5.8 Quadratic Inequalities

Checking Solutions
Decide whether the ordered pair is a solution, of the
inequality.

) x
1
2.− y < 2 (1x + 1 ,
2

−1 < 2 + 1
−1 < 3

(1,−1)
Checking Solutions
Decide whether the ordered pair is a solution, of the
inequality.

(,
3 x
3.− y > 2 − 3 x2 ) ( 2,−3)
2

−3 > 4 −6
− 3 > −2
Graphing a Quadratic Inequality

4. y ≤ x + 4 x + 4
2

Vertex:

4
4
b
=−
−
2
1
2 (a )
2
y = (− 2) + 4( − 2) + 4
y = 4 −8 + 4 = 0

( − 2,

0

Solid

Check (0,0)

0≤4

Normal Graph

)
Graphing a Quadratic Inequality

5. y ≥ 3 x − 12
2

0
0
b
=−
−
6
3
2 (a )
2
y = 3( 0 ) − 12
y = 0 − 12 = −12
Check (0,0)

0 ≥ −12

Vertex:

( 0, − 12)

Solid
Graphing a Quadratic Inequality

6. y ≤ x − 10 x + 9
2

Vertex:

− 10
10
b
=
−
2
1
2 (a)
2
y = ( 5 ) − 10( 5 ) + 9
y = 25 − 50 + 9
Check (0,0)

0≤9

( 5, − 16)

Solid
Graphing a Quadratic Inequality

6. y ≤ x − 10 x + 9
2

Vertex:

− 10
10
b
=
−
2
1
2 (a)
2
y = ( 5 ) − 10( 5 ) + 9
y = 25 − 50 + 9
Check (0,0)

0≤9

( 5, − 16)

Solid

Lesson 5.8 honors

  • 1.
    5.8 Quadratic Inequalities CheckingSolutions Decide whether the ordered pair is a solution, of the inequality. ) x 1 2.− y < 2 (1x + 1 , 2 −1 < 2 + 1 −1 < 3 (1,−1)
  • 2.
    Checking Solutions Decide whetherthe ordered pair is a solution, of the inequality. (, 3 x 3.− y > 2 − 3 x2 ) ( 2,−3) 2 −3 > 4 −6 − 3 > −2
  • 3.
    Graphing a QuadraticInequality 4. y ≤ x + 4 x + 4 2 Vertex: 4 4 b =− − 2 1 2 (a ) 2 y = (− 2) + 4( − 2) + 4 y = 4 −8 + 4 = 0 ( − 2, 0 Solid Check (0,0) 0≤4 Normal Graph )
  • 4.
    Graphing a QuadraticInequality 5. y ≥ 3 x − 12 2 0 0 b =− − 6 3 2 (a ) 2 y = 3( 0 ) − 12 y = 0 − 12 = −12 Check (0,0) 0 ≥ −12 Vertex: ( 0, − 12) Solid
  • 5.
    Graphing a QuadraticInequality 6. y ≤ x − 10 x + 9 2 Vertex: − 10 10 b = − 2 1 2 (a) 2 y = ( 5 ) − 10( 5 ) + 9 y = 25 − 50 + 9 Check (0,0) 0≤9 ( 5, − 16) Solid
  • 6.
    Graphing a QuadraticInequality 6. y ≤ x − 10 x + 9 2 Vertex: − 10 10 b = − 2 1 2 (a) 2 y = ( 5 ) − 10( 5 ) + 9 y = 25 − 50 + 9 Check (0,0) 0≤9 ( 5, − 16) Solid