## Similar to Physical Science Molecular Geometry.pptx

### Similar to Physical Science Molecular Geometry.pptx(20)

Chapter 08
Chapter 08

Molecular geometry and chemical bonding
Molecular geometry and chemical bonding

Shapes of molecules 10(3)
Shapes of molecules 10(3)

LESSON-4.3_VSEPR-Model (1).pptx
LESSON-4.3_VSEPR-Model (1).pptx

Ap chapter 9
Ap chapter 9

Molecular Geometry
Molecular Geometry

Chapter 9 Lecture- Molecular Geometry
Chapter 9 Lecture- Molecular Geometry

ppt.pdf
ppt.pdf

Vesper theory
Vesper theory

Shapes_of_Molecules.ppt
Shapes_of_Molecules.ppt

L7moleculargeometry 130906001602-
L7moleculargeometry 130906001602-

Ch. 9 Molecular Geometry
Ch. 9 Molecular Geometry

MOLECULAR STRUCTURE.pdf
MOLECULAR STRUCTURE.pdf

Ap Chapter 10 Bonding Ii
Ap Chapter 10 Bonding Ii

Molecular geometry
Molecular geometry

Molecular Geometry
Molecular Geometry

Chemical bonding
Chemical bonding

Chemical bonding and molecular structure
Chemical bonding and molecular structure

### Physical Science Molecular Geometry.pptx

• 1. PHYSICAL SCIENCE POLARITY OF MOLECULE & MOLECULAR GEOMETRY
• 2. OBJECTIVES: • familiarize with the different shapes of molecules; • explain how polarity of bonds and molecular geometry affects the polarity of molecules.
• 3. You can predict the shape or molecular geometry of a substance using the following steps: Step 1: Determine the central atom of a molecule. The central atom is the least electronegative element. Step 2: Draw the appropriate Lewis dot structure for the molecule.
• 4. Step 3: Count the number of bonding pairs of electrons and non-bonding (or lone pairs) around the central atom. Step 4: Determine the electron pair orientation using the total number of electron pairs. Step 5: Identify the shape of the molecule of based on the location of the atoms.
• 5. SHAPES OF MOLECULES  Molecular Structure or Molecular Geometry  the three-dimensional shapes of molecules can be predicted by their Lewis structures .  Valence-shell electron pair repulsion (VSEPR) model or electron domain (ED) model: Used in predicting the shapes. The electron pairs occupies a certain domain. They move as far as possible. Lone pairs occupies more domains contributing largely to the repulsion and shape.
• 6. Terms andDefinition  Bonding Pairs (AX)- electron pairs that are involved in the bonding.  Lone Pairs (E)- electrons that are not involved in the bonding. They tend to occupy a larger domain.  Electron Domains- total number of pairs found in the molecule that contribute to its shape.
• 7.  Bonding Pairs: 2  Lone Pairs: 0  Electron Domains: 2  Bond angle: 180°  Example: CO₂ LINEAR LEDS VSEPR
• 8.  Bonding Pairs: 3  Lone Pairs: 0  Electron Domains: 3  Bond angle: 120°  Example: BF₃ TRIGONAL PLANAR LEDS VSEPR
• 9.  Bonding Pairs: 2  Lone Pairs: 1  Electron Domains: 3  Bond angle: 120°  Example: SO₂ BENT/ aNGULAR LEDS VSEPR
• 10.  Bonding Pairs: 4  Lone Pairs: 0  Electron Domains: 4  Bond angle: 109.5°  Example: CH₄ TETRAHEDRAL LEDS VSEPR
• 11.  Bonding Pairs: 3  Lone Pairs: 1  Electron Domains: 4  Bond angle: 109.5°  Example: NH₃ TRIGONAL PYRAMIDAL LEDS VSEPR
• 12.  Bonding Pairs: 2  Lone Pairs: 2  Electron Domains: 4  Bond angle: 109.5°  Example: H₂O BENT/ANGULAR (ver. 2) LEDS VSEPR
• 13.  Bonding Pairs: 5  Lone Pairs: 0  Electron Domains: 5  Bond angle: 90°, 120°  Example: PCl₅ TRIGONAL BIPYRAMIDAL LEDS VSEPR
• 14.  Bonding Pairs: 4  Lone Pairs: 1  Electron Domains: 5  Bond angle: 180°, 120°  Example: SF₄ SEESAW LEDS VSEPR
• 15.  Bonding Pairs: 3  Lone Pairs: 2  Electron Domains: 5  Bond angle: 90°, 180°  Example: ClF₃ T-SHAPED LEDS VSEPR
• 16.  Bonding Pairs: 6  Lone Pairs: 0  Electron Domains: 6  Bond angle: 90°  Example: SF₆ OCTAHEDRAL LEDS VSEPR
• 17.
• 18. Example 1: Predict the molecular geometry of BCl3 Step 1: ENB = 2.0 ENCl= 3.0 therefore, B will be the central atom and three Cl atoms are attached to it. By looking at the chemical formula, you will also have an idea that boron will be the central atom and three atoms of choline are attached to it. Step 2:
• 19. Step 3: The central atom has three electron pairs: 3 bonded pairs and no lone pair Step 4: The electron pair orientation for three electrons is trigonal planar. Step 5: The molecular shape of BCl3 is trigonal planar.
• 20.
• 22. Create an acrostic story with the acronym of POLARITY that tells how Physical Science subject shapes you as who you are now. Performance task
• 24. 1. From the given Lewis structure of NH3, how many nonbonding pair/s of electron are around the central atom? a. 0 b. 1 c. 2 d. 3
• 25. 2. What is the molecular shape of CHBr3? a. Linear b. Trigonal planar c. Trigonal bipyramidal d. Tetrahedral
• 26. 3. These are the pair of electrons that are not bonded. a. Bond pair b. Electron pair c. Lone Pair d. Dipole Pair
• 27. 4. Which of the following pairs of atoms are bound by a nonpolar covalent bond? a. Na-Cl b. Ca-O c. P-N d. C-S
• 28. 5. Which of the following statements is INCORRECT? a. Polar covalent bonds can be present in a nonpolar molecule. b. Polar covalent bond is present if the electronegativity difference between atoms is equal or less than 0.4. c. Polarity of bond and molecular geometry are the two factors that affect the polarity of molecules. d. Polar bond forms when electrons are unequally shared by two atoms in a compound.
Current LanguageEnglish
Español
Portugues
Français
Deutsche