFirst order logic or Predicate logic.pptx
First order logic or Predicate logic.pptx
 
14.08.2020 LKG.pdf
14.08.2020 LKG.pdf14.08.2020 LKG.pdf
14.08.2020 LKG.pdf
 
Decision Tree Classification Algorithm.pptx
Decision Tree Classification Algorithm.pptxDecision Tree Classification Algorithm.pptx
Decision Tree Classification Algorithm.pptx
 
problemsolving with AI.pptx
problemsolving with AI.pptxproblemsolving with AI.pptx
problemsolving with AI.pptx
 
Naïve Bayes Classifier Algorithm.pptx
Naïve Bayes Classifier Algorithm.pptxNaïve Bayes Classifier Algorithm.pptx
Naïve Bayes Classifier Algorithm.pptx
 
problem characterstics.pptx
problem characterstics.pptxproblem characterstics.pptx
problem characterstics.pptx
 
ppt.pptx
ppt.pptxppt.pptx
ppt.pptx
 
demo AI ML.pptx
demo AI ML.pptxdemo AI ML.pptx
demo AI ML.pptx
 
crossvalidation.pptx
crossvalidation.pptxcrossvalidation.pptx
crossvalidation.pptx
 
What is Multisensor Modules.pptx
What is Multisensor Modules.pptxWhat is Multisensor Modules.pptx
What is Multisensor Modules.pptx
 
hierarchical clustering.pptx
hierarchical clustering.pptxhierarchical clustering.pptx
hierarchical clustering.pptx
 
decisiontrees.ppt
decisiontrees.pptdecisiontrees.ppt
decisiontrees.ppt
 
intro history.pptx
intro history.pptxintro history.pptx
intro history.pptx
 
classification.pptx
classification.pptxclassification.pptx
classification.pptx
 

spirometry classification enhanced using ai

  • 1. Eˆhaˆclˆg S¨l«‡e·«× Ca¯¯lîca·lˆ Ñl·h S·ac}ed A¼·eˆcde«: A NÐe A¨¨«ach Eˆhaˆclˆg S¨l«‡e·«× Ca¯¯lîca·lˆ Ñl·h S·ac}ed A¼·eˆcde«: A NÐe A¨¨«ach
  • 2. Spirometry Classification Spirometry Classification Si zme¶ Ý i¨ a czmmzo l¾og f¾oc¶izo ¶e¨¶ ¶ha¶ mea¨¾ e¨ hz× ×ell a e ¨zo cao mzÖe ai io aod z¾¶ zf ¶hei l¾og¨. The ¶e¨¶ e¨¾l¶¨ a e ¾¨ed ¶z diagoz¨e aod mzoi¶z l¾og di¨ea¨e¨ ¨¾ch a¨ a¨¶hma aod ch zoic zb¨¶ ¾c¶iÖe ¾lmzoa Ý di¨ea¨e (COPD). Hz×eÖe , ¶he cla¨¨iIca¶izo zf ¨i zme¶ Ý e¨¾l¶¨ i¨ ¨¾bjec¶iÖe aod  zoe ¶z io¶e -zb¨e Öe Öa iabili¶Ý. Thi¨  e¨eo¶a¶izo io¶ zd¾ce¨ a ozÖel a zach ¶z eohaoce ¨i zme¶ Ý cla¨¨iIca¶izo ¾¨iog a ¨¶acked a¾¶zeoczde . Si zme¶ Ý i¨ a czmmzo l¾og f¾oc¶izo ¶e¨¶ ¶ha¶ mea¨¾ e¨ hz× ×ell a e ¨zo cao mzÖe ai io aod z¾¶ zf ¶hei l¾og¨. The ¶e¨¶ e¨¾l¶¨ a e ¾¨ed ¶z diagoz¨e aod mzoi¶z l¾og di¨ea¨e¨ ¨¾ch a¨ a¨¶hma aod ch zoic zb¨¶ ¾c¶iÖe ¾lmzoa Ý di¨ea¨e (COPD). Hz×eÖe , ¶he cla¨¨iIca¶izo zf ¨i zme¶ Ý e¨¾l¶¨ i¨ ¨¾bjec¶iÖe aod  zoe ¶z io¶e -zb¨e Öe Öa iabili¶Ý. Thi¨  e¨eo¶a¶izo io¶ zd¾ce¨ a ozÖel a zach ¶z eohaoce ¨i zme¶ Ý cla¨¨iIca¶izo ¾¨iog a ¨¶acked a¾¶zeoczde .
  • 3. Lung Function Tests Lung Function Tests L¾og f¾oc¶izo ¶e¨¶¨ a e e¨¨eo¶ial ¶zzl¨ fz ¶he diagoz¨i¨ aod maoagemeo¶ zf e¨i a¶z Ý di¨ea¨e¨. Si zme¶ Ý i¨ ¶he mz¨¶ czmmzolÝ ¾¨ed l¾og f¾oc¶izo ¶e¨¶, ×hich mea¨¾ e¨ ¶he amz¾o¶ aod ¨eed zf ai ¶ha¶ cao be iohaled aod eÜhaled. Hz×eÖe , ¨i zme¶ Ý e¨¾l¶¨ a e ioJ¾eoced bÝ Öa iz¾¨ fac¶z ¨ ¨¾ch a¨ age, heigh¶, aod ¨eÜ. The efz e, ¨i zme¶ Ý e¨¾l¶¨ oeed ¶z be io¶e  e¶ed ×i¶h ca¾¶izo, aod ¶he ¾¨e zf machioe lea oiog algz i¶hm¨ cao hel im zÖe ¶he acc¾ acÝ zf ¨i zme¶ Ý cla¨¨iIca¶izo. L¾og f¾oc¶izo ¶e¨¶¨ a e e¨¨eo¶ial ¶zzl¨ fz ¶he diagoz¨i¨ aod maoagemeo¶ zf e¨i a¶z Ý di¨ea¨e¨. Si zme¶ Ý i¨ ¶he mz¨¶ czmmzolÝ ¾¨ed l¾og f¾oc¶izo ¶e¨¶, ×hich mea¨¾ e¨ ¶he amz¾o¶ aod ¨eed zf ai ¶ha¶ cao be iohaled aod eÜhaled. Hz×eÖe , ¨i zme¶ Ý e¨¾l¶¨ a e ioJ¾eoced bÝ Öa iz¾¨ fac¶z ¨ ¨¾ch a¨ age, heigh¶, aod ¨eÜ. The efz e, ¨i zme¶ Ý e¨¾l¶¨ oeed ¶z be io¶e  e¶ed ×i¶h ca¾¶izo, aod ¶he ¾¨e zf machioe lea oiog algz i¶hm¨ cao hel im zÖe ¶he acc¾ acÝ zf ¨i zme¶ Ý cla¨¨iIca¶izo.
  • 4. Artificial Neural Networks Artificial Neural Networks A ¶iIcial oe¾ al oe¶×z k¨ (ANN¨) a e machioe lea oiog mzdel¨ ¶ha¶ a e io¨i ed bÝ ¶he ¨¶ ¾c¶¾ e aod f¾oc¶izo zf ¶he h¾mao b aio. ANN¨ czo¨i¨¶ zf io¶e czooec¶ed ozde¨ ¶ha¶  zce¨¨ aod ¶ ao¨mi¶ iofz ma¶izo. S¶acked a¾¶zeoczde i¨ a ¶Ýe zf ANN ¶ha¶ cao lea o ¶z eܶ ac¶ aod e e¨eo¶ fea¶¾ e¨ f zm a× da¶a. Io ¶hi¨  e¨eo¶a¶izo, ×e ×ill di¨c¾¨¨ hz× a ¨¶acked a¾¶zeoczde cao be ¾¨ed ¶z eohaoce ¨i zme¶ Ý cla¨¨iIca¶izo. A ¶iIcial oe¾ al oe¶×z k¨ (ANN¨) a e machioe lea oiog mzdel¨ ¶ha¶ a e io¨i ed bÝ ¶he ¨¶ ¾c¶¾ e aod f¾oc¶izo zf ¶he h¾mao b aio. ANN¨ czo¨i¨¶ zf io¶e czooec¶ed ozde¨ ¶ha¶  zce¨¨ aod ¶ ao¨mi¶ iofz ma¶izo. S¶acked a¾¶zeoczde i¨ a ¶Ýe zf ANN ¶ha¶ cao lea o ¶z eܶ ac¶ aod e e¨eo¶ fea¶¾ e¨ f zm a× da¶a. Io ¶hi¨  e¨eo¶a¶izo, ×e ×ill di¨c¾¨¨ hz× a ¨¶acked a¾¶zeoczde cao be ¾¨ed ¶z eohaoce ¨i zme¶ Ý cla¨¨iIca¶izo.
  • 5. S¨l«‡e·«× Da·a P«e¨«ce¯¯lˆg S¨l«‡e·«× Da·a P«e¨«ce¯¯lˆg Si zme¶ Ý da¶a  e zce¨¨iog i¨ ao e¨¨eo¶ial ¨¶e io eohaociog ¨i zme¶ Ý cla¨¨iIca¶izo. The da¶a oeed¨ ¶z be cleaoed, oz maliçed, aod ¨¶aoda diçed ¶z emzÖe aoÝ ozi¨e aod make ¶he da¶a czma¶ible ×i¶h ¶he machioe lea oiog algz i¶hm. Io ¶hi¨  e¨eo¶a¶izo, ×e ×ill di¨c¾¨¨ ¶he diffe eo¶  e zce¨¨iog ¶echoiŸ¾e¨ ¾¨ed ¶z  ea e ¨i zme¶ Ý da¶a fz cla¨¨iIca¶izo ¾¨iog a ¨¶acked a¾¶zeoczde . Si zme¶ Ý da¶a  e zce¨¨iog i¨ ao e¨¨eo¶ial ¨¶e io eohaociog ¨i zme¶ Ý cla¨¨iIca¶izo. The da¶a oeed¨ ¶z be cleaoed, oz maliçed, aod ¨¶aoda diçed ¶z emzÖe aoÝ ozi¨e aod make ¶he da¶a czma¶ible ×i¶h ¶he machioe lea oiog algz i¶hm. Io ¶hi¨  e¨eo¶a¶izo, ×e ×ill di¨c¾¨¨ ¶he diffe eo¶  e zce¨¨iog ¶echoiŸ¾e¨ ¾¨ed ¶z  ea e ¨i zme¶ Ý da¶a fz cla¨¨iIca¶izo ¾¨iog a ¨¶acked a¾¶zeoczde .
  • 6. S·ac}ed A¼·eˆcde« A«chl·ec·¼«e S·ac}ed A¼·eˆcde« A«chl·ec·¼«e The a chi¶ec¶¾ e zf a ¨¶acked a¾¶zeoczde czo¨i¨¶¨ zf m¾l¶ile laÝe ¨ zf eoczdiog aod deczdiog ozde¨. The io¾¶ da¶a i¨ fed io¶z ¶he I ¨¶ laÝe , aod ¶he z¾¶¾¶ zf each laÝe i¨ fed io¶z ¶he oeܶ laÝe ¾o¶il ¶he Ioal z¾¶¾¶ i¨ zb¶aioed. The ×eigh¶¨ zf ¶he oe¶×z k a e adj¾¨¶ed d¾ iog ¶ aioiog ¶z mioimiçe ¶he eczo¨¶ ¾c¶izo e z . Io ¶hi¨  e¨eo¶a¶izo, ×e ×ill di¨c¾¨¨ ¶he a chi¶ec¶¾ e zf a ¨¶acked a¾¶zeoczde ¾¨ed fz ¨i zme¶ Ý cla¨¨iIca¶izo. The a chi¶ec¶¾ e zf a ¨¶acked a¾¶zeoczde czo¨i¨¶¨ zf m¾l¶ile laÝe ¨ zf eoczdiog aod deczdiog ozde¨. The io¾¶ da¶a i¨ fed io¶z ¶he I ¨¶ laÝe , aod ¶he z¾¶¾¶ zf each laÝe i¨ fed io¶z ¶he oeܶ laÝe ¾o¶il ¶he Ioal z¾¶¾¶ i¨ zb¶aioed. The ×eigh¶¨ zf ¶he oe¶×z k a e adj¾¨¶ed d¾ iog ¶ aioiog ¶z mioimiçe ¶he eczo¨¶ ¾c¶izo e z . Io ¶hi¨  e¨eo¶a¶izo, ×e ×ill di¨c¾¨¨ ¶he a chi¶ec¶¾ e zf a ¨¶acked a¾¶zeoczde ¾¨ed fz ¨i zme¶ Ý cla¨¨iIca¶izo.
  • 7. Cˆc¼¯lˆ Cˆc¼¯lˆ Io czocl¾¨izo, ¨i zme¶ Ý i¨ a Öi¶al ¶zzl io ¶he diagoz¨i¨ aod maoagemeo¶ zf e¨i a¶z Ý di¨ea¨e¨. Hz×eÖe , ¶he cla¨¨iIca¶izo zf ¨i zme¶ Ý e¨¾l¶¨ i¨ ¨¾bjec¶iÖe aod  zoe ¶z io¶e -zb¨e Öe Öa iabili¶Ý. The ¾¨e zf machioe lea oiog algz i¶hm¨ ¨¾ch a¨ ¨¶acked a¾¶zeoczde cao hel eohaoce ¨i zme¶ Ý cla¨¨iIca¶izo aod im zÖe ¶he acc¾ acÝ zf diagoz¨i¨. We hze ¶hi¨  e¨eo¶a¶izo ha¨  zÖided Ýz¾ ×i¶h ao io¨igh¶ io¶z ¶he z¶eo¶ial zf ¾¨iog ¨¶acked a¾¶zeoczde fz ¨i zme¶ Ý cla¨¨iIca¶izo. Io czocl¾¨izo, ¨i zme¶ Ý i¨ a Öi¶al ¶zzl io ¶he diagoz¨i¨ aod maoagemeo¶ zf e¨i a¶z Ý di¨ea¨e¨. Hz×eÖe , ¶he cla¨¨iIca¶izo zf ¨i zme¶ Ý e¨¾l¶¨ i¨ ¨¾bjec¶iÖe aod  zoe ¶z io¶e -zb¨e Öe Öa iabili¶Ý. The ¾¨e zf machioe lea oiog algz i¶hm¨ ¨¾ch a¨ ¨¶acked a¾¶zeoczde cao hel eohaoce ¨i zme¶ Ý cla¨¨iIca¶izo aod im zÖe ¶he acc¾ acÝ zf diagoz¨i¨. We hze ¶hi¨  e¨eo¶a¶izo ha¨  zÖided Ýz¾ ×i¶h ao io¨igh¶ io¶z ¶he z¶eo¶ial zf ¾¨iog ¨¶acked a¾¶zeoczde fz ¨i zme¶ Ý cla¨¨iIca¶izo.
  • 8. Thaˆ}¯! Thaˆ}¯! Dz Ýz¾ haÖe aoÝ Ÿ¾e¨¶izo¨? addÝz¾ email@f eeik.czm +91 620 421 838 Ýz¾ czmaoÝ.czm Dz Ýz¾ haÖe aoÝ Ÿ¾e¨¶izo¨? addÝz¾ email@f eeik.czm +91 620 421 838 Ýz¾ czmaoÝ.czm