This document discusses mining social media data to understand drug usage. It proposes using big data techniques like Hadoop and MapReduce to extract and analyze data from social networks about drug abuse. The methodology involves collecting data from platforms using crawlers, storing it in Hadoop, filtering it, then applying complex analysis using cloud computing. Prior work on extracting health information from social media and multi-scale community detection in networks is reviewed. The challenges of privacy preservation and scalability when anonymizing big healthcare datasets are also discussed.