SlideShare a Scribd company logo
ヒューレットパッカード社の
社員の離職リスク予測
中山ところてん
@tokoroten
第一回機械学習ビジネス研究会
http://ml-business.connpass.com/event/36234/
2016/08/28
自己紹介
• ところてん
• 所属
• Emotion Intelligence
• 職歴
• 半導体計測機開発
• 情報セキュリティ、ビッグデータ
• ソーシャルゲームデータ分析、ソーシャルゲームゲームディレクター、広告分析
• EC周りのデータ分析、興味解析、購買予測、広告CPA最適化
お仕事
https://www.zenclerk.com/
• ZenClerk
• クーポンを「配布しない」サービス
• 配布だけならだれでもできる
• 利益が改善するように配布するようにするのがミソ
• ユーザの行動や、マウスの動きから、
「クーポンを渡したら購買に転じる人」を予測
• ABテストを行い、リフトを計測
• 基盤作ったり、アルゴリズム作ったり、営業したり
お仕事
https://www.zenclerk.com/interest_widget/
• Interest Widget
• マウスの動きはページスクロールから、商品への興味を予測
• お客様が「興味を持ったであろう商品」を自動で記録し、提示するサービス
• 興味推定アルゴリズムを作ったり、営業したり
出典書籍
• ヤバい予測学
• ビジネス寄りの機械学習に関する書籍
• 原著:The Power of Predict Who Will Click,Buy,
Lie,or Die
• 原著は2016年に改訂版が出ている
• 2章88pより
• プライバシーの攻防、という章の中で、企業が従業員を
監視・予測しているという文脈で紹介
• ほかにもTarget社(EC通販)の妊婦予測なども併せて紹
介、購買履歴から妊婦かどうかを予測する
• 本スライドでは、書籍の内容外の私の考えには「メモ」と
付けてあります
https://www.amazon.co.jp/dp/4484131250
HP社の離職予測
• 初出は2011年のPredictive Analytics Worldというカンファレンス
• http://www.predictiveanalyticsworld.com/london/2011/agenda.
php#day1-5a
• 要約:離職が予測できると、コスト削減したり、原因追及したりできる
メモ:Attritionは「摩耗」「損耗」の意味がだが、ここでは「社員の減少」を意味するっぽい
書籍中での解説
• HPのインドのバンガロールの分析チームが開発
• Flight Risk
• メモ:直訳すると「高跳びリスク」、「離職リスク」の意味
• 訓練データ
• 給与、昇進、昇給、勤務評価、ジョブローテーション等のデータ2年分
• 実際に社員が辞めたかどうか
• 実験対象
• HPの「営業の管理」部門
• 「営業の管理」には専門スキルが要求されるために、育成コストが高い
• M&Aにより組織成長しているため、組織内の報奨制度がつぎはぎだらけ
• メモ:報奨制度の対照実験の環境が図らずとも実現されている?
分析結果
• 精度・効果
• フライトリスクが高い方から40%の従業員に退職者の75%が含まれる
• 欠員補充や生産性の低下に対して、推定三億ドルのコスト削減効果
• 辞めない傾向にある社員
• 給料が高い、昇給が多い、勤務評価が向上している
• メモ:もし勤務評価が悪い人をクビにしているなら、生存バイアスなのでは・・・
• 頻繁なジョブローテ
• 定期的な仕事の変化が日常業務を面白いと感じさせるのでは?という考察
• 辞める傾向にある社員
• 昇進の回数が多い社員、昇進に対して昇給が小幅な社員
• メモ:人員不足->給与据え置き昇進->責任だけ増えるというコンボか?
• メモ:HPの肩書を利用して、給与の他社に転職するのだと思われる
運用
• フライトリスクを導入したチームでは、離職率が20%から15%に減少
• フライトリスクは一年に四回更新
• データの取り扱いに関して、「解釈」「限界」「悪影響」について訓練を受け
たごく一部の幹部社員にのみ情報開示、自分の部下しか閲覧できない
• 社員名は暗号化されており、幹部が持つ暗号鍵でのみ復号可能
• メモ:
• データを読むための訓練を施すというのが大変良い
• 正しくデータ分析を運用するための仕組みが会社として備わっている
なぜ離職予測がコスト削減につながるのか?
• 書籍の中で深く触れられていなかったので、自分
で計算をしてみる
• 日本基準で計算しているので、エージェントコストが支
配的
• 一人辞めると、年俸の50%くらいのコストがかかると
見ていい
• 離職率20%だと、20%の人員に50%のコスト増が
かかるので、給与支払対して10%のコスト増
• 考察
• 超過勤務に伴う他の社員の疲弊、離職リスクの増大
等を考えると、副次的な効果はもっと多そう
• 離職率が下がると、大幅なコストカットができることが
わかる
• 離職率が2pt下がると、コストが給与の1%分下がる
社員の基本的な数値類 unit
年俸 800 万円/年
営業日 240 日/年
有給休暇 20 日/年
実労働日数 220 日/年
1日あたりコスト 3.6 万円/日
退職に伴うコスト(生産性低下)
引継ぎ日数(本人) 10 日
引継ぎ日数(同僚) 10 日
引継ぎによる費用 72.7 万円
採用に伴うコスト
社員の採用稼働 10 日
社員の採用稼働コスト 36.4 万円
エージェント採用料率(年俸に対して) 40%
エージェントコスト 320 万円
欠員に対する同僚の超過労働コスト
欠員期間 20 日
超過労働による給与割り増し 25%
超過労働に伴う支払 18.2 万円
教育に対するコスト
教育期間 20 日
教育に対するコスト 72.7 万円
社員が一人辞めると、欠員補充に対するコスト 520 万円
年俸比率 65%
なぜ離職予測がコスト削減につながるのか?(別試算)
• 会計事務所(PwC社)のコンサルタントの試算
• 自分の推定とだいたい同じ
• 有給消化をコストとするのは…
https://www.rosei.jp/jinjour/article.php?entry_no=64795
原典を読んでみる
• 発表資料は未公開、カンファレンス参加者にのみ公開?
• HPのサイトからも見つけられず
• ヤバい予測学の著者のブログに当時の記事が載っていた
• http://www.predictiveanalyticsworld.com/patimes/the-privacy-
pickle-hewlett-packards-prediction-of-employee-behavior/2716/
• 割と本の内容そのままだが、一部違うことが書いてある
• ブログと書籍の内容の相違
• HPの社員は離職スコアのことを知らされていない
• 社員を罰するのではなく、離職率を下げるために行っている
• 「ドリルダウン」はしない、全体を俯瞰してパターンを発見するのに使う
近しい事例を漁ってみる
• 退社予備軍を見つけ出せ―データ分析通じて離職防止
• http://jp.wsj.com/articles/SB1003031769182402414900458051903076980
9198
• クレディ・スイス(金融)
• 大所帯のチームで無能なマネージャーの下で働いていると、離職しやすい
• 空きポストに対して、離職リスクの高い人から優先して声掛け
• ボロメトリックス(組織分析サービス、2015年9月MSに買収、Officeと融合?)
• 同僚との交流、必要な会議以外のイベントへの出席から離職を予測
• アルティメット・ソフトウエア(労務・給与管理システム会社)
• 福利厚生の適用を放棄した社員と、離職の相関を発見
• マイクロン・テクノロジー(半導体)
• 製造部門において採用時の業務説明内容が不正確だと、離職リスクが高い
• 仕事のために引っ越しをした社員は離職リスクが高い
• ウォルマート
• 社員の昇進時期を予測、後任を確保するために利用。毎年16万人が昇進
近しい事例を漁ってみる
• Googleは辞めそうな社員を予測している
• http://japan.zdnet.com/article/20393400/
• http://www.wsj.com/articles/SB124269038041932531
• 看護師の採用で「辞めない人材」を予測
• https://web.archive.org/web/20160125223928/http://www.sa
nkeibiz.jp/macro/news/160125/mcb1601250500017-n1.htm
• Pegged Software(http://www.peggedsoftware.com/ )を利用
• キーボードの打ち方や、1つのページに何秒間とどまるか、ブラウザーのタブをいつ閉じるかといっ
たデータから、アルゴリズムを使って候補者の仕事ぶりを予測することができるという。
• 例えば、ストレスの大きい状況に直面したときの反応を試すために、数学を専門としない人に
微分積分の問題を出し、固まってしまうか、別のページに移動するか、答えを入力したり修正
したりするかといった反応を測定する。
近しい事例を漁ってみる
• Analyzing Employee Turnover- Predictive Methods
• https://www.linkedin.com/pulse/analyzing-employee-turnover-
predictive-methods-richard-rosenow-pmp
• 転職予測に使うアルゴリズムの説明
• Logistic Regression
• Survival Analysis(生存分析)
• 決定木
• ランダムフォレスト
• まぁ、そうだよね…。離職予測に特別な技術は要らないみたい。
離職予測ができるサービス
• IBM Watson
• 決定木で出力してくれるらしい(労働時間、職位、SOの有無などが見える)
https://www.ibm.com/blogs/watson-analytics/watson-analytics-use-case-for-hr-retaining-valuable-employees/
離職予測ができるサービス
• Talent Analytics
• アルゴリズム不明
http://www.talentanalytics.com/predict-employee-flight-risk-predictive-talent-analytics/
離職予測ができるサービス
• workday
• 統合人材管理ツール
http://www.workday.com/jp/applications/professional_services_automation.php
クラウドソーシングでのアルゴリズム作成
• CrowdANALYTIXのコンテスト
• SanDiskの依頼で本番データでガチ
• 複数のデータサイエンティストが競う
• 賞金は9000ドル
• SlideShareに解説が上がっていた
• http://www.slideshare.net/divyabh
/employee-attrition-analysis
• 精度は 決定木>RF>KSVM>LR の順
• 直観に反する順番、何かトリックがあるのかも
• 特別な技術は特に要らないことが示唆される
• ジョブランクが高くて、勤続年数が長い人は
残りやすい(あたりまえ)
• 末端ノードにわりと原因が現れる(黒塗り)
https://www.crowdanalytix.com/contests/employee-attrition-analysis
• 株式会社susque、サブロク
• 日本のストレスチェック義務化の流れと、北米の離職予測を融合
• 勤怠管理+ストレスチェックから、鬱病発症予測、離職予測を実現
• その会社に新入社員が入った場合の離職リスクを予測、新人選抜コストを下げる
日本での取り組み状況
http://officelife.tokyo/A/fintech/campany/102 http://r36.jp/
• priskHR
• http://www.prisk.jp/
• 文脈としてはサブロクと同一、ストレスチェック+離職予測
• データマイニング機能はなさそう?
• 分析レポート、コンサルティングはオプションサービス
日本での取り組み状況
集団分析から個人介入へ
• 個人分析に向かっている
• HPは「個人を罰するためにには使わない」と言っている
• WSJの事例やサブロクでは個人のスコアを予測して、介入を実施
• これまともに運用できるのか?
• 今でさえ「上司がアンケートを見るから、全部最高評価にしておいた」と言ってるや
つがゴロゴロいる
• HPでさえ幹部に対してデータの読み方の訓練を施して、
そのうえで「集団の傾向は信頼できるが、個人のスコアは信頼できない」としている
• HPでさえ取り扱いが難しい劇薬を、どのように取り扱っていくのか?
• 社員100人の会社の人事や社長のレベルで取り扱えるのか?
• どうすれば運用に乗るのか?
まとめ
• 離職予測は北米では一般的になっている
• 採用コストは年俸の50%程度
• 離職率が下げられると、大きなコスト削減
• 離職予測には特別な技術は要らない
• DT、RF、LR、生存時間分析あたりでよさそう
• データさえあれば、だれでも簡単にできそう
• ここ一年に日本でも離職予測の流れが来ている
• メンタルヘルス診断の義務化と、AIブームの合わせ技で、調達ドン
• 良質なデータセットが手に入るようになった
• うつ病頻発(目的変数)メンタルヘルス診断の義務化(説明変数)
• でも離職予測のデータを使える人が育ってるの?
• アクションをどうやってセットにして売るか?がカギっぽい(会場でのディスカッションから)
終わりに
• アルゴリズムの開発者は「自分のフライトリスクは高い」と語る
https://www.linkedin.com/in/anindya-sankar-dey-396479a
HP → アクセンチュア → ウォルマートラボ
(ノ∀`)アチャー

More Related Content

What's hot

事業の進展とデータマネジメント体制の進歩(+プレトタイプの話)
事業の進展とデータマネジメント体制の進歩(+プレトタイプの話)事業の進展とデータマネジメント体制の進歩(+プレトタイプの話)
事業の進展とデータマネジメント体制の進歩(+プレトタイプの話)
Tokoroten Nakayama
 
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
Ken'ichi Matsui
 
心理的安全性の構造 デブサミ2019夏 structure of psychological safety
心理的安全性の構造 デブサミ2019夏 structure of psychological safety心理的安全性の構造 デブサミ2019夏 structure of psychological safety
心理的安全性の構造 デブサミ2019夏 structure of psychological safety
Tokoroten Nakayama
 
DXとかDevOpsとかのなんかいい感じのやつ 富士通TechLive
DXとかDevOpsとかのなんかいい感じのやつ 富士通TechLiveDXとかDevOpsとかのなんかいい感じのやつ 富士通TechLive
DXとかDevOpsとかのなんかいい感じのやつ 富士通TechLive
Tokoroten Nakayama
 
マッチングサービスにおけるKPIの話
マッチングサービスにおけるKPIの話マッチングサービスにおけるKPIの話
マッチングサービスにおけるKPIの話
cyberagent
 
MLOps に基づく AI/ML 実運用最前線 ~画像、動画データにおける MLOps 事例のご紹介~(映像情報メディア学会2021年冬季大会企画セッショ...
MLOps に基づく AI/ML 実運用最前線 ~画像、動画データにおける MLOps 事例のご紹介~(映像情報メディア学会2021年冬季大会企画セッショ...MLOps に基づく AI/ML 実運用最前線 ~画像、動画データにおける MLOps 事例のご紹介~(映像情報メディア学会2021年冬季大会企画セッショ...
MLOps に基づく AI/ML 実運用最前線 ~画像、動画データにおける MLOps 事例のご紹介~(映像情報メディア学会2021年冬季大会企画セッショ...
NTT DATA Technology & Innovation
 
ChatGPT 人間のフィードバックから強化学習した対話AI
ChatGPT 人間のフィードバックから強化学習した対話AIChatGPT 人間のフィードバックから強化学習した対話AI
ChatGPT 人間のフィードバックから強化学習した対話AI
Shota Imai
 
チャットコミュニケーションの問題と心理的安全性の課題 #EOF2019
チャットコミュニケーションの問題と心理的安全性の課題 #EOF2019チャットコミュニケーションの問題と心理的安全性の課題 #EOF2019
チャットコミュニケーションの問題と心理的安全性の課題 #EOF2019
Tokoroten Nakayama
 
DX時代のITエンジニアに送る、アジャイル式「いきいき」ヘルスマネジメント
DX時代のITエンジニアに送る、アジャイル式「いきいき」ヘルスマネジメントDX時代のITエンジニアに送る、アジャイル式「いきいき」ヘルスマネジメント
DX時代のITエンジニアに送る、アジャイル式「いきいき」ヘルスマネジメント
Takeshi Kakeda
 
正しいものを正しくつくる
正しいものを正しくつくる正しいものを正しくつくる
正しいものを正しくつくる
toshihiro ichitani
 
全力解説!Transformer
全力解説!Transformer全力解説!Transformer
全力解説!Transformer
Arithmer Inc.
 
テスト文字列に「うんこ」と入れるな
テスト文字列に「うんこ」と入れるなテスト文字列に「うんこ」と入れるな
テスト文字列に「うんこ」と入れるな
Kentaro Matsui
 
ChatGPTは思ったほど賢くない
ChatGPTは思ったほど賢くないChatGPTは思ったほど賢くない
ChatGPTは思ったほど賢くない
Carnot Inc.
 
NTT研究所におけるYammerの取り組みと、社内Twitterの統計解析
NTT研究所におけるYammerの取り組みと、社内Twitterの統計解析NTT研究所におけるYammerの取り組みと、社内Twitterの統計解析
NTT研究所におけるYammerの取り組みと、社内Twitterの統計解析
Tokoroten Nakayama
 
(修正)機械学習デザインパターン(ML Design Patterns)の解説
(修正)機械学習デザインパターン(ML Design Patterns)の解説(修正)機械学習デザインパターン(ML Design Patterns)の解説
(修正)機械学習デザインパターン(ML Design Patterns)の解説
Hironori Washizaki
 
5分で分かるアジャイルムーブメントの歴史 拡大版
5分で分かるアジャイルムーブメントの歴史 拡大版5分で分かるアジャイルムーブメントの歴史 拡大版
5分で分かるアジャイルムーブメントの歴史 拡大版
Fumihiko Kinoshita
 
事業成長にコミットするエンジニア組織への道のり
事業成長にコミットするエンジニア組織への道のり事業成長にコミットするエンジニア組織への道のり
事業成長にコミットするエンジニア組織への道のり
Recruit Lifestyle Co., Ltd.
 
機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)
Satoshi Hara
 
開発速度が速い #とは(LayerX社内資料)
開発速度が速い #とは(LayerX社内資料)開発速度が速い #とは(LayerX社内資料)
開発速度が速い #とは(LayerX社内資料)
mosa siru
 
最適輸送入門
最適輸送入門最適輸送入門
最適輸送入門
joisino
 

What's hot (20)

事業の進展とデータマネジメント体制の進歩(+プレトタイプの話)
事業の進展とデータマネジメント体制の進歩(+プレトタイプの話)事業の進展とデータマネジメント体制の進歩(+プレトタイプの話)
事業の進展とデータマネジメント体制の進歩(+プレトタイプの話)
 
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
 
心理的安全性の構造 デブサミ2019夏 structure of psychological safety
心理的安全性の構造 デブサミ2019夏 structure of psychological safety心理的安全性の構造 デブサミ2019夏 structure of psychological safety
心理的安全性の構造 デブサミ2019夏 structure of psychological safety
 
DXとかDevOpsとかのなんかいい感じのやつ 富士通TechLive
DXとかDevOpsとかのなんかいい感じのやつ 富士通TechLiveDXとかDevOpsとかのなんかいい感じのやつ 富士通TechLive
DXとかDevOpsとかのなんかいい感じのやつ 富士通TechLive
 
マッチングサービスにおけるKPIの話
マッチングサービスにおけるKPIの話マッチングサービスにおけるKPIの話
マッチングサービスにおけるKPIの話
 
MLOps に基づく AI/ML 実運用最前線 ~画像、動画データにおける MLOps 事例のご紹介~(映像情報メディア学会2021年冬季大会企画セッショ...
MLOps に基づく AI/ML 実運用最前線 ~画像、動画データにおける MLOps 事例のご紹介~(映像情報メディア学会2021年冬季大会企画セッショ...MLOps に基づく AI/ML 実運用最前線 ~画像、動画データにおける MLOps 事例のご紹介~(映像情報メディア学会2021年冬季大会企画セッショ...
MLOps に基づく AI/ML 実運用最前線 ~画像、動画データにおける MLOps 事例のご紹介~(映像情報メディア学会2021年冬季大会企画セッショ...
 
ChatGPT 人間のフィードバックから強化学習した対話AI
ChatGPT 人間のフィードバックから強化学習した対話AIChatGPT 人間のフィードバックから強化学習した対話AI
ChatGPT 人間のフィードバックから強化学習した対話AI
 
チャットコミュニケーションの問題と心理的安全性の課題 #EOF2019
チャットコミュニケーションの問題と心理的安全性の課題 #EOF2019チャットコミュニケーションの問題と心理的安全性の課題 #EOF2019
チャットコミュニケーションの問題と心理的安全性の課題 #EOF2019
 
DX時代のITエンジニアに送る、アジャイル式「いきいき」ヘルスマネジメント
DX時代のITエンジニアに送る、アジャイル式「いきいき」ヘルスマネジメントDX時代のITエンジニアに送る、アジャイル式「いきいき」ヘルスマネジメント
DX時代のITエンジニアに送る、アジャイル式「いきいき」ヘルスマネジメント
 
正しいものを正しくつくる
正しいものを正しくつくる正しいものを正しくつくる
正しいものを正しくつくる
 
全力解説!Transformer
全力解説!Transformer全力解説!Transformer
全力解説!Transformer
 
テスト文字列に「うんこ」と入れるな
テスト文字列に「うんこ」と入れるなテスト文字列に「うんこ」と入れるな
テスト文字列に「うんこ」と入れるな
 
ChatGPTは思ったほど賢くない
ChatGPTは思ったほど賢くないChatGPTは思ったほど賢くない
ChatGPTは思ったほど賢くない
 
NTT研究所におけるYammerの取り組みと、社内Twitterの統計解析
NTT研究所におけるYammerの取り組みと、社内Twitterの統計解析NTT研究所におけるYammerの取り組みと、社内Twitterの統計解析
NTT研究所におけるYammerの取り組みと、社内Twitterの統計解析
 
(修正)機械学習デザインパターン(ML Design Patterns)の解説
(修正)機械学習デザインパターン(ML Design Patterns)の解説(修正)機械学習デザインパターン(ML Design Patterns)の解説
(修正)機械学習デザインパターン(ML Design Patterns)の解説
 
5分で分かるアジャイルムーブメントの歴史 拡大版
5分で分かるアジャイルムーブメントの歴史 拡大版5分で分かるアジャイルムーブメントの歴史 拡大版
5分で分かるアジャイルムーブメントの歴史 拡大版
 
事業成長にコミットするエンジニア組織への道のり
事業成長にコミットするエンジニア組織への道のり事業成長にコミットするエンジニア組織への道のり
事業成長にコミットするエンジニア組織への道のり
 
機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)
 
開発速度が速い #とは(LayerX社内資料)
開発速度が速い #とは(LayerX社内資料)開発速度が速い #とは(LayerX社内資料)
開発速度が速い #とは(LayerX社内資料)
 
最適輸送入門
最適輸送入門最適輸送入門
最適輸送入門
 

Similar to ヒューレットパッカード社の 社員の離職リスク予測 第一回機械学習ビジネス研究会 #ml_business

失敗から学ぶ データ分析グループの チームマネジメント変遷 (デブサミ2016) #devsumi
失敗から学ぶデータ分析グループのチームマネジメント変遷 (デブサミ2016) #devsumi失敗から学ぶデータ分析グループのチームマネジメント変遷 (デブサミ2016) #devsumi
失敗から学ぶ データ分析グループの チームマネジメント変遷 (デブサミ2016) #devsumi
Tokoroten Nakayama
 
20120622 data conference
20120622 data conference20120622 data conference
20120622 data conference
managami
 
日経コンピュータ主催:さわってわかる機械学習 Azure Machine Learning 実践セミナー
日経コンピュータ主催:さわってわかる機械学習 Azure Machine Learning 実践セミナー日経コンピュータ主催:さわってわかる機械学習 Azure Machine Learning 実践セミナー
日経コンピュータ主催:さわってわかる機械学習 Azure Machine Learning 実践セミナー
Hiroshi Senga
 
【IMJ】パネルディスカッション|顧客ロイヤルティ施策とデータドリブンマーケティング(I・CON2014)
【IMJ】パネルディスカッション|顧客ロイヤルティ施策とデータドリブンマーケティング(I・CON2014)【IMJ】パネルディスカッション|顧客ロイヤルティ施策とデータドリブンマーケティング(I・CON2014)
【IMJ】パネルディスカッション|顧客ロイヤルティ施策とデータドリブンマーケティング(I・CON2014)
IMJ Corporation
 
E-commerce企業におけるビッグデータへの挑戦と課題‐機械学習への期待について‐
E-commerce企業におけるビッグデータへの挑戦と課題‐機械学習への期待について‐E-commerce企業におけるビッグデータへの挑戦と課題‐機械学習への期待について‐
E-commerce企業におけるビッグデータへの挑戦と課題‐機械学習への期待について‐
Rakuten Group, Inc.
 
20171201 deep learning lab albert
20171201 deep learning lab albert20171201 deep learning lab albert
20171201 deep learning lab albert
Hirono Jumpei
 
Tableau Developers Club Season2 - 外部サービス連携デモ
Tableau Developers Club Season2 - 外部サービス連携デモ Tableau Developers Club Season2 - 外部サービス連携デモ
Tableau Developers Club Season2 - 外部サービス連携デモ
Kenji Noguchi
 
Amazon Pinpoint × グロースハック活用事例集
Amazon Pinpoint × グロースハック活用事例集Amazon Pinpoint × グロースハック活用事例集
Amazon Pinpoint × グロースハック活用事例集
Amazon Web Services Japan
 
JPC2018[D1]「信頼できるCloud」のために ― マイクロソフト法務部門からお伝えしたいこと
JPC2018[D1]「信頼できるCloud」のために ― マイクロソフト法務部門からお伝えしたいことJPC2018[D1]「信頼できるCloud」のために ― マイクロソフト法務部門からお伝えしたいこと
JPC2018[D1]「信頼できるCloud」のために ― マイクロソフト法務部門からお伝えしたいこと
MPN Japan
 
Social GAME における AI 活用事例 [第 4 回 Google Cloud INSIDE Games & Apps]
Social GAME における AI 活用事例 [第 4 回 Google Cloud INSIDE Games & Apps] Social GAME における AI 活用事例 [第 4 回 Google Cloud INSIDE Games & Apps]
Social GAME における AI 活用事例 [第 4 回 Google Cloud INSIDE Games & Apps]
Google Cloud Platform - Japan
 
インターネット上の情報発信手段の変遷 情報発信の簡易化
インターネット上の情報発信手段の変遷 情報発信の簡易化インターネット上の情報発信手段の変遷 情報発信の簡易化
インターネット上の情報発信手段の変遷 情報発信の簡易化
Tokoroten Nakayama
 
ゲームアプリの事前登録、アイテム配布プロモーション「シリアルコードMail」サービスガイド
ゲームアプリの事前登録、アイテム配布プロモーション「シリアルコードMail」サービスガイドゲームアプリの事前登録、アイテム配布プロモーション「シリアルコードMail」サービスガイド
ゲームアプリの事前登録、アイテム配布プロモーション「シリアルコードMail」サービスガイド
gamesaver
 
大切なお客様を、一生のお客様に ~自社・競合データから導く、結果につながるデータ分析の最新事例~
大切なお客様を、一生のお客様に  ~自社・競合データから導く、結果につながるデータ分析の最新事例~大切なお客様を、一生のお客様に  ~自社・競合データから導く、結果につながるデータ分析の最新事例~
大切なお客様を、一生のお客様に ~自社・競合データから導く、結果につながるデータ分析の最新事例~
株式会社Consumer first
 
データ分析グループの組織編制とその課題 マーケティングにおけるKPI設計の失敗例 ABテストの活用と、機械学習の導入 #CWT2016
データ分析グループの組織編制とその課題 マーケティングにおけるKPI設計の失敗例 ABテストの活用と、機械学習の導入 #CWT2016データ分析グループの組織編制とその課題 マーケティングにおけるKPI設計の失敗例 ABテストの活用と、機械学習の導入 #CWT2016
データ分析グループの組織編制とその課題 マーケティングにおけるKPI設計の失敗例 ABテストの活用と、機械学習の導入 #CWT2016
Tokoroten Nakayama
 
SEGA : Growth hacking by Spark ML for Mobile games
SEGA : Growth hacking by Spark ML for Mobile gamesSEGA : Growth hacking by Spark ML for Mobile games
SEGA : Growth hacking by Spark ML for Mobile games
DataWorks Summit/Hadoop Summit
 
「実践的」カスタマージャーニー分析のすすめ
「実践的」カスタマージャーニー分析のすすめ「実践的」カスタマージャーニー分析のすすめ
「実践的」カスタマージャーニー分析のすすめ
Akihiko Uchino
 
はじパタ2章
はじパタ2章はじパタ2章
はじパタ2章
tetsuro ito
 

Similar to ヒューレットパッカード社の 社員の離職リスク予測 第一回機械学習ビジネス研究会 #ml_business (20)

失敗から学ぶ データ分析グループの チームマネジメント変遷 (デブサミ2016) #devsumi
失敗から学ぶデータ分析グループのチームマネジメント変遷 (デブサミ2016) #devsumi失敗から学ぶデータ分析グループのチームマネジメント変遷 (デブサミ2016) #devsumi
失敗から学ぶ データ分析グループの チームマネジメント変遷 (デブサミ2016) #devsumi
 
20120622 data conference
20120622 data conference20120622 data conference
20120622 data conference
 
日経コンピュータ主催:さわってわかる機械学習 Azure Machine Learning 実践セミナー
日経コンピュータ主催:さわってわかる機械学習 Azure Machine Learning 実践セミナー日経コンピュータ主催:さわってわかる機械学習 Azure Machine Learning 実践セミナー
日経コンピュータ主催:さわってわかる機械学習 Azure Machine Learning 実践セミナー
 
【IMJ】パネルディスカッション|顧客ロイヤルティ施策とデータドリブンマーケティング(I・CON2014)
【IMJ】パネルディスカッション|顧客ロイヤルティ施策とデータドリブンマーケティング(I・CON2014)【IMJ】パネルディスカッション|顧客ロイヤルティ施策とデータドリブンマーケティング(I・CON2014)
【IMJ】パネルディスカッション|顧客ロイヤルティ施策とデータドリブンマーケティング(I・CON2014)
 
E-commerce企業におけるビッグデータへの挑戦と課題‐機械学習への期待について‐
E-commerce企業におけるビッグデータへの挑戦と課題‐機械学習への期待について‐E-commerce企業におけるビッグデータへの挑戦と課題‐機械学習への期待について‐
E-commerce企業におけるビッグデータへの挑戦と課題‐機械学習への期待について‐
 
Tdc 20181121
Tdc 20181121Tdc 20181121
Tdc 20181121
 
20171201 deep learning lab albert
20171201 deep learning lab albert20171201 deep learning lab albert
20171201 deep learning lab albert
 
Tableau Developers Club Season2 - 外部サービス連携デモ
Tableau Developers Club Season2 - 外部サービス連携デモ Tableau Developers Club Season2 - 外部サービス連携デモ
Tableau Developers Club Season2 - 外部サービス連携デモ
 
Amazon Pinpoint × グロースハック活用事例集
Amazon Pinpoint × グロースハック活用事例集Amazon Pinpoint × グロースハック活用事例集
Amazon Pinpoint × グロースハック活用事例集
 
JPC2018[D1]「信頼できるCloud」のために ― マイクロソフト法務部門からお伝えしたいこと
JPC2018[D1]「信頼できるCloud」のために ― マイクロソフト法務部門からお伝えしたいことJPC2018[D1]「信頼できるCloud」のために ― マイクロソフト法務部門からお伝えしたいこと
JPC2018[D1]「信頼できるCloud」のために ― マイクロソフト法務部門からお伝えしたいこと
 
Social GAME における AI 活用事例 [第 4 回 Google Cloud INSIDE Games & Apps]
Social GAME における AI 活用事例 [第 4 回 Google Cloud INSIDE Games & Apps] Social GAME における AI 活用事例 [第 4 回 Google Cloud INSIDE Games & Apps]
Social GAME における AI 活用事例 [第 4 回 Google Cloud INSIDE Games & Apps]
 
DSS2013CA
DSS2013CADSS2013CA
DSS2013CA
 
インターネット上の情報発信手段の変遷 情報発信の簡易化
インターネット上の情報発信手段の変遷 情報発信の簡易化インターネット上の情報発信手段の変遷 情報発信の簡易化
インターネット上の情報発信手段の変遷 情報発信の簡易化
 
ゲームアプリの事前登録、アイテム配布プロモーション「シリアルコードMail」サービスガイド
ゲームアプリの事前登録、アイテム配布プロモーション「シリアルコードMail」サービスガイドゲームアプリの事前登録、アイテム配布プロモーション「シリアルコードMail」サービスガイド
ゲームアプリの事前登録、アイテム配布プロモーション「シリアルコードMail」サービスガイド
 
大切なお客様を、一生のお客様に ~自社・競合データから導く、結果につながるデータ分析の最新事例~
大切なお客様を、一生のお客様に  ~自社・競合データから導く、結果につながるデータ分析の最新事例~大切なお客様を、一生のお客様に  ~自社・競合データから導く、結果につながるデータ分析の最新事例~
大切なお客様を、一生のお客様に ~自社・競合データから導く、結果につながるデータ分析の最新事例~
 
データ分析グループの組織編制とその課題 マーケティングにおけるKPI設計の失敗例 ABテストの活用と、機械学習の導入 #CWT2016
データ分析グループの組織編制とその課題 マーケティングにおけるKPI設計の失敗例 ABテストの活用と、機械学習の導入 #CWT2016データ分析グループの組織編制とその課題 マーケティングにおけるKPI設計の失敗例 ABテストの活用と、機械学習の導入 #CWT2016
データ分析グループの組織編制とその課題 マーケティングにおけるKPI設計の失敗例 ABテストの活用と、機械学習の導入 #CWT2016
 
SEGA : Growth hacking by Spark ML for Mobile games
SEGA : Growth hacking by Spark ML for Mobile gamesSEGA : Growth hacking by Spark ML for Mobile games
SEGA : Growth hacking by Spark ML for Mobile games
 
「実践的」カスタマージャーニー分析のすすめ
「実践的」カスタマージャーニー分析のすすめ「実践的」カスタマージャーニー分析のすすめ
「実践的」カスタマージャーニー分析のすすめ
 
おしゃスタat銀座
おしゃスタat銀座おしゃスタat銀座
おしゃスタat銀座
 
はじパタ2章
はじパタ2章はじパタ2章
はじパタ2章
 

More from Tokoroten Nakayama

機械学習の精度と売上の関係
機械学習の精度と売上の関係機械学習の精度と売上の関係
機械学習の精度と売上の関係
Tokoroten Nakayama
 
難易度ボラタリティグラフという分析手法
難易度ボラタリティグラフという分析手法難易度ボラタリティグラフという分析手法
難易度ボラタリティグラフという分析手法
Tokoroten Nakayama
 
機械学習ビジネス研究会(未踏研究会)
機械学習ビジネス研究会(未踏研究会)機械学習ビジネス研究会(未踏研究会)
機械学習ビジネス研究会(未踏研究会)
Tokoroten Nakayama
 
失敗から学ぶ データ分析グループの チームマネジメント変遷
失敗から学ぶデータ分析グループのチームマネジメント変遷失敗から学ぶデータ分析グループのチームマネジメント変遷
失敗から学ぶ データ分析グループの チームマネジメント変遷
Tokoroten Nakayama
 
プロダクション環境でオンラインで機械学習を動かすにあたってツライ話 #MLCT
プロダクション環境でオンラインで機械学習を動かすにあたってツライ話 #MLCTプロダクション環境でオンラインで機械学習を動かすにあたってツライ話 #MLCT
プロダクション環境でオンラインで機械学習を動かすにあたってツライ話 #MLCT
Tokoroten Nakayama
 
特徴ベクトル変換器を作った話 #dogenzakalt
特徴ベクトル変換器を作った話 #dogenzakalt特徴ベクトル変換器を作った話 #dogenzakalt
特徴ベクトル変換器を作った話 #dogenzakalt
Tokoroten Nakayama
 
特徴ベクトル変換器を作った話
特徴ベクトル変換器を作った話特徴ベクトル変換器を作った話
特徴ベクトル変換器を作った話
Tokoroten Nakayama
 
jubatusのECサイトへの適応 #jubatus_hackathon
jubatusのECサイトへの適応 #jubatus_hackathonjubatusのECサイトへの適応 #jubatus_hackathon
jubatusのECサイトへの適応 #jubatus_hackathon
Tokoroten Nakayama
 
スマホマーケットの概要と、 マーケティングの失敗例と改善 (アナリティクス アソシエーション 特別セミナー)
スマホマーケットの概要と、マーケティングの失敗例と改善 (アナリティクス アソシエーション 特別セミナー)スマホマーケットの概要と、マーケティングの失敗例と改善 (アナリティクス アソシエーション 特別セミナー)
スマホマーケットの概要と、 マーケティングの失敗例と改善 (アナリティクス アソシエーション 特別セミナー)
Tokoroten Nakayama
 
DAUを評価指標から捨てた会社の話 #tokyowebmining
DAUを評価指標から捨てた会社の話 #tokyowebminingDAUを評価指標から捨てた会社の話 #tokyowebmining
DAUを評価指標から捨てた会社の話 #tokyowebmining
Tokoroten Nakayama
 
BattleField3に見る 自己表現としてのゲームプレイ
BattleField3に見る自己表現としてのゲームプレイBattleField3に見る自己表現としてのゲームプレイ
BattleField3に見る 自己表現としてのゲームプレイ
Tokoroten Nakayama
 
情報処理とは何か あとbigdataとか
情報処理とは何か あとbigdataとか情報処理とは何か あとbigdataとか
情報処理とは何か あとbigdataとか
Tokoroten Nakayama
 
ビッグデータとioDriveの夕べ:ドリコムのデータ分析環境のお話
ビッグデータとioDriveの夕べ:ドリコムのデータ分析環境のお話ビッグデータとioDriveの夕べ:ドリコムのデータ分析環境のお話
ビッグデータとioDriveの夕べ:ドリコムのデータ分析環境のお話
Tokoroten Nakayama
 
ソーシャルゲームにレコメンドエンジンを導入した話
ソーシャルゲームにレコメンドエンジンを導入した話ソーシャルゲームにレコメンドエンジンを導入した話
ソーシャルゲームにレコメンドエンジンを導入した話
Tokoroten Nakayama
 
たのしいうぇっぶくろーら #pyfes
たのしいうぇっぶくろーら #pyfesたのしいうぇっぶくろーら #pyfes
たのしいうぇっぶくろーら #pyfes
Tokoroten Nakayama
 

More from Tokoroten Nakayama (17)

機械学習の精度と売上の関係
機械学習の精度と売上の関係機械学習の精度と売上の関係
機械学習の精度と売上の関係
 
難易度ボラタリティグラフという分析手法
難易度ボラタリティグラフという分析手法難易度ボラタリティグラフという分析手法
難易度ボラタリティグラフという分析手法
 
機械学習ビジネス研究会(未踏研究会)
機械学習ビジネス研究会(未踏研究会)機械学習ビジネス研究会(未踏研究会)
機械学習ビジネス研究会(未踏研究会)
 
失敗から学ぶ データ分析グループの チームマネジメント変遷
失敗から学ぶデータ分析グループのチームマネジメント変遷失敗から学ぶデータ分析グループのチームマネジメント変遷
失敗から学ぶ データ分析グループの チームマネジメント変遷
 
プロダクション環境でオンラインで機械学習を動かすにあたってツライ話 #MLCT
プロダクション環境でオンラインで機械学習を動かすにあたってツライ話 #MLCTプロダクション環境でオンラインで機械学習を動かすにあたってツライ話 #MLCT
プロダクション環境でオンラインで機械学習を動かすにあたってツライ話 #MLCT
 
特徴ベクトル変換器を作った話 #dogenzakalt
特徴ベクトル変換器を作った話 #dogenzakalt特徴ベクトル変換器を作った話 #dogenzakalt
特徴ベクトル変換器を作った話 #dogenzakalt
 
特徴ベクトル変換器を作った話
特徴ベクトル変換器を作った話特徴ベクトル変換器を作った話
特徴ベクトル変換器を作った話
 
jubatusのECサイトへの適応 #jubatus_hackathon
jubatusのECサイトへの適応 #jubatus_hackathonjubatusのECサイトへの適応 #jubatus_hackathon
jubatusのECサイトへの適応 #jubatus_hackathon
 
スマホマーケットの概要と、 マーケティングの失敗例と改善 (アナリティクス アソシエーション 特別セミナー)
スマホマーケットの概要と、マーケティングの失敗例と改善 (アナリティクス アソシエーション 特別セミナー)スマホマーケットの概要と、マーケティングの失敗例と改善 (アナリティクス アソシエーション 特別セミナー)
スマホマーケットの概要と、 マーケティングの失敗例と改善 (アナリティクス アソシエーション 特別セミナー)
 
DAUを評価指標から捨てた会社の話 #tokyowebmining
DAUを評価指標から捨てた会社の話 #tokyowebminingDAUを評価指標から捨てた会社の話 #tokyowebmining
DAUを評価指標から捨てた会社の話 #tokyowebmining
 
BattleField3に見る 自己表現としてのゲームプレイ
BattleField3に見る自己表現としてのゲームプレイBattleField3に見る自己表現としてのゲームプレイ
BattleField3に見る 自己表現としてのゲームプレイ
 
情報処理とは何か あとbigdataとか
情報処理とは何か あとbigdataとか情報処理とは何か あとbigdataとか
情報処理とは何か あとbigdataとか
 
ビッグデータとioDriveの夕べ:ドリコムのデータ分析環境のお話
ビッグデータとioDriveの夕べ:ドリコムのデータ分析環境のお話ビッグデータとioDriveの夕べ:ドリコムのデータ分析環境のお話
ビッグデータとioDriveの夕べ:ドリコムのデータ分析環境のお話
 
ソーシャルゲームにレコメンドエンジンを導入した話
ソーシャルゲームにレコメンドエンジンを導入した話ソーシャルゲームにレコメンドエンジンを導入した話
ソーシャルゲームにレコメンドエンジンを導入した話
 
たのしいうぇっぶくろーら #pyfes
たのしいうぇっぶくろーら #pyfesたのしいうぇっぶくろーら #pyfes
たのしいうぇっぶくろーら #pyfes
 
Muroto for ps vita
Muroto for ps vitaMuroto for ps vita
Muroto for ps vita
 
Argosの紹介 #x86study
Argosの紹介 #x86studyArgosの紹介 #x86study
Argosの紹介 #x86study
 

Recently uploaded

【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
Sony - Neural Network Libraries
 
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
Sony - Neural Network Libraries
 
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
Toru Tamaki
 
Matsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit IntroductionMatsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit Introduction
Matsuo Lab
 
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
chisatotakane
 
20240717_IoTLT_vol113_kitazaki_v1___.pdf
20240717_IoTLT_vol113_kitazaki_v1___.pdf20240717_IoTLT_vol113_kitazaki_v1___.pdf
20240717_IoTLT_vol113_kitazaki_v1___.pdf
Ayachika Kitazaki
 
Matsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit IntroductionMatsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit Introduction
Matsuo Lab
 
Developer IO 2024 Odyssey SAMを応用したコンピュータビジョンの話
Developer IO 2024 Odyssey  SAMを応用したコンピュータビジョンの話Developer IO 2024 Odyssey  SAMを応用したコンピュータビジョンの話
Developer IO 2024 Odyssey SAMを応用したコンピュータビジョンの話
Shinichi Hirauchi
 
Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)
Natsutani Minoru
 
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ..."ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
たけおか しょうぞう
 
【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf
【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf
【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf
ARISE analytics
 
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログLoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
CRI Japan, Inc.
 
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
Toru Tamaki
 
Matsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit IntroductionMatsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit Introduction
Matsuo Lab
 
Kyndryl Developer Services のご紹介 2024年7月
Kyndryl Developer Services のご紹介  2024年7月Kyndryl Developer Services のご紹介  2024年7月
Kyndryl Developer Services のご紹介 2024年7月
Takayuki Nakayama
 

Recently uploaded (15)

【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
 
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
 
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
 
Matsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit IntroductionMatsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit Introduction
 
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
 
20240717_IoTLT_vol113_kitazaki_v1___.pdf
20240717_IoTLT_vol113_kitazaki_v1___.pdf20240717_IoTLT_vol113_kitazaki_v1___.pdf
20240717_IoTLT_vol113_kitazaki_v1___.pdf
 
Matsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit IntroductionMatsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit Introduction
 
Developer IO 2024 Odyssey SAMを応用したコンピュータビジョンの話
Developer IO 2024 Odyssey  SAMを応用したコンピュータビジョンの話Developer IO 2024 Odyssey  SAMを応用したコンピュータビジョンの話
Developer IO 2024 Odyssey SAMを応用したコンピュータビジョンの話
 
Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)
 
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ..."ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
 
【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf
【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf
【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf
 
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログLoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
 
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
 
Matsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit IntroductionMatsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit Introduction
 
Kyndryl Developer Services のご紹介 2024年7月
Kyndryl Developer Services のご紹介  2024年7月Kyndryl Developer Services のご紹介  2024年7月
Kyndryl Developer Services のご紹介 2024年7月
 

ヒューレットパッカード社の 社員の離職リスク予測 第一回機械学習ビジネス研究会 #ml_business