Data structures and algorithms involve organizing data to solve problems efficiently. An algorithm describes computational steps, while a program implements an algorithm. Key aspects of algorithms include efficiency as input size increases. Experimental studies measure running time but have limitations. Pseudocode describes algorithms at a high level. Analysis counts primitive operations to determine asymptotic running time, ignoring constant factors. The best, worst, and average cases analyze efficiency. Asymptotic notation like Big-O simplifies analysis by focusing on how time increases with input size.