SlideShare a Scribd company logo
Representing Translations on
     the Semantic Web
        Elena Montiel-Ponsoda, Jorge Gracia,
  Guadalupe Aguado-de-Cea, Asunción Gómez-Pérez


           Ontology Engineering Group (OEG)
                 Facultad de Informática
            Universidad Politécnica de Madrid

                http://www.oeg-upm.net


         {emontiel, j
         {    ti l jgracia, l
                        i lupe, asun}@fi.upm.es
                                    }@fi
The (Multilingual) Web of Data

•   We know that the Web is multilingual….




•   Is the Web of Data also multilingual?
•   Ell, B., Vrandecic, D., and Simperl, E. (2011). Labels in the Web
    of Data
                                                         English: 44.72%
                                        Most used
1 language specified: 2.2%              language tags:   German: 5.22 %
Nl languages specified: 0 7%
                  ifi d 0.7%                             French: 5.11%
                                                         F     h 11%

                                   2
The (Multilingual) Web of Data




data.bnf.fr – Bibliothèque national de France
GeoLinkedData.es – Spanish geospatial data
                        p       g    p
Rechtspraak.nl – Netherlands Council of the Judiciary
FAO geopolitical ontology – with labels in en, fr, es, ar, zh, ru, it
AGROVOC Linked Open Data – AGROVOC agricultural thesaurus

                                   3
The problem




4
Our proposal


• To propose a representation mechanism for explicit
     p p         p                            p
  translation relations between natural language
  descriptions associated to ontology elements and data.



• To implement it as a metamodel in OWL offered as a
  module of the lemon model, lexicon-ontology model to
  account for the linguistic descriptions associated to
                     g             p
  ontologies and linked data.


                            5
Outline


1. Current mechanisms for translation relations

2. lemon

3. Typology of translation relations

4.
4 Proposed lemon module for translations

      Examples of use

5. Conclusions




                            6
Outline


1. Current mechanisms for translation relations

2. lemon

3. Typology of translation relations

4.
4 Proposed lemon module for translations

      Examples of use

5. Conclusions




                            7
RDFS, SKOS


RDF(S), OWL
RDF(S), OWL
      ifrs:FinancialAssets            rdfs:label
                                                          “financial assets”@en


                                             rdfs:SubPropertyOf

SKOS
      ifrs:FinancialAssets         skos:prefLabel
                                                           “financial assets”@en



SKOS labels:  prefLabel, altLabel & hiddenLabel. 
              p        ,


                                         8
SKOS


 SKOS enables a simple form of multilingual labeling:


ifrs:FinancialAssets    skos:prefLabel
                             p
                                           “financial assets”@en

                         skos:prefLabel
                                            “activos financieros”@es



 What happens when we have more than one label per
  language? Food and Agriculture Organization and FAO?
 How can we create explicit links between labels?
 Say that one is translation, acronym of the other?


                                    9
SKOS-XL

                                                                   class
SKOS‐XL
SKOS XL                                       skosxl:Label



                                                     rdf:type



ifrs:FinancialAssets                      ifrs:FinancialAssetsLabel
                       skosxl:prefLabel


                                                     skosxl:literalForm



                                          “financial assets”@en



                                   10
SKOS-XL
                                                        skosxl:Label
 SKOS‐XL                                                          rdf:type
ifrs:FinancialAssets                               ifrs:FinancialAssetsLabel1
                          skosxl:prefLabel
                                                                   skosxl:literalForm

                                                     “financial assets”@en
   skosxl:labelRelation
                                             ex:isTranslationOf
            rdfs:subPropertyOf
   ex:isTranslationOf
                                                     “activos financieros”@es
                                                                  skosxl:literalForm
                                                   ifrs:FinancialAssetsLabel2
                          skosxl:prefLabel                        rdf:type

                                                       skosxl:Label

                                       11
LIR

EN   River
             FR




        12
Limitations



These solutions work! …
Th      l ti       k!      
                      …but with some limitations   
  Rigid models
  Simple translation relation insufficient for:
      p
     original vs. target label
     type of translation relation
     source of the translation
     adequacy or reliability of translations


                               13
Outline


1. Current mechanisms for translation relations

2. lemon

3. Typology of translation relations

4.
4 Proposed lemon module for translations

      Examples of use

5. Conclusions




                            14
The lemon model



An RDF‐based ontology‐lexicon model for ontologies
An RDF‐based ontology‐lexicon model for ontologies

Main features:
   • Semantics by reference
   • Rich lexical and terminological description of ontology
     elements
   • Concise (i.e., trade off between complexity and
     expressivity)
   • Descriptive not prescriptive (i.e., uses data categories)
   • Modular and extensible
                              15
The lemon model



 But this is also quite
Not so much… remember its
 complex, isn’t it?
modular nature




             16
The lemon model




17
Outline


1. Current mechanisms for translation relations

2. lemon

3. Typology of translation relations

4.
4 Proposed lemon module for translations

      Examples of use

5. Conclusions




                            18
Typology of translation relations


   Ontology Localization




  Multilingual Ontology
(an ontololgy in which labels are
documented in multiple NLs)




          but…
          b t

 Does a 1 to 1 correspondence between always exist?

                                      19
Typology of translation relations

                        Types of domains
    Internationalized                       Culturally
                                            C
     or standardized                       influenced
         domains                            domains




               Types of conceptualizations

  Conceptualizations                Conceptualizations that
  shared among the                  represent mismatches
languages represented                between cultures and
    in the ontology                       languages

                               20
Literal vs. Cultural equivalence Translation

Ontology A                                   Ontology B
(German)                                     (English)



             Concept A
                  p                                  Concept B
                                                          p




 Sparkasse     German savings institution          Savings bank




Literal translation                              Cultural equivalence
                                                 translation

                                        21
Outline


1. Current mechanisms for translation relations

2. lemon

3. Typology of translation relations

4.
4 Proposed lemon module for translations

      Examples of use

5. Conclusions




                            22
lemon module for translations
        Lexicon
      language:String

      entry
                           isSenseOf                            reference
      LexicalEntry                       LexicalSense                        Ontology term


lexicalForm
                        sourceLexicalSense              targetLexicalSense



         Form                             Translation            translationOrigin
                                                                                      Resource
   representation:String               confidenceLevel:double




                        LiteralTranslation              CulturalEquivalenceTranslation
                                                                 q


                                                   23
Example of literal translation

LEXICONEN


LexicalEntry       LexicalSense
                                                                ONTOLOGY
“payment method”
 p y


                                   http://purl.org/goodrelations/v1#PaymentMethods
                   Translation




LexicalEntry       LexicalSense
“medio de pago”
 medio    pago



 LEXICONES
Example of literal translation

LEXICONEN


LexicalEntry               LexicalSense
                                                                          ONTOLOGY
“Cabinet of Spain”
             p


                                                 http://dbpedia.org/page/Consejo_de_Ministros
                         LiteralTranslation




LexicalEntry               LexicalSense
“Consejo de Ministros”
 Consejo    Ministros



 LEXICONES
Example of cultural equivalence translation

LEXICONEN

                                                                               ONTOLOGY
LexicalEntry           LexicalSense
                                          http://www.oegov.us/democracy/us/core/owl/usgov#CABINET
“Cabinet”



               CulturalEquivalenceTranslation



                                                      http://dbpedia.org/page/Cabinet_of_Spain
LexicalEntry           LexicalSense
“Consejo de Ministros”
 Consejo    Ministros


                                                                               ONTOLOGY
 LEXICONES
Outline


1. Current mechanisms for translation relations

2. lemon

3. Typology of translation relations

4.
4 Proposed lemon module for translations

      Examples of use

5. Conclusions




                            27
Conclusions

Benefits of the approach:
      Direct,
       Direct explicit translations can be represented
      Distinction between literal/culturally equivalent translation
      Translation metadata can be accounted for
      Moderate complexity
      Expressivity of lemon model
      Conceptual/lexical layers remain separate



Future work:
    Test this with more real examples
    Algorithms to distinguish literal/culturally equivalent
     translations


                                   28
Thanks for your attention!




             29

More Related Content

Similar to Representing Translations on the Semantic Web

lexicog: Overview of the New Module for Lexicography of OntoLex-lemon
lexicog: Overview of the New Module for Lexicography of OntoLex-lemonlexicog: Overview of the New Module for Lexicography of OntoLex-lemon
lexicog: Overview of the New Module for Lexicography of OntoLex-lemon
PretaLLOD
 
Cross-lingual ontology lexicalisation, translation and information extraction...
Cross-lingual ontology lexicalisation, translation and information extraction...Cross-lingual ontology lexicalisation, translation and information extraction...
Cross-lingual ontology lexicalisation, translation and information extraction...
Tobias Wunner
 
Validating the OntoLex-lemon lexicography module with K Dictionaries’ multili...
Validating the OntoLex-lemon lexicography module with K Dictionaries’ multili...Validating the OntoLex-lemon lexicography module with K Dictionaries’ multili...
Validating the OntoLex-lemon lexicography module with K Dictionaries’ multili...
PretaLLOD
 
CS6010 Social Network Analysis Unit II
CS6010 Social Network Analysis   Unit IICS6010 Social Network Analysis   Unit II
CS6010 Social Network Analysis Unit II
pkaviya
 
LDL 2012 - Linking to ISOcat Data Categories
LDL 2012 - Linking to ISOcat Data CategoriesLDL 2012 - Linking to ISOcat Data Categories
LDL 2012 - Linking to ISOcat Data Categories
Menzo Windhouwer
 
Knowledge Organization System (KOS) for biodiversity information resources, G...
Knowledge Organization System (KOS) for biodiversity information resources, G...Knowledge Organization System (KOS) for biodiversity information resources, G...
Knowledge Organization System (KOS) for biodiversity information resources, G...
Dag Endresen
 
sw owl
 sw owl sw owl
Owl web ontology language
Owl  web ontology languageOwl  web ontology language
Owl web ontology language
hassco2011
 
Owl web ontology language
Owl  web ontology languageOwl  web ontology language
Owl web ontology language
hassco2011
 
Lemon at-mlw3
Lemon at-mlw3Lemon at-mlw3
Lemon at-mlw3
monnetproject
 
Semantic Technologies and Triplestores for Business Intelligence
Semantic Technologies and Triplestores for Business IntelligenceSemantic Technologies and Triplestores for Business Intelligence
Semantic Technologies and Triplestores for Business Intelligence
Marin Dimitrov
 
Services semantic technology_terminology
Services semantic technology_terminologyServices semantic technology_terminology
Services semantic technology_terminology
Tenforce
 
Ontologies and Vocabularies
Ontologies and VocabulariesOntologies and Vocabularies
Ontologies and Vocabularies
seanb
 
Oc wg-nif-20130711
Oc wg-nif-20130711Oc wg-nif-20130711
Oc wg-nif-20130711
STIinnsbruck
 
20110728 datalift-rpi-troy
20110728 datalift-rpi-troy20110728 datalift-rpi-troy
20110728 datalift-rpi-troy
François Scharffe
 
eswc2011phd-schneid
eswc2011phd-schneideswc2011phd-schneid
eswc2011phd-schneid
Michael Schneider
 
Semantics
SemanticsSemantics
Advanced_programming_language_design.pdf
Advanced_programming_language_design.pdfAdvanced_programming_language_design.pdf
Advanced_programming_language_design.pdf
RodulfoGabrito
 
Introduction to SKOS - Simple Knowledge Organization System
Introduction to SKOS - Simple Knowledge Organization SystemIntroduction to SKOS - Simple Knowledge Organization System
Introduction to SKOS - Simple Knowledge Organization System
Fulvio Corno
 
OntoLex-Lemon as a Possible Bridge between WordNets and Full Lexical Descript...
OntoLex-Lemon as a Possible Bridge between WordNets and Full Lexical Descript...OntoLex-Lemon as a Possible Bridge between WordNets and Full Lexical Descript...
OntoLex-Lemon as a Possible Bridge between WordNets and Full Lexical Descript...
PretaLLOD
 

Similar to Representing Translations on the Semantic Web (20)

lexicog: Overview of the New Module for Lexicography of OntoLex-lemon
lexicog: Overview of the New Module for Lexicography of OntoLex-lemonlexicog: Overview of the New Module for Lexicography of OntoLex-lemon
lexicog: Overview of the New Module for Lexicography of OntoLex-lemon
 
Cross-lingual ontology lexicalisation, translation and information extraction...
Cross-lingual ontology lexicalisation, translation and information extraction...Cross-lingual ontology lexicalisation, translation and information extraction...
Cross-lingual ontology lexicalisation, translation and information extraction...
 
Validating the OntoLex-lemon lexicography module with K Dictionaries’ multili...
Validating the OntoLex-lemon lexicography module with K Dictionaries’ multili...Validating the OntoLex-lemon lexicography module with K Dictionaries’ multili...
Validating the OntoLex-lemon lexicography module with K Dictionaries’ multili...
 
CS6010 Social Network Analysis Unit II
CS6010 Social Network Analysis   Unit IICS6010 Social Network Analysis   Unit II
CS6010 Social Network Analysis Unit II
 
LDL 2012 - Linking to ISOcat Data Categories
LDL 2012 - Linking to ISOcat Data CategoriesLDL 2012 - Linking to ISOcat Data Categories
LDL 2012 - Linking to ISOcat Data Categories
 
Knowledge Organization System (KOS) for biodiversity information resources, G...
Knowledge Organization System (KOS) for biodiversity information resources, G...Knowledge Organization System (KOS) for biodiversity information resources, G...
Knowledge Organization System (KOS) for biodiversity information resources, G...
 
sw owl
 sw owl sw owl
sw owl
 
Owl web ontology language
Owl  web ontology languageOwl  web ontology language
Owl web ontology language
 
Owl web ontology language
Owl  web ontology languageOwl  web ontology language
Owl web ontology language
 
Lemon at-mlw3
Lemon at-mlw3Lemon at-mlw3
Lemon at-mlw3
 
Semantic Technologies and Triplestores for Business Intelligence
Semantic Technologies and Triplestores for Business IntelligenceSemantic Technologies and Triplestores for Business Intelligence
Semantic Technologies and Triplestores for Business Intelligence
 
Services semantic technology_terminology
Services semantic technology_terminologyServices semantic technology_terminology
Services semantic technology_terminology
 
Ontologies and Vocabularies
Ontologies and VocabulariesOntologies and Vocabularies
Ontologies and Vocabularies
 
Oc wg-nif-20130711
Oc wg-nif-20130711Oc wg-nif-20130711
Oc wg-nif-20130711
 
20110728 datalift-rpi-troy
20110728 datalift-rpi-troy20110728 datalift-rpi-troy
20110728 datalift-rpi-troy
 
eswc2011phd-schneid
eswc2011phd-schneideswc2011phd-schneid
eswc2011phd-schneid
 
Semantics
SemanticsSemantics
Semantics
 
Advanced_programming_language_design.pdf
Advanced_programming_language_design.pdfAdvanced_programming_language_design.pdf
Advanced_programming_language_design.pdf
 
Introduction to SKOS - Simple Knowledge Organization System
Introduction to SKOS - Simple Knowledge Organization SystemIntroduction to SKOS - Simple Knowledge Organization System
Introduction to SKOS - Simple Knowledge Organization System
 
OntoLex-Lemon as a Possible Bridge between WordNets and Full Lexical Descript...
OntoLex-Lemon as a Possible Bridge between WordNets and Full Lexical Descript...OntoLex-Lemon as a Possible Bridge between WordNets and Full Lexical Descript...
OntoLex-Lemon as a Possible Bridge between WordNets and Full Lexical Descript...
 

More from Oscar Corcho

Organisational Interoperability in Practice at Universidad Politécnica de Madrid
Organisational Interoperability in Practice at Universidad Politécnica de MadridOrganisational Interoperability in Practice at Universidad Politécnica de Madrid
Organisational Interoperability in Practice at Universidad Politécnica de Madrid
Oscar Corcho
 
Introducción a los Datos Abiertos - Open Data Day 2020
Introducción a los Datos Abiertos - Open Data Day 2020Introducción a los Datos Abiertos - Open Data Day 2020
Introducción a los Datos Abiertos - Open Data Day 2020
Oscar Corcho
 
Open Data (and Software, and other Research Artefacts) - A proper management
Open Data (and Software, and other Research Artefacts) -A proper managementOpen Data (and Software, and other Research Artefacts) -A proper management
Open Data (and Software, and other Research Artefacts) - A proper management
Oscar Corcho
 
Adiós a los ficheros, hola a los grafos de conocimientos estadísticos
Adiós a los ficheros, hola a los grafos de conocimientos estadísticosAdiós a los ficheros, hola a los grafos de conocimientos estadísticos
Adiós a los ficheros, hola a los grafos de conocimientos estadísticos
Oscar Corcho
 
Ontology Engineering at Scale for Open City Data Sharing
Ontology Engineering at Scale for Open City Data SharingOntology Engineering at Scale for Open City Data Sharing
Ontology Engineering at Scale for Open City Data Sharing
Oscar Corcho
 
Situación de las iniciativas de Open Data internacionales (y algunas recomen...
Situación de las iniciativas de Open Data internacionales (y algunas recomen...Situación de las iniciativas de Open Data internacionales (y algunas recomen...
Situación de las iniciativas de Open Data internacionales (y algunas recomen...
Oscar Corcho
 
STARS4ALL - Contaminación Lumínica
STARS4ALL - Contaminación LumínicaSTARS4ALL - Contaminación Lumínica
STARS4ALL - Contaminación Lumínica
Oscar Corcho
 
Towards Reproducible Science: a few building blocks from my personal experience
Towards Reproducible Science: a few building blocks from my personal experienceTowards Reproducible Science: a few building blocks from my personal experience
Towards Reproducible Science: a few building blocks from my personal experience
Oscar Corcho
 
Publishing Linked Statistical Data: Aragón, a case study
Publishing Linked Statistical Data: Aragón, a case studyPublishing Linked Statistical Data: Aragón, a case study
Publishing Linked Statistical Data: Aragón, a case study
Oscar Corcho
 
An initial analysis of topic-based similarity among scientific documents base...
An initial analysis of topic-based similarity among scientific documents base...An initial analysis of topic-based similarity among scientific documents base...
An initial analysis of topic-based similarity among scientific documents base...
Oscar Corcho
 
Linked Statistical Data 101
Linked Statistical Data 101Linked Statistical Data 101
Linked Statistical Data 101
Oscar Corcho
 
Aplicando los principios de Linked Data en AEMET
Aplicando los principios de Linked Data en AEMETAplicando los principios de Linked Data en AEMET
Aplicando los principios de Linked Data en AEMET
Oscar Corcho
 
Ojo Al Data 100 - Call for sharing session at IODC 2016
Ojo Al Data 100 - Call for sharing session at IODC 2016Ojo Al Data 100 - Call for sharing session at IODC 2016
Ojo Al Data 100 - Call for sharing session at IODC 2016
Oscar Corcho
 
Educando sobre datos abiertos: desde el colegio a la universidad
Educando sobre datos abiertos: desde el colegio a la universidadEducando sobre datos abiertos: desde el colegio a la universidad
Educando sobre datos abiertos: desde el colegio a la universidad
Oscar Corcho
 
STARS4ALL general presentation at ALAN2016
STARS4ALL general presentation at ALAN2016STARS4ALL general presentation at ALAN2016
STARS4ALL general presentation at ALAN2016
Oscar Corcho
 
Generación de datos estadísticos enlazados del Instituto Aragonés de Estadística
Generación de datos estadísticos enlazados del Instituto Aragonés de EstadísticaGeneración de datos estadísticos enlazados del Instituto Aragonés de Estadística
Generación de datos estadísticos enlazados del Instituto Aragonés de Estadística
Oscar Corcho
 
Presentación de la red de excelencia de Open Data y Smart Cities
Presentación de la red de excelencia de Open Data y Smart CitiesPresentación de la red de excelencia de Open Data y Smart Cities
Presentación de la red de excelencia de Open Data y Smart Cities
Oscar Corcho
 
Why do they call it Linked Data when they want to say...?
Why do they call it Linked Data when they want to say...?Why do they call it Linked Data when they want to say...?
Why do they call it Linked Data when they want to say...?
Oscar Corcho
 
Linked Statistical Data: does it actually pay off?
Linked Statistical Data: does it actually pay off?Linked Statistical Data: does it actually pay off?
Linked Statistical Data: does it actually pay off?
Oscar Corcho
 
Slow-cooked data and APIs in the world of Big Data: the view from a city per...
Slow-cooked data and APIs in the world of Big Data: the view from a city per...Slow-cooked data and APIs in the world of Big Data: the view from a city per...
Slow-cooked data and APIs in the world of Big Data: the view from a city per...
Oscar Corcho
 

More from Oscar Corcho (20)

Organisational Interoperability in Practice at Universidad Politécnica de Madrid
Organisational Interoperability in Practice at Universidad Politécnica de MadridOrganisational Interoperability in Practice at Universidad Politécnica de Madrid
Organisational Interoperability in Practice at Universidad Politécnica de Madrid
 
Introducción a los Datos Abiertos - Open Data Day 2020
Introducción a los Datos Abiertos - Open Data Day 2020Introducción a los Datos Abiertos - Open Data Day 2020
Introducción a los Datos Abiertos - Open Data Day 2020
 
Open Data (and Software, and other Research Artefacts) - A proper management
Open Data (and Software, and other Research Artefacts) -A proper managementOpen Data (and Software, and other Research Artefacts) -A proper management
Open Data (and Software, and other Research Artefacts) - A proper management
 
Adiós a los ficheros, hola a los grafos de conocimientos estadísticos
Adiós a los ficheros, hola a los grafos de conocimientos estadísticosAdiós a los ficheros, hola a los grafos de conocimientos estadísticos
Adiós a los ficheros, hola a los grafos de conocimientos estadísticos
 
Ontology Engineering at Scale for Open City Data Sharing
Ontology Engineering at Scale for Open City Data SharingOntology Engineering at Scale for Open City Data Sharing
Ontology Engineering at Scale for Open City Data Sharing
 
Situación de las iniciativas de Open Data internacionales (y algunas recomen...
Situación de las iniciativas de Open Data internacionales (y algunas recomen...Situación de las iniciativas de Open Data internacionales (y algunas recomen...
Situación de las iniciativas de Open Data internacionales (y algunas recomen...
 
STARS4ALL - Contaminación Lumínica
STARS4ALL - Contaminación LumínicaSTARS4ALL - Contaminación Lumínica
STARS4ALL - Contaminación Lumínica
 
Towards Reproducible Science: a few building blocks from my personal experience
Towards Reproducible Science: a few building blocks from my personal experienceTowards Reproducible Science: a few building blocks from my personal experience
Towards Reproducible Science: a few building blocks from my personal experience
 
Publishing Linked Statistical Data: Aragón, a case study
Publishing Linked Statistical Data: Aragón, a case studyPublishing Linked Statistical Data: Aragón, a case study
Publishing Linked Statistical Data: Aragón, a case study
 
An initial analysis of topic-based similarity among scientific documents base...
An initial analysis of topic-based similarity among scientific documents base...An initial analysis of topic-based similarity among scientific documents base...
An initial analysis of topic-based similarity among scientific documents base...
 
Linked Statistical Data 101
Linked Statistical Data 101Linked Statistical Data 101
Linked Statistical Data 101
 
Aplicando los principios de Linked Data en AEMET
Aplicando los principios de Linked Data en AEMETAplicando los principios de Linked Data en AEMET
Aplicando los principios de Linked Data en AEMET
 
Ojo Al Data 100 - Call for sharing session at IODC 2016
Ojo Al Data 100 - Call for sharing session at IODC 2016Ojo Al Data 100 - Call for sharing session at IODC 2016
Ojo Al Data 100 - Call for sharing session at IODC 2016
 
Educando sobre datos abiertos: desde el colegio a la universidad
Educando sobre datos abiertos: desde el colegio a la universidadEducando sobre datos abiertos: desde el colegio a la universidad
Educando sobre datos abiertos: desde el colegio a la universidad
 
STARS4ALL general presentation at ALAN2016
STARS4ALL general presentation at ALAN2016STARS4ALL general presentation at ALAN2016
STARS4ALL general presentation at ALAN2016
 
Generación de datos estadísticos enlazados del Instituto Aragonés de Estadística
Generación de datos estadísticos enlazados del Instituto Aragonés de EstadísticaGeneración de datos estadísticos enlazados del Instituto Aragonés de Estadística
Generación de datos estadísticos enlazados del Instituto Aragonés de Estadística
 
Presentación de la red de excelencia de Open Data y Smart Cities
Presentación de la red de excelencia de Open Data y Smart CitiesPresentación de la red de excelencia de Open Data y Smart Cities
Presentación de la red de excelencia de Open Data y Smart Cities
 
Why do they call it Linked Data when they want to say...?
Why do they call it Linked Data when they want to say...?Why do they call it Linked Data when they want to say...?
Why do they call it Linked Data when they want to say...?
 
Linked Statistical Data: does it actually pay off?
Linked Statistical Data: does it actually pay off?Linked Statistical Data: does it actually pay off?
Linked Statistical Data: does it actually pay off?
 
Slow-cooked data and APIs in the world of Big Data: the view from a city per...
Slow-cooked data and APIs in the world of Big Data: the view from a city per...Slow-cooked data and APIs in the world of Big Data: the view from a city per...
Slow-cooked data and APIs in the world of Big Data: the view from a city per...
 

Recently uploaded

Large Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial ApplicationsLarge Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial Applications
Rohit Gautam
 
Pushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 daysPushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 days
Adtran
 
Artificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopmentArtificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopment
Octavian Nadolu
 
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
Neo4j
 
Generative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to ProductionGenerative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to Production
Aggregage
 
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
James Anderson
 
TrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy SurveyTrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy Survey
TrustArc
 
UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6
DianaGray10
 
Uni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdfUni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems S.M.S.A.
 
A tale of scale & speed: How the US Navy is enabling software delivery from l...
A tale of scale & speed: How the US Navy is enabling software delivery from l...A tale of scale & speed: How the US Navy is enabling software delivery from l...
A tale of scale & speed: How the US Navy is enabling software delivery from l...
sonjaschweigert1
 
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with SlackLet's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
shyamraj55
 
National Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practicesNational Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practices
Quotidiano Piemontese
 
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdfObservability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Paige Cruz
 
UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5
DianaGray10
 
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
Neo4j
 
Introducing Milvus Lite: Easy-to-Install, Easy-to-Use vector database for you...
Introducing Milvus Lite: Easy-to-Install, Easy-to-Use vector database for you...Introducing Milvus Lite: Easy-to-Install, Easy-to-Use vector database for you...
Introducing Milvus Lite: Easy-to-Install, Easy-to-Use vector database for you...
Zilliz
 
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
SOFTTECHHUB
 
Full-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalizationFull-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalization
Zilliz
 
Climate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing DaysClimate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing Days
Kari Kakkonen
 
GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...
GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...
GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...
Neo4j
 

Recently uploaded (20)

Large Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial ApplicationsLarge Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial Applications
 
Pushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 daysPushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 days
 
Artificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopmentArtificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopment
 
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
 
Generative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to ProductionGenerative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to Production
 
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
 
TrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy SurveyTrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy Survey
 
UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6
 
Uni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdfUni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdf
 
A tale of scale & speed: How the US Navy is enabling software delivery from l...
A tale of scale & speed: How the US Navy is enabling software delivery from l...A tale of scale & speed: How the US Navy is enabling software delivery from l...
A tale of scale & speed: How the US Navy is enabling software delivery from l...
 
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with SlackLet's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
 
National Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practicesNational Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practices
 
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdfObservability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
 
UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5
 
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
 
Introducing Milvus Lite: Easy-to-Install, Easy-to-Use vector database for you...
Introducing Milvus Lite: Easy-to-Install, Easy-to-Use vector database for you...Introducing Milvus Lite: Easy-to-Install, Easy-to-Use vector database for you...
Introducing Milvus Lite: Easy-to-Install, Easy-to-Use vector database for you...
 
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
 
Full-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalizationFull-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalization
 
Climate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing DaysClimate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing Days
 
GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...
GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...
GraphSummit Singapore | The Future of Agility: Supercharging Digital Transfor...
 

Representing Translations on the Semantic Web

  • 1. Representing Translations on the Semantic Web Elena Montiel-Ponsoda, Jorge Gracia, Guadalupe Aguado-de-Cea, Asunción Gómez-Pérez Ontology Engineering Group (OEG) Facultad de Informática Universidad Politécnica de Madrid http://www.oeg-upm.net {emontiel, j { ti l jgracia, l i lupe, asun}@fi.upm.es }@fi
  • 2. The (Multilingual) Web of Data • We know that the Web is multilingual…. • Is the Web of Data also multilingual? • Ell, B., Vrandecic, D., and Simperl, E. (2011). Labels in the Web of Data English: 44.72% Most used 1 language specified: 2.2% language tags: German: 5.22 % Nl languages specified: 0 7% ifi d 0.7% French: 5.11% F h 11% 2
  • 3. The (Multilingual) Web of Data data.bnf.fr – Bibliothèque national de France GeoLinkedData.es – Spanish geospatial data p g p Rechtspraak.nl – Netherlands Council of the Judiciary FAO geopolitical ontology – with labels in en, fr, es, ar, zh, ru, it AGROVOC Linked Open Data – AGROVOC agricultural thesaurus 3
  • 5. Our proposal • To propose a representation mechanism for explicit p p p p translation relations between natural language descriptions associated to ontology elements and data. • To implement it as a metamodel in OWL offered as a module of the lemon model, lexicon-ontology model to account for the linguistic descriptions associated to g p ontologies and linked data. 5
  • 6. Outline 1. Current mechanisms for translation relations 2. lemon 3. Typology of translation relations 4. 4 Proposed lemon module for translations  Examples of use 5. Conclusions 6
  • 7. Outline 1. Current mechanisms for translation relations 2. lemon 3. Typology of translation relations 4. 4 Proposed lemon module for translations  Examples of use 5. Conclusions 7
  • 8. RDFS, SKOS RDF(S), OWL RDF(S), OWL ifrs:FinancialAssets rdfs:label “financial assets”@en rdfs:SubPropertyOf SKOS ifrs:FinancialAssets skos:prefLabel “financial assets”@en SKOS labels:  prefLabel, altLabel & hiddenLabel.  p , 8
  • 9. SKOS SKOS enables a simple form of multilingual labeling: ifrs:FinancialAssets skos:prefLabel p “financial assets”@en skos:prefLabel “activos financieros”@es What happens when we have more than one label per language? Food and Agriculture Organization and FAO? How can we create explicit links between labels? Say that one is translation, acronym of the other? 9
  • 10. SKOS-XL class SKOS‐XL SKOS XL skosxl:Label rdf:type ifrs:FinancialAssets ifrs:FinancialAssetsLabel skosxl:prefLabel skosxl:literalForm “financial assets”@en 10
  • 11. SKOS-XL skosxl:Label SKOS‐XL rdf:type ifrs:FinancialAssets ifrs:FinancialAssetsLabel1 skosxl:prefLabel skosxl:literalForm “financial assets”@en skosxl:labelRelation ex:isTranslationOf rdfs:subPropertyOf ex:isTranslationOf “activos financieros”@es skosxl:literalForm ifrs:FinancialAssetsLabel2 skosxl:prefLabel rdf:type skosxl:Label 11
  • 12. LIR EN River FR 12
  • 13. Limitations These solutions work! … Th l ti k!  …but with some limitations   Rigid models  Simple translation relation insufficient for: p  original vs. target label  type of translation relation  source of the translation  adequacy or reliability of translations 13
  • 14. Outline 1. Current mechanisms for translation relations 2. lemon 3. Typology of translation relations 4. 4 Proposed lemon module for translations  Examples of use 5. Conclusions 14
  • 15. The lemon model An RDF‐based ontology‐lexicon model for ontologies An RDF‐based ontology‐lexicon model for ontologies Main features: • Semantics by reference • Rich lexical and terminological description of ontology elements • Concise (i.e., trade off between complexity and expressivity) • Descriptive not prescriptive (i.e., uses data categories) • Modular and extensible 15
  • 16. The lemon model But this is also quite Not so much… remember its complex, isn’t it? modular nature 16
  • 18. Outline 1. Current mechanisms for translation relations 2. lemon 3. Typology of translation relations 4. 4 Proposed lemon module for translations  Examples of use 5. Conclusions 18
  • 19. Typology of translation relations Ontology Localization Multilingual Ontology (an ontololgy in which labels are documented in multiple NLs) but… b t Does a 1 to 1 correspondence between always exist? 19
  • 20. Typology of translation relations Types of domains Internationalized Culturally C or standardized influenced domains domains Types of conceptualizations Conceptualizations Conceptualizations that shared among the represent mismatches languages represented between cultures and in the ontology languages 20
  • 21. Literal vs. Cultural equivalence Translation Ontology A Ontology B (German) (English) Concept A p Concept B p Sparkasse German savings institution Savings bank Literal translation Cultural equivalence translation 21
  • 22. Outline 1. Current mechanisms for translation relations 2. lemon 3. Typology of translation relations 4. 4 Proposed lemon module for translations  Examples of use 5. Conclusions 22
  • 23. lemon module for translations Lexicon language:String entry isSenseOf reference LexicalEntry LexicalSense Ontology term lexicalForm sourceLexicalSense targetLexicalSense Form Translation translationOrigin Resource representation:String confidenceLevel:double LiteralTranslation CulturalEquivalenceTranslation q 23
  • 24. Example of literal translation LEXICONEN LexicalEntry LexicalSense ONTOLOGY “payment method” p y http://purl.org/goodrelations/v1#PaymentMethods Translation LexicalEntry LexicalSense “medio de pago” medio pago LEXICONES
  • 25. Example of literal translation LEXICONEN LexicalEntry LexicalSense ONTOLOGY “Cabinet of Spain” p http://dbpedia.org/page/Consejo_de_Ministros LiteralTranslation LexicalEntry LexicalSense “Consejo de Ministros” Consejo Ministros LEXICONES
  • 26. Example of cultural equivalence translation LEXICONEN ONTOLOGY LexicalEntry LexicalSense http://www.oegov.us/democracy/us/core/owl/usgov#CABINET “Cabinet” CulturalEquivalenceTranslation http://dbpedia.org/page/Cabinet_of_Spain LexicalEntry LexicalSense “Consejo de Ministros” Consejo Ministros ONTOLOGY LEXICONES
  • 27. Outline 1. Current mechanisms for translation relations 2. lemon 3. Typology of translation relations 4. 4 Proposed lemon module for translations  Examples of use 5. Conclusions 27
  • 28. Conclusions Benefits of the approach:  Direct, Direct explicit translations can be represented  Distinction between literal/culturally equivalent translation  Translation metadata can be accounted for  Moderate complexity  Expressivity of lemon model  Conceptual/lexical layers remain separate Future work:  Test this with more real examples  Algorithms to distinguish literal/culturally equivalent translations 28
  • 29. Thanks for your attention! 29