SlideShare a Scribd company logo
1 of 38
Notebooks @ Netflix.
From analytics to engineering
with notebooks.
Michelle Ufford @MichelleUfford
Kyle Kelley @rgbkrk
Data @ Netflix
130 million
members
* Well, almost anywhere.
Anywhere in the world.*
Any device.
• 1 trillion events
• 100PB data warehouse
• 150,000 Genie jobs
Data at scale.
$8 billion
on content in 2018
Data Platform @ Netflix
Data driven.
subscriber
activity
20180822
RAW
data pipeline
fast storage
data viz
events data
data storage
Pig
DW
RPT interactive query
data movement
data access
subscriber
activity
20180822
data
scientists
data
engineers
data viz
engineers
quantitative
analysts
product
managers
research
scientists
analytics
engineers
executivessoftware
engineers
algorithm
engineers
Data Products
Data Insights
Business
Decisions
&
Product
Improvements
business
analysts
technical
pgm mgr
INSIGHTS
DATA
ML
scientists
Notebooks @ Netflix
data
scientists
data
engineers
data viz
engineers
quantitative
analysts
research
scientists
analytics
engineers
algorithm
engineers
Data Products
Data Insights
INSIGHTS
DATA
ML
scientists
PRODUCTIONALIZATION
product
managers
executivessoftware
engineers
Business
Decisions
&
Product
Improvements
business
analysts
technical
pgm mgr
Native support for parameterization.
What’s Next?
Better
Scala
Support
Scala support.
• Kernel stability
• Native data viz
• Spark integration
Goal: meet/exceed parity with top
Scala notebook offerings
More
Integration
Integration.
• Scheduling
• Surfacing logs & error messages
• Native
Goal: provide a single, cohesive
platform experience
Improved
Reliability
Reliability.
Goal: build confidence in using
notebooks for mission-critical workloads
• Kernel stability
• Visibility into kernel state
• Automated source control
data
scientists
data
engineers
data viz
engineers
quantitative
analysts
research
scientists
analytics
engineers
algorithm
engineers
Data Products
Data Insights
INSIGHTS
DATA
ML
scientists
product
managers
executivessoftware
engineers
Business
Decisions
&
Product
Improvements
business
analysts
technical
pgm mgr
1. Simple
2. Integrated
3. Collaborative
Design
Principles.
Open source.
Thank you.
Michelle Ufford @MichelleUfford
Kyle Kelley @rgbkrk
Netflix Data @NetflixData
Tech Blog techblog.netflix.com
Netflix Jobs jobs.netflix.com

More Related Content

What's hot

MLOps and Data Quality: Deploying Reliable ML Models in Production
MLOps and Data Quality: Deploying Reliable ML Models in ProductionMLOps and Data Quality: Deploying Reliable ML Models in Production
MLOps and Data Quality: Deploying Reliable ML Models in ProductionProvectus
 
Fact Store at Scale for Netflix Recommendations with Nitin Sharma and Kedar S...
Fact Store at Scale for Netflix Recommendations with Nitin Sharma and Kedar S...Fact Store at Scale for Netflix Recommendations with Nitin Sharma and Kedar S...
Fact Store at Scale for Netflix Recommendations with Nitin Sharma and Kedar S...Databricks
 
Artwork Personalization at Netflix
Artwork Personalization at NetflixArtwork Personalization at Netflix
Artwork Personalization at NetflixJustin Basilico
 
Talend Data Quality
Talend Data QualityTalend Data Quality
Talend Data QualityTalend
 
Recent Trends in Personalization: A Netflix Perspective
Recent Trends in Personalization: A Netflix PerspectiveRecent Trends in Personalization: A Netflix Perspective
Recent Trends in Personalization: A Netflix PerspectiveJustin Basilico
 
Machine Learning Models in Production
Machine Learning Models in ProductionMachine Learning Models in Production
Machine Learning Models in ProductionDataWorks Summit
 
Data Engineering Efficiency @ Netflix - Strata 2017
Data Engineering Efficiency @ Netflix - Strata 2017Data Engineering Efficiency @ Netflix - Strata 2017
Data Engineering Efficiency @ Netflix - Strata 2017Michelle Ufford
 
Recent Trends in Personalization at Netflix
Recent Trends in Personalization at NetflixRecent Trends in Personalization at Netflix
Recent Trends in Personalization at NetflixJustin Basilico
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceDatabricks
 
Zipline: Airbnb’s Machine Learning Data Management Platform with Nikhil Simha...
Zipline: Airbnb’s Machine Learning Data Management Platform with Nikhil Simha...Zipline: Airbnb’s Machine Learning Data Management Platform with Nikhil Simha...
Zipline: Airbnb’s Machine Learning Data Management Platform with Nikhil Simha...Databricks
 
Data ingestion and distribution with apache NiFi
Data ingestion and distribution with apache NiFiData ingestion and distribution with apache NiFi
Data ingestion and distribution with apache NiFiLev Brailovskiy
 
Context Aware Recommendations at Netflix
Context Aware Recommendations at NetflixContext Aware Recommendations at Netflix
Context Aware Recommendations at NetflixLinas Baltrunas
 
Introdution to Dataops and AIOps (or MLOps)
Introdution to Dataops and AIOps (or MLOps)Introdution to Dataops and AIOps (or MLOps)
Introdution to Dataops and AIOps (or MLOps)Adrien Blind
 
MLOps Using MLflow
MLOps Using MLflowMLOps Using MLflow
MLOps Using MLflowDatabricks
 
Past, Present & Future of Recommender Systems: An Industry Perspective
Past, Present & Future of Recommender Systems: An Industry PerspectivePast, Present & Future of Recommender Systems: An Industry Perspective
Past, Present & Future of Recommender Systems: An Industry PerspectiveJustin Basilico
 
Data Driven Decisions: Building an Insight Driven Culture
Data Driven Decisions: Building an Insight Driven CultureData Driven Decisions: Building an Insight Driven Culture
Data Driven Decisions: Building an Insight Driven CultureAmazon Web Services
 
(BDT318) How Netflix Handles Up To 8 Million Events Per Second
(BDT318) How Netflix Handles Up To 8 Million Events Per Second(BDT318) How Netflix Handles Up To 8 Million Events Per Second
(BDT318) How Netflix Handles Up To 8 Million Events Per SecondAmazon Web Services
 
Zipline—Airbnb’s Declarative Feature Engineering Framework
Zipline—Airbnb’s Declarative Feature Engineering FrameworkZipline—Airbnb’s Declarative Feature Engineering Framework
Zipline—Airbnb’s Declarative Feature Engineering FrameworkDatabricks
 
MLflow: Infrastructure for a Complete Machine Learning Life Cycle with Mani ...
 MLflow: Infrastructure for a Complete Machine Learning Life Cycle with Mani ... MLflow: Infrastructure for a Complete Machine Learning Life Cycle with Mani ...
MLflow: Infrastructure for a Complete Machine Learning Life Cycle with Mani ...Databricks
 

What's hot (20)

MLOps and Data Quality: Deploying Reliable ML Models in Production
MLOps and Data Quality: Deploying Reliable ML Models in ProductionMLOps and Data Quality: Deploying Reliable ML Models in Production
MLOps and Data Quality: Deploying Reliable ML Models in Production
 
Fact Store at Scale for Netflix Recommendations with Nitin Sharma and Kedar S...
Fact Store at Scale for Netflix Recommendations with Nitin Sharma and Kedar S...Fact Store at Scale for Netflix Recommendations with Nitin Sharma and Kedar S...
Fact Store at Scale for Netflix Recommendations with Nitin Sharma and Kedar S...
 
Artwork Personalization at Netflix
Artwork Personalization at NetflixArtwork Personalization at Netflix
Artwork Personalization at Netflix
 
Talend Data Quality
Talend Data QualityTalend Data Quality
Talend Data Quality
 
Recent Trends in Personalization: A Netflix Perspective
Recent Trends in Personalization: A Netflix PerspectiveRecent Trends in Personalization: A Netflix Perspective
Recent Trends in Personalization: A Netflix Perspective
 
Machine Learning Models in Production
Machine Learning Models in ProductionMachine Learning Models in Production
Machine Learning Models in Production
 
Data Engineering Efficiency @ Netflix - Strata 2017
Data Engineering Efficiency @ Netflix - Strata 2017Data Engineering Efficiency @ Netflix - Strata 2017
Data Engineering Efficiency @ Netflix - Strata 2017
 
Recent Trends in Personalization at Netflix
Recent Trends in Personalization at NetflixRecent Trends in Personalization at Netflix
Recent Trends in Personalization at Netflix
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
 
Zipline: Airbnb’s Machine Learning Data Management Platform with Nikhil Simha...
Zipline: Airbnb’s Machine Learning Data Management Platform with Nikhil Simha...Zipline: Airbnb’s Machine Learning Data Management Platform with Nikhil Simha...
Zipline: Airbnb’s Machine Learning Data Management Platform with Nikhil Simha...
 
User behavior analytics
User behavior analyticsUser behavior analytics
User behavior analytics
 
Data ingestion and distribution with apache NiFi
Data ingestion and distribution with apache NiFiData ingestion and distribution with apache NiFi
Data ingestion and distribution with apache NiFi
 
Context Aware Recommendations at Netflix
Context Aware Recommendations at NetflixContext Aware Recommendations at Netflix
Context Aware Recommendations at Netflix
 
Introdution to Dataops and AIOps (or MLOps)
Introdution to Dataops and AIOps (or MLOps)Introdution to Dataops and AIOps (or MLOps)
Introdution to Dataops and AIOps (or MLOps)
 
MLOps Using MLflow
MLOps Using MLflowMLOps Using MLflow
MLOps Using MLflow
 
Past, Present & Future of Recommender Systems: An Industry Perspective
Past, Present & Future of Recommender Systems: An Industry PerspectivePast, Present & Future of Recommender Systems: An Industry Perspective
Past, Present & Future of Recommender Systems: An Industry Perspective
 
Data Driven Decisions: Building an Insight Driven Culture
Data Driven Decisions: Building an Insight Driven CultureData Driven Decisions: Building an Insight Driven Culture
Data Driven Decisions: Building an Insight Driven Culture
 
(BDT318) How Netflix Handles Up To 8 Million Events Per Second
(BDT318) How Netflix Handles Up To 8 Million Events Per Second(BDT318) How Netflix Handles Up To 8 Million Events Per Second
(BDT318) How Netflix Handles Up To 8 Million Events Per Second
 
Zipline—Airbnb’s Declarative Feature Engineering Framework
Zipline—Airbnb’s Declarative Feature Engineering FrameworkZipline—Airbnb’s Declarative Feature Engineering Framework
Zipline—Airbnb’s Declarative Feature Engineering Framework
 
MLflow: Infrastructure for a Complete Machine Learning Life Cycle with Mani ...
 MLflow: Infrastructure for a Complete Machine Learning Life Cycle with Mani ... MLflow: Infrastructure for a Complete Machine Learning Life Cycle with Mani ...
MLflow: Infrastructure for a Complete Machine Learning Life Cycle with Mani ...
 

Similar to Notebooks @ Netflix: From analytics to engineering with Jupyter notebooks

Data engineering at the interface of art and analytics: the why, what, and ho...
Data engineering at the interface of art and analytics: the why, what, and ho...Data engineering at the interface of art and analytics: the why, what, and ho...
Data engineering at the interface of art and analytics: the why, what, and ho...Data Con LA
 
From Developer to Data Scientist - Gaines Kergosien
From Developer to Data Scientist - Gaines KergosienFrom Developer to Data Scientist - Gaines Kergosien
From Developer to Data Scientist - Gaines KergosienITCamp
 
Cloudian 451-hortonworks - webinar
Cloudian 451-hortonworks - webinarCloudian 451-hortonworks - webinar
Cloudian 451-hortonworks - webinarHortonworks
 
Data analytics at a petabyte scale final
Data analytics at a petabyte scale   finalData analytics at a petabyte scale   final
Data analytics at a petabyte scale finalOri Reshef
 
The Power of Unified Analytics with Ali Ghodsi
The Power of Unified Analytics with Ali Ghodsi The Power of Unified Analytics with Ali Ghodsi
The Power of Unified Analytics with Ali Ghodsi Databricks
 
Moving Targets: Harnessing Real-time Value from Data in Motion
Moving Targets: Harnessing Real-time Value from Data in Motion Moving Targets: Harnessing Real-time Value from Data in Motion
Moving Targets: Harnessing Real-time Value from Data in Motion Inside Analysis
 
Time's Up! Getting Value from Big Data Now
Time's Up! Getting Value from Big Data NowTime's Up! Getting Value from Big Data Now
Time's Up! Getting Value from Big Data NowEric Kavanagh
 
Year of the #WiFiCactus
Year of the #WiFiCactusYear of the #WiFiCactus
Year of the #WiFiCactusDefCamp
 
Bridging the Gap: Analyzing Data in and Below the Cloud
Bridging the Gap: Analyzing Data in and Below the CloudBridging the Gap: Analyzing Data in and Below the Cloud
Bridging the Gap: Analyzing Data in and Below the CloudInside Analysis
 
Adi Wijaya - Scrum in Data Science, What Works and What Doesn’t
Adi Wijaya - Scrum in Data Science, What Works and What Doesn’tAdi Wijaya - Scrum in Data Science, What Works and What Doesn’t
Adi Wijaya - Scrum in Data Science, What Works and What Doesn’tAgile Impact
 
Adi Wijaya - Scrum in Data Science, What Works and What Doesn’t
Adi Wijaya - Scrum in Data Science, What Works and What Doesn’tAdi Wijaya - Scrum in Data Science, What Works and What Doesn’t
Adi Wijaya - Scrum in Data Science, What Works and What Doesn’tAgile Impact Conference
 
The Great Lakes: How to Approach a Big Data Implementation
The Great Lakes: How to Approach a Big Data ImplementationThe Great Lakes: How to Approach a Big Data Implementation
The Great Lakes: How to Approach a Big Data ImplementationInside Analysis
 
Derfor skal du bruge en DataLake
Derfor skal du bruge en DataLakeDerfor skal du bruge en DataLake
Derfor skal du bruge en DataLakeMicrosoft
 
Sudhir Rawat, Sr Techonology Evangelist at Microsoft SQL Business Intelligenc...
Sudhir Rawat, Sr Techonology Evangelist at Microsoft SQL Business Intelligenc...Sudhir Rawat, Sr Techonology Evangelist at Microsoft SQL Business Intelligenc...
Sudhir Rawat, Sr Techonology Evangelist at Microsoft SQL Business Intelligenc...Dataconomy Media
 
From an experiment to a real production environment
From an experiment to a real production environmentFrom an experiment to a real production environment
From an experiment to a real production environmentDataWorks Summit
 
Slides: Case Study — How J.B. Hunt is Driving Efficiency with AI and Real-Tim...
Slides: Case Study — How J.B. Hunt is Driving Efficiency with AI and Real-Tim...Slides: Case Study — How J.B. Hunt is Driving Efficiency with AI and Real-Tim...
Slides: Case Study — How J.B. Hunt is Driving Efficiency with AI and Real-Tim...DATAVERSITY
 
Peter Bakas - Zero to Insights - Real time analytics with Kafka, C*, and Spar...
Peter Bakas - Zero to Insights - Real time analytics with Kafka, C*, and Spar...Peter Bakas - Zero to Insights - Real time analytics with Kafka, C*, and Spar...
Peter Bakas - Zero to Insights - Real time analytics with Kafka, C*, and Spar...NoSQLmatters
 
Netflix - Enabling a Culture of Analytics
Netflix - Enabling a Culture of AnalyticsNetflix - Enabling a Culture of Analytics
Netflix - Enabling a Culture of AnalyticsBlake Irvine
 

Similar to Notebooks @ Netflix: From analytics to engineering with Jupyter notebooks (20)

Data engineering at the interface of art and analytics: the why, what, and ho...
Data engineering at the interface of art and analytics: the why, what, and ho...Data engineering at the interface of art and analytics: the why, what, and ho...
Data engineering at the interface of art and analytics: the why, what, and ho...
 
Data-Driven @ Netflix
Data-Driven @ NetflixData-Driven @ Netflix
Data-Driven @ Netflix
 
From Developer to Data Scientist - Gaines Kergosien
From Developer to Data Scientist - Gaines KergosienFrom Developer to Data Scientist - Gaines Kergosien
From Developer to Data Scientist - Gaines Kergosien
 
Cloudian 451-hortonworks - webinar
Cloudian 451-hortonworks - webinarCloudian 451-hortonworks - webinar
Cloudian 451-hortonworks - webinar
 
Data analytics at a petabyte scale final
Data analytics at a petabyte scale   finalData analytics at a petabyte scale   final
Data analytics at a petabyte scale final
 
The Power of Unified Analytics with Ali Ghodsi
The Power of Unified Analytics with Ali Ghodsi The Power of Unified Analytics with Ali Ghodsi
The Power of Unified Analytics with Ali Ghodsi
 
Moving Targets: Harnessing Real-time Value from Data in Motion
Moving Targets: Harnessing Real-time Value from Data in Motion Moving Targets: Harnessing Real-time Value from Data in Motion
Moving Targets: Harnessing Real-time Value from Data in Motion
 
Time's Up! Getting Value from Big Data Now
Time's Up! Getting Value from Big Data NowTime's Up! Getting Value from Big Data Now
Time's Up! Getting Value from Big Data Now
 
Year of the #WiFiCactus
Year of the #WiFiCactusYear of the #WiFiCactus
Year of the #WiFiCactus
 
Bridging the Gap: Analyzing Data in and Below the Cloud
Bridging the Gap: Analyzing Data in and Below the CloudBridging the Gap: Analyzing Data in and Below the Cloud
Bridging the Gap: Analyzing Data in and Below the Cloud
 
Adi Wijaya - Scrum in Data Science, What Works and What Doesn’t
Adi Wijaya - Scrum in Data Science, What Works and What Doesn’tAdi Wijaya - Scrum in Data Science, What Works and What Doesn’t
Adi Wijaya - Scrum in Data Science, What Works and What Doesn’t
 
Adi Wijaya - Scrum in Data Science, What Works and What Doesn’t
Adi Wijaya - Scrum in Data Science, What Works and What Doesn’tAdi Wijaya - Scrum in Data Science, What Works and What Doesn’t
Adi Wijaya - Scrum in Data Science, What Works and What Doesn’t
 
The Great Lakes: How to Approach a Big Data Implementation
The Great Lakes: How to Approach a Big Data ImplementationThe Great Lakes: How to Approach a Big Data Implementation
The Great Lakes: How to Approach a Big Data Implementation
 
Derfor skal du bruge en DataLake
Derfor skal du bruge en DataLakeDerfor skal du bruge en DataLake
Derfor skal du bruge en DataLake
 
Sudhir Rawat, Sr Techonology Evangelist at Microsoft SQL Business Intelligenc...
Sudhir Rawat, Sr Techonology Evangelist at Microsoft SQL Business Intelligenc...Sudhir Rawat, Sr Techonology Evangelist at Microsoft SQL Business Intelligenc...
Sudhir Rawat, Sr Techonology Evangelist at Microsoft SQL Business Intelligenc...
 
From an experiment to a real production environment
From an experiment to a real production environmentFrom an experiment to a real production environment
From an experiment to a real production environment
 
Slides: Case Study — How J.B. Hunt is Driving Efficiency with AI and Real-Tim...
Slides: Case Study — How J.B. Hunt is Driving Efficiency with AI and Real-Tim...Slides: Case Study — How J.B. Hunt is Driving Efficiency with AI and Real-Tim...
Slides: Case Study — How J.B. Hunt is Driving Efficiency with AI and Real-Tim...
 
Peter Bakas - Zero to Insights - Real time analytics with Kafka, C*, and Spar...
Peter Bakas - Zero to Insights - Real time analytics with Kafka, C*, and Spar...Peter Bakas - Zero to Insights - Real time analytics with Kafka, C*, and Spar...
Peter Bakas - Zero to Insights - Real time analytics with Kafka, C*, and Spar...
 
Big Data in Azure
Big Data in AzureBig Data in Azure
Big Data in Azure
 
Netflix - Enabling a Culture of Analytics
Netflix - Enabling a Culture of AnalyticsNetflix - Enabling a Culture of Analytics
Netflix - Enabling a Culture of Analytics
 

Recently uploaded

Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdfIntroduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdfFIDO Alliance
 
Working together SRE & Platform Engineering
Working together SRE & Platform EngineeringWorking together SRE & Platform Engineering
Working together SRE & Platform EngineeringMarcus Vechiato
 
Simplified FDO Manufacturing Flow with TPMs _ Liam at Infineon.pdf
Simplified FDO Manufacturing Flow with TPMs _ Liam at Infineon.pdfSimplified FDO Manufacturing Flow with TPMs _ Liam at Infineon.pdf
Simplified FDO Manufacturing Flow with TPMs _ Liam at Infineon.pdfFIDO Alliance
 
What's New in Teams Calling, Meetings and Devices April 2024
What's New in Teams Calling, Meetings and Devices April 2024What's New in Teams Calling, Meetings and Devices April 2024
What's New in Teams Calling, Meetings and Devices April 2024Stephanie Beckett
 
Oauth 2.0 Introduction and Flows with MuleSoft
Oauth 2.0 Introduction and Flows with MuleSoftOauth 2.0 Introduction and Flows with MuleSoft
Oauth 2.0 Introduction and Flows with MuleSoftshyamraj55
 
1111 ChatGPT Prompts PDF Free Download - Prompts for ChatGPT
1111 ChatGPT Prompts PDF Free Download - Prompts for ChatGPT1111 ChatGPT Prompts PDF Free Download - Prompts for ChatGPT
1111 ChatGPT Prompts PDF Free Download - Prompts for ChatGPTiSEO AI
 
Breaking Down the Flutterwave Scandal What You Need to Know.pdf
Breaking Down the Flutterwave Scandal What You Need to Know.pdfBreaking Down the Flutterwave Scandal What You Need to Know.pdf
Breaking Down the Flutterwave Scandal What You Need to Know.pdfUK Journal
 
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...FIDO Alliance
 
Your enemies use GenAI too - staying ahead of fraud with Neo4j
Your enemies use GenAI too - staying ahead of fraud with Neo4jYour enemies use GenAI too - staying ahead of fraud with Neo4j
Your enemies use GenAI too - staying ahead of fraud with Neo4jNeo4j
 
A Business-Centric Approach to Design System Strategy
A Business-Centric Approach to Design System StrategyA Business-Centric Approach to Design System Strategy
A Business-Centric Approach to Design System StrategyUXDXConf
 
The Metaverse: Are We There Yet?
The  Metaverse:    Are   We  There  Yet?The  Metaverse:    Are   We  There  Yet?
The Metaverse: Are We There Yet?Mark Billinghurst
 
Where to Learn More About FDO _ Richard at FIDO Alliance.pdf
Where to Learn More About FDO _ Richard at FIDO Alliance.pdfWhere to Learn More About FDO _ Richard at FIDO Alliance.pdf
Where to Learn More About FDO _ Richard at FIDO Alliance.pdfFIDO Alliance
 
IESVE for Early Stage Design and Planning
IESVE for Early Stage Design and PlanningIESVE for Early Stage Design and Planning
IESVE for Early Stage Design and PlanningIES VE
 
How we scaled to 80K users by doing nothing!.pdf
How we scaled to 80K users by doing nothing!.pdfHow we scaled to 80K users by doing nothing!.pdf
How we scaled to 80K users by doing nothing!.pdfSrushith Repakula
 
WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024Lorenzo Miniero
 
How Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdf
How Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdfHow Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdf
How Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdfFIDO Alliance
 
FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...
FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...
FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...FIDO Alliance
 
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdf
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdfThe Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdf
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdfFIDO Alliance
 
Designing for Hardware Accessibility at Comcast
Designing for Hardware Accessibility at ComcastDesigning for Hardware Accessibility at Comcast
Designing for Hardware Accessibility at ComcastUXDXConf
 

Recently uploaded (20)

Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdfIntroduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
 
Working together SRE & Platform Engineering
Working together SRE & Platform EngineeringWorking together SRE & Platform Engineering
Working together SRE & Platform Engineering
 
Simplified FDO Manufacturing Flow with TPMs _ Liam at Infineon.pdf
Simplified FDO Manufacturing Flow with TPMs _ Liam at Infineon.pdfSimplified FDO Manufacturing Flow with TPMs _ Liam at Infineon.pdf
Simplified FDO Manufacturing Flow with TPMs _ Liam at Infineon.pdf
 
Overview of Hyperledger Foundation
Overview of Hyperledger FoundationOverview of Hyperledger Foundation
Overview of Hyperledger Foundation
 
What's New in Teams Calling, Meetings and Devices April 2024
What's New in Teams Calling, Meetings and Devices April 2024What's New in Teams Calling, Meetings and Devices April 2024
What's New in Teams Calling, Meetings and Devices April 2024
 
Oauth 2.0 Introduction and Flows with MuleSoft
Oauth 2.0 Introduction and Flows with MuleSoftOauth 2.0 Introduction and Flows with MuleSoft
Oauth 2.0 Introduction and Flows with MuleSoft
 
1111 ChatGPT Prompts PDF Free Download - Prompts for ChatGPT
1111 ChatGPT Prompts PDF Free Download - Prompts for ChatGPT1111 ChatGPT Prompts PDF Free Download - Prompts for ChatGPT
1111 ChatGPT Prompts PDF Free Download - Prompts for ChatGPT
 
Breaking Down the Flutterwave Scandal What You Need to Know.pdf
Breaking Down the Flutterwave Scandal What You Need to Know.pdfBreaking Down the Flutterwave Scandal What You Need to Know.pdf
Breaking Down the Flutterwave Scandal What You Need to Know.pdf
 
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
 
Your enemies use GenAI too - staying ahead of fraud with Neo4j
Your enemies use GenAI too - staying ahead of fraud with Neo4jYour enemies use GenAI too - staying ahead of fraud with Neo4j
Your enemies use GenAI too - staying ahead of fraud with Neo4j
 
A Business-Centric Approach to Design System Strategy
A Business-Centric Approach to Design System StrategyA Business-Centric Approach to Design System Strategy
A Business-Centric Approach to Design System Strategy
 
The Metaverse: Are We There Yet?
The  Metaverse:    Are   We  There  Yet?The  Metaverse:    Are   We  There  Yet?
The Metaverse: Are We There Yet?
 
Where to Learn More About FDO _ Richard at FIDO Alliance.pdf
Where to Learn More About FDO _ Richard at FIDO Alliance.pdfWhere to Learn More About FDO _ Richard at FIDO Alliance.pdf
Where to Learn More About FDO _ Richard at FIDO Alliance.pdf
 
IESVE for Early Stage Design and Planning
IESVE for Early Stage Design and PlanningIESVE for Early Stage Design and Planning
IESVE for Early Stage Design and Planning
 
How we scaled to 80K users by doing nothing!.pdf
How we scaled to 80K users by doing nothing!.pdfHow we scaled to 80K users by doing nothing!.pdf
How we scaled to 80K users by doing nothing!.pdf
 
WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024
 
How Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdf
How Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdfHow Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdf
How Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdf
 
FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...
FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...
FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...
 
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdf
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdfThe Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdf
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdf
 
Designing for Hardware Accessibility at Comcast
Designing for Hardware Accessibility at ComcastDesigning for Hardware Accessibility at Comcast
Designing for Hardware Accessibility at Comcast
 

Notebooks @ Netflix: From analytics to engineering with Jupyter notebooks