SlideShare a Scribd company logo
OCTOBER 13-16, 2016 • AUSTIN, TX
Large Scale Log Analytics with Solr
Rafał Kuć and Radu Gheorghe
Sematext Group
3
01
About Us
RaduRafał
Logsene
4
02
Agenda
Logstash + Solr
rsyslog + Solr
rsyslog + Redis + Logstash + Solr
Solr
5
01
Flow in Logstash
/var/log/apache.log
redis
https://cdn2.iconfinder.com/data/icons/gconstruct/2118/gconstruct1-14.png
input
6
01
Flow in Logstash
/var/log/apache.log
redis
https://cdn2.iconfinder.com/data/icons/gconstruct/2118/gconstruct1-14.png
plain
{json}
input
codec
7
01
Flow in Logstash
/var/log/apache.log
redis
Rafał @kucrafal
grok
{
"user": "Rafał",
"twitter": "@kucrafal"
}
- w $numberOfWorkers
https://cdn2.iconfinder.com/data/icons/gconstruct/2118/gconstruct1-14.png
plain
{json}
input
codec
filter
8
01
Flow in Logstash
/var/log/apache.log
redis
Rafał @kucrafal
grok
{
"user": "Rafał",
"twitter": "@kucrafal"
}
- w $numberOfWorkers
https://cdn2.iconfinder.com/data/icons/gconstruct/2118/gconstruct1-14.png
workers => 2
plain
{json}
input
codec
filter
output
9
01
Simple Config https://github.com/sematext/lucene-revolution-samples/tree/master/2015
input {
file {
path => "/opt/logs/example.log"
start_position => "beginning"
}
}
output {
solr_http {
solr_url => "http://localhost:8983/solr/gettingstarted"
flush_size => 5000
workers => 4
}
}
bin/plugin install logstash-output-solr_http
apache combined logs
10
01
Base Result
11
01
Parse JSON
input {
file {
path => "/opt/logs/example.log.parsed"
start_position => "beginning"
…
filter {
json {
source => "message"
}
}
output {
solr_http {
…
apache combined logs in JSON
bin/logstash -f logstash.conf -w 4 # filterWorkers=4
12
01
JSON Result
input {
file {
path => "/opt/logs/example.log"
start_position => "beginning"
…
filter {
grok {
match => [ "message", "%{COMBINEDAPACHELOG}" ]
}
}
output {
solr_http {
…
13
01
Grok
14
01
Grok Result
15
01
Flow Options
https://upload.wikimedia.org/wikipedia/commons/thumb/b/bb/Gorilla-server.svg/2000px-Gorilla-server.svg.png
https://www.elastic.co/assets/blt69f6410148efbab8/logstash.png
16
01
Flow Options (cont.)
http://www.hanselman.com/blog/content/binary/Windows-Live-Writer/ef572a4c3e50_13F7B/redis_logo_a83f44f3-708d-4fad-aa6e-6eb0d6f82001.png
https://upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Question_mark_alternate.svg/2000px-Question_mark_alternate.svg.png
or Kafka or
*MQ or...
something
light here
rsyslog
rsyslog
rsyslog
17
01
Flow in rsyslog
/var/log/apache.log
syslog socket
input
18
01
Flow in rsyslog
/var/log/apache.log
syslog socket
main queue (RAM+Disk)
input
queue.type
queue.size
...
19
01
Flow in rsyslog
/var/log/apache.log
syslog socket
main queue (RAM+Disk)
input
queue.type
queue.size
...
queue.workerThreads
(filter, parse and
send events)
20
01
Flow in rsyslog
/var/log/apache.log
syslog socket
main queue (RAM+Disk)
input
queue.type
queue.size
...
queue.workerThreads
(filter, parse and
send events)
queue.dequeueBatchSize
21
01
Flow in rsyslog
/var/log/apache.log
syslog socket
main queue (RAM+Disk)
input
queue.type
queue.size
...
queue.workerThreads
(filter, parse and
send events)
queue.dequeueBatchSize
rsyslog_solr.py
rsyslog_solr.py
rsyslog_solr.py
action
template {JSON}
22
01
Flow in rsyslog
/var/log/apache.log
syslog socket
main queue (RAM+Disk)
input
queue.type
queue.size
...
queue.workerThreads
(filter, parse and
send events)
queue.dequeueBatchSize
rsyslog_solr.py
rsyslog_solr.py
rsyslog_solr.py
action
template {JSON}
23
01
Simple Config (1/2) https://github.com/sematext/lucene-revolution-samples/tree/master/2015
module(load="imfile")
module(load="omprog")
input(type="imfile"
File="/opt/logs/example.log"
Tag="apache:")
main_queue(
queue.highWatermark="100000"
queue.lowWatermark="50000"
queue.maxDiskSpace="5g"
queue.fileName="solr_action"
queue.spoolDirectory="/opt/rsyslog/queues"
queue.saveOnShutdown="on"
queue.workerThreads="4"
queue.dequeueBatchSize="500"
)
apache combined logs
24
01
Simple Config (2/2)
template(name="json_lines" type="list" option.json="on") {
constant(value="{")
constant(value=""timestamp":"")
property(name="timereported" dateFormat="rfc3339")
constant(value="","message":"")
property(name="msg")
...
constant(value="","syslog-tag":"")
property(name="syslogtag")
constant(value=""}n")
}
action(
type="omprog"
binary="/opt/rsyslog/rsyslog_solr.py"
template="json_lines"
)
get from https://github.com/rsyslog/rsyslog/tree/master/plugins/external/solr
25
01
Base Result
26
01
Base Result
15% rsyslog,
4x1% rsyslog_solr.py
27
01
Base Result
15% rsyslog,
4x1% rsyslog_solr.py
125MB rsyslog, 4x15MB rsyslog_solr.py
Depends on queue. Here up to 100K events in
RAM
28
01
JSON Config
# same main queue settings and modules
input(type="imfile"
File="/opt/logs/example.log.parsed"
Tag="apache:")
module(load="mmnormalize")
action(type="mmnormalize"
rulebase="/opt/rsyslog/json.rb"
)
template(name="json_lines" type="list") {
property(name="$!root") constant(value="n")
}
action(type="omprog"
...
apache combined logs
already parsed in JSON
version=2
rule=:%root:json%
29
01
JSON Result
30
01
Normalizing Config
input(type="imfile"
File="/opt/logs/example.log"
Tag="apache")
action(type="mmnormalize"
rulebase="/opt/rsyslog/apache_combined.rb"
)
template(name="json_lines" type="list") {
property(name="$!all-json")
constant(value="n")
}
version=2
rule=:%[
{"type": "word", "name": "clientip"},
{"type": "literal", "text": " "},
...
{"type": "char-to", "name": "agent", "extradata": """},
{"type": "literal", "text": """},
{"type": "rest", "name": "blob"}
]%
31
01
Normalizing Result
32
01
Normalizing “Should Scale”*
sys
tem log
d -ng
performance depends mostly on log length and not on the number of rules:
http://blog.gerhards.net/2013/01/performance-of-liblognormrsyslog-parse.html
rule=apache_combined:%[
{"type": "word", "name": "clientip"},
...
{"type": "char-to", "name": "agent", "extradata": """},
{"type": "literal", "text": """},
{"type": "rest", "name": "blob"}
]%
rule=apache_common:%[
{"type": "word", "name": "clientip"},
...
{"type": "number", "name": "bytes"},
{"type": "rest", "name": "blob", "priority": 65535}
]%
...
33
01
Normalizing with Five Rules
input(type="imfile"
File="/opt/logs/example*"
Tag="apache")
action(type="mmnormalize"
rulebase="/opt/rsyslog/multiple_rules.rb"
)
if $!root <> "" then {
set $.final-json = $!root;
} else {
set $.final-json = $!all-json;
}
template(name="json_lines" type="list") {
property(name="$.final-json") constant(value="n")
}
34
01
5 Rules Result
35
01
OK, so this works:
rsyslog
rsyslog
rsyslog
36
01
How about this:
rsyslog
rsyslog
rsyslog
37
01
rsyslog.conf
module(load="imfile")
module(load="omhiredis")
input(type="imfile"
File="/opt/logs/example.log"
Tag="apache:")
template(name="json_lines" type="list" option.json="on") {...}
main_queue(queue.workerthreads="1"
queue.dequeueBatchSize="100"
queue.size="10000")
action(type="omhiredis"
mode="publish"
key="rsyslog_logstash"
template="json_lines")
./configure --enable-omhiredis
small&light queue
38
01
logstash.conf
input {
redis {
data_type => "channel"
key => "rsyslog_logstash"
batch_count => 100
}
}
output {
solr_http {
...
}
}
JSON codec is implied
39
01
Combined Result
rsyslog 1%
Redis 2%
Logstash 200%
rsyslog 10MB (10K queue)
Redis 1000MB (configurable)
Logstash 380MB
40
01
5-Rule Normalizing Result
rsyslog 100%
Redis 2%
Logstash 200%
rsyslog 30MB
Redis 1000MB
Logstash 450MB
41
01
Shipper conclusions
rsyslog
rsyslog
rsyslog
rsyslog
rsyslog
rsyslog
easy setup; flexible
heavy
light; fast
less flexible&easy
offloads buffers and Logstash processing;
flexible and efficient
setup and maintenance overhead
42
01
Solr Tuning Agenda
Schema and config adjustments
Time-based collections
Tiered cluster (e.g. hot vs cold nodes)
43
01
Schema: Two Kinds of Fields
message:failed
"docValues": true
"omitNorms": true,
"omitTermFreqAndPositions": true
44
01
Schema: Two Kinds of Fields
message:failed
"docValues": true
"omitNorms": true,
"omitTermFreqAndPositions": true
+20 to 100% capacity* 10% faster indexing*
* http://blog.sematext.com/2014/11/17/solr-presentations-lucene-solr-revolution/
45
01
Commits
"updateHandler.autoSoftCommit.maxTime": 5000
"updateHandler.autoCommit.maxTime": 60000
<ramBufferSizeMB>200</ramBufferSizeMB>
5s feels near-
realtime while
searching
Flush to disk every
minute or 200MB
46
01
Commits
"updateHandler.autoSoftCommit.maxTime": 5000
"updateHandler.autoCommit.maxTime": 60000
<ramBufferSizeMB>200</ramBufferSizeMB>
5s feels near-
realtime while
searching
Flush to disk every
minute of 200MB
+10% capacity; 10% faster indexing*
47
01
Time-Based Collections
indexing, merges,
most searches
doesn’t change => cache friendly
can be optimized
delete without
triggering merges
48
01
Time-Based Collections
indexing, merges,
most searches
doesn’t change => cache friendly
=> can be optimized
delete without
triggering merges
20-30x capacity; less indexing degradation*
* http://www.slideshare.net/sematext/side-by-side-with-elasticsearch-solr-part-2
49
01
Tiered Cluster
hot1
hot2
cold1
cold2
cold3
cold4
50
01
Tiered Cluster
hot1
hot2
cold1
cold2
cold3
cold4
51
01
Tiered Cluster
hot1
hot2
cold1
cold2
cold3
cold4
ADDREPLICA
52
01
Tiered Cluster
hot1
hot2
cold1
cold2
cold3
cold4
53
01
Tiered Cluster
hot1
hot2
cold1
cold2
cold3
cold4
54
01
Tiered Cluster
hot1
hot2
cold1
cold2
cold3
cold4
55
01
Tiered Cluster
hot1
hot2
cold1
cold2
cold3
cold4
quick recent searches
and indexing rare lengthy requests
56
01
Tiered Cluster
cold1
cold2
cold3
cold4
quick recent searches
and indexing rare lengthy requests
hot1
hot2
buffer for indexing spikes
57
01
Tiered Cluster
cold1
cold2
cold3
cold4
quick recent searches
and indexing rare lengthy requests
hot1
hot2
buffer for indexing spikes
less shards per collection
and the cluster is still balanced
58
01
Tiered Cluster
cold1
cold2
cold3
cold4
quick recent searches
and indexing rare lengthy requests
hot1
hot2
buffer for indexing spikes
less shards per collection
and the cluster is still balanced
CPU++
RAM++
IO++
59
01
Wrap-Up
60
01
Wrap-Up
DocValues
commits
61
01
Wrap-Up
DocValues
commits
https://cdn0.iconfinder.com/data/icons/dance-fitness/72/13-512.png
https://www.standardlife.co.uk/resources/custom/uk/images/heroes/illustration/easy-box.png
62
01
Wrap-Up
DocValues
commits
https://cdn0.iconfinder.com/data/icons/dance-fitness/72/13-512.png
https://www.standardlife.co.uk/resources/custom/uk/images/heroes/illustration/easy-box.png
63
01
Wrap-Up
DocValues
commits
http://www.funnyshirts.net/media/catalog/product/cache/1/image/9df78eab33525d08d6e5fb8d27136e95/z/o/zombies-hate-fast-food-funny-tshirt-preview.png
https://cdn0.iconfinder.com/data/icons/dance-fitness/72/13-512.png
https://www.standardlife.co.uk/resources/custom/uk/images/heroes/illustration/easy-box.png
64
01
Wrap-Up
DocValues
commits
http://www.funnyshirts.net/media/catalog/product/cache/1/image/9df78eab33525d08d6e5fb8d27136e95/z/o/zombies-hate-fast-food-funny-tshirt-preview.png
https://cdn0.iconfinder.com/data/icons/dance-fitness/72/13-512.png
https://www.standardlife.co.uk/resources/custom/uk/images/heroes/illustration/easy-box.png
rsyslog
65
01
Wrap-Up
DocValues
commits
http://www.funnyshirts.net/media/catalog/product/cache/1/image/9df78eab33525d08d6e5fb8d27136e95/z/o/zombies-hate-fast-food-funny-tshirt-preview.png
https://cdn0.iconfinder.com/data/icons/dance-fitness/72/13-512.png
https://www.standardlife.co.uk/resources/custom/uk/images/heroes/illustration/easy-box.png
rsyslog
rsyslog
rsyslog
rsyslog
66
01
Questions?
Rafał Kuć
@kucrafal
rafal.kuc@sematext.com
Radu Gheorghe
@radu0gheorghe
radu.gheorghe@sematext.com
Sematext
@sematext
http://sematext.com
67
01
Questions?
Rafał Kuć
@kucrafal
rafal.kuc@sematext.com
Radu Gheorghe
@radu0gheorghe
radu.gheorghe@sematext.com
Sematext
@sematext
http://sematext.com
we’re hiring, too!

More Related Content

What's hot

Logstash-Elasticsearch-Kibana
Logstash-Elasticsearch-KibanaLogstash-Elasticsearch-Kibana
Logstash-Elasticsearch-Kibana
dknx01
 
Journée DevOps : Des dashboards pour tous avec ElasticSearch, Logstash et Kibana
Journée DevOps : Des dashboards pour tous avec ElasticSearch, Logstash et KibanaJournée DevOps : Des dashboards pour tous avec ElasticSearch, Logstash et Kibana
Journée DevOps : Des dashboards pour tous avec ElasticSearch, Logstash et Kibana
Publicis Sapient Engineering
 
Debugging and Testing ES Systems
Debugging and Testing ES SystemsDebugging and Testing ES Systems
Debugging and Testing ES Systems
Chris Birchall
 
Analyse your SEO Data with R and Kibana
Analyse your SEO Data with R and KibanaAnalyse your SEO Data with R and Kibana
Analyse your SEO Data with R and Kibana
Vincent Terrasi
 
LogStash in action
LogStash in actionLogStash in action
LogStash in action
Manuj Aggarwal
 
Cool bonsai cool - an introduction to ElasticSearch
Cool bonsai cool - an introduction to ElasticSearchCool bonsai cool - an introduction to ElasticSearch
Cool bonsai cool - an introduction to ElasticSearch
clintongormley
 
Solr vs. Elasticsearch, Case by Case: Presented by Alexandre Rafalovitch, UN
Solr vs. Elasticsearch,  Case by Case: Presented by Alexandre Rafalovitch, UNSolr vs. Elasticsearch,  Case by Case: Presented by Alexandre Rafalovitch, UN
Solr vs. Elasticsearch, Case by Case: Presented by Alexandre Rafalovitch, UN
Lucidworks
 
Machine Learning in a Twitter ETL using ELK
Machine Learning in a Twitter ETL using ELK Machine Learning in a Twitter ETL using ELK
Machine Learning in a Twitter ETL using ELK
hypto
 
Customer Intelligence: Using the ELK Stack to Analyze ForgeRock OpenAM Audit ...
Customer Intelligence: Using the ELK Stack to Analyze ForgeRock OpenAM Audit ...Customer Intelligence: Using the ELK Stack to Analyze ForgeRock OpenAM Audit ...
Customer Intelligence: Using the ELK Stack to Analyze ForgeRock OpenAM Audit ...
ForgeRock
 
MySQL Slow Query log Monitoring using Beats & ELK
MySQL Slow Query log Monitoring using Beats & ELKMySQL Slow Query log Monitoring using Beats & ELK
MySQL Slow Query log Monitoring using Beats & ELK
YoungHeon (Roy) Kim
 
ElasticSearch
ElasticSearchElasticSearch
ElasticSearch
Luiz Rocha
 
ELK stack at weibo.com
ELK stack at weibo.comELK stack at weibo.com
ELK stack at weibo.com
琛琳 饶
 
Logstash: Get to know your logs
Logstash: Get to know your logsLogstash: Get to know your logs
Logstash: Get to know your logs
SmartLogic
 
Spark with Elasticsearch
Spark with ElasticsearchSpark with Elasticsearch
Spark with Elasticsearch
Holden Karau
 
Building a CRM on top of ElasticSearch
Building a CRM on top of ElasticSearchBuilding a CRM on top of ElasticSearch
Building a CRM on top of ElasticSearch
Mark Greene
 
Using Logstash, elasticsearch & kibana
Using Logstash, elasticsearch & kibanaUsing Logstash, elasticsearch & kibana
Using Logstash, elasticsearch & kibana
Alejandro E Brito Monedero
 
Elasticsearch, Logstash, Kibana. Cool search, analytics, data mining and more...
Elasticsearch, Logstash, Kibana. Cool search, analytics, data mining and more...Elasticsearch, Logstash, Kibana. Cool search, analytics, data mining and more...
Elasticsearch, Logstash, Kibana. Cool search, analytics, data mining and more...
Oleksiy Panchenko
 
Logstash + Elasticsearch + Kibana Presentation on Startit Tech Meetup
Logstash + Elasticsearch + Kibana Presentation on Startit Tech MeetupLogstash + Elasticsearch + Kibana Presentation on Startit Tech Meetup
Logstash + Elasticsearch + Kibana Presentation on Startit Tech Meetup
Startit
 
Logstash
LogstashLogstash
Logstash
琛琳 饶
 
elasticsearch - advanced features in practice
elasticsearch - advanced features in practiceelasticsearch - advanced features in practice
elasticsearch - advanced features in practice
Jano Suchal
 

What's hot (20)

Logstash-Elasticsearch-Kibana
Logstash-Elasticsearch-KibanaLogstash-Elasticsearch-Kibana
Logstash-Elasticsearch-Kibana
 
Journée DevOps : Des dashboards pour tous avec ElasticSearch, Logstash et Kibana
Journée DevOps : Des dashboards pour tous avec ElasticSearch, Logstash et KibanaJournée DevOps : Des dashboards pour tous avec ElasticSearch, Logstash et Kibana
Journée DevOps : Des dashboards pour tous avec ElasticSearch, Logstash et Kibana
 
Debugging and Testing ES Systems
Debugging and Testing ES SystemsDebugging and Testing ES Systems
Debugging and Testing ES Systems
 
Analyse your SEO Data with R and Kibana
Analyse your SEO Data with R and KibanaAnalyse your SEO Data with R and Kibana
Analyse your SEO Data with R and Kibana
 
LogStash in action
LogStash in actionLogStash in action
LogStash in action
 
Cool bonsai cool - an introduction to ElasticSearch
Cool bonsai cool - an introduction to ElasticSearchCool bonsai cool - an introduction to ElasticSearch
Cool bonsai cool - an introduction to ElasticSearch
 
Solr vs. Elasticsearch, Case by Case: Presented by Alexandre Rafalovitch, UN
Solr vs. Elasticsearch,  Case by Case: Presented by Alexandre Rafalovitch, UNSolr vs. Elasticsearch,  Case by Case: Presented by Alexandre Rafalovitch, UN
Solr vs. Elasticsearch, Case by Case: Presented by Alexandre Rafalovitch, UN
 
Machine Learning in a Twitter ETL using ELK
Machine Learning in a Twitter ETL using ELK Machine Learning in a Twitter ETL using ELK
Machine Learning in a Twitter ETL using ELK
 
Customer Intelligence: Using the ELK Stack to Analyze ForgeRock OpenAM Audit ...
Customer Intelligence: Using the ELK Stack to Analyze ForgeRock OpenAM Audit ...Customer Intelligence: Using the ELK Stack to Analyze ForgeRock OpenAM Audit ...
Customer Intelligence: Using the ELK Stack to Analyze ForgeRock OpenAM Audit ...
 
MySQL Slow Query log Monitoring using Beats & ELK
MySQL Slow Query log Monitoring using Beats & ELKMySQL Slow Query log Monitoring using Beats & ELK
MySQL Slow Query log Monitoring using Beats & ELK
 
ElasticSearch
ElasticSearchElasticSearch
ElasticSearch
 
ELK stack at weibo.com
ELK stack at weibo.comELK stack at weibo.com
ELK stack at weibo.com
 
Logstash: Get to know your logs
Logstash: Get to know your logsLogstash: Get to know your logs
Logstash: Get to know your logs
 
Spark with Elasticsearch
Spark with ElasticsearchSpark with Elasticsearch
Spark with Elasticsearch
 
Building a CRM on top of ElasticSearch
Building a CRM on top of ElasticSearchBuilding a CRM on top of ElasticSearch
Building a CRM on top of ElasticSearch
 
Using Logstash, elasticsearch & kibana
Using Logstash, elasticsearch & kibanaUsing Logstash, elasticsearch & kibana
Using Logstash, elasticsearch & kibana
 
Elasticsearch, Logstash, Kibana. Cool search, analytics, data mining and more...
Elasticsearch, Logstash, Kibana. Cool search, analytics, data mining and more...Elasticsearch, Logstash, Kibana. Cool search, analytics, data mining and more...
Elasticsearch, Logstash, Kibana. Cool search, analytics, data mining and more...
 
Logstash + Elasticsearch + Kibana Presentation on Startit Tech Meetup
Logstash + Elasticsearch + Kibana Presentation on Startit Tech MeetupLogstash + Elasticsearch + Kibana Presentation on Startit Tech Meetup
Logstash + Elasticsearch + Kibana Presentation on Startit Tech Meetup
 
Logstash
LogstashLogstash
Logstash
 
elasticsearch - advanced features in practice
elasticsearch - advanced features in practiceelasticsearch - advanced features in practice
elasticsearch - advanced features in practice
 

Viewers also liked

Tuning Solr for Logs: Presented by Radu Gheorghe, Sematext
Tuning Solr for Logs: Presented by Radu Gheorghe, SematextTuning Solr for Logs: Presented by Radu Gheorghe, Sematext
Tuning Solr for Logs: Presented by Radu Gheorghe, Sematext
Lucidworks
 
Tuning Elasticsearch Indexing Pipeline for Logs
Tuning Elasticsearch Indexing Pipeline for LogsTuning Elasticsearch Indexing Pipeline for Logs
Tuning Elasticsearch Indexing Pipeline for Logs
Sematext Group, Inc.
 
Solr for Indexing and Searching Logs
Solr for Indexing and Searching LogsSolr for Indexing and Searching Logs
Solr for Indexing and Searching Logs
Sematext Group, Inc.
 
Monitoring and Log Management for
Monitoring and Log Management forMonitoring and Log Management for
Monitoring and Log Management for
Sematext Group, Inc.
 
How to Run Solr on Docker and Why
How to Run Solr on Docker and WhyHow to Run Solr on Docker and Why
How to Run Solr on Docker and Why
Sematext Group, Inc.
 
Using Solr to Search and Analyze Logs
Using Solr to Search and Analyze Logs Using Solr to Search and Analyze Logs
Using Solr to Search and Analyze Logs
lucenerevolution
 
Running High Performance & Fault-tolerant Elasticsearch Clusters on Docker
Running High Performance & Fault-tolerant Elasticsearch Clusters on DockerRunning High Performance & Fault-tolerant Elasticsearch Clusters on Docker
Running High Performance & Fault-tolerant Elasticsearch Clusters on Docker
Sematext Group, Inc.
 
Tuning Solr & Pipeline for Logs
Tuning Solr & Pipeline for LogsTuning Solr & Pipeline for Logs
Tuning Solr & Pipeline for Logs
Sematext Group, Inc.
 
Top Node.js Metrics to Watch
Top Node.js Metrics to WatchTop Node.js Metrics to Watch
Top Node.js Metrics to Watch
Sematext Group, Inc.
 
Elasticsearch for Logs & Metrics - a deep dive
Elasticsearch for Logs & Metrics - a deep diveElasticsearch for Logs & Metrics - a deep dive
Elasticsearch for Logs & Metrics - a deep dive
Sematext Group, Inc.
 
Building Resilient Log Aggregation Pipeline with Elasticsearch & Kafka
Building Resilient Log Aggregation Pipeline with Elasticsearch & KafkaBuilding Resilient Log Aggregation Pipeline with Elasticsearch & Kafka
Building Resilient Log Aggregation Pipeline with Elasticsearch & Kafka
Sematext Group, Inc.
 
Indexing and Searching Logs with Elasticsearch/Solr by Radu Gheorghe from Sem...
Indexing and Searching Logs with Elasticsearch/Solr by Radu Gheorghe from Sem...Indexing and Searching Logs with Elasticsearch/Solr by Radu Gheorghe from Sem...
Indexing and Searching Logs with Elasticsearch/Solr by Radu Gheorghe from Sem...
Hakka Labs
 
Elasticsearch and Solr for Logs
Elasticsearch and Solr for LogsElasticsearch and Solr for Logs
Elasticsearch and Solr for Logs
Sematext Group, Inc.
 
From Zero to Hero - Centralized Logging with Logstash & Elasticsearch
From Zero to Hero - Centralized Logging with Logstash & ElasticsearchFrom Zero to Hero - Centralized Logging with Logstash & Elasticsearch
From Zero to Hero - Centralized Logging with Logstash & Elasticsearch
Sematext Group, Inc.
 
Running High Performance and Fault Tolerant Elasticsearch Clusters on Docker
Running High Performance and Fault Tolerant Elasticsearch Clusters on DockerRunning High Performance and Fault Tolerant Elasticsearch Clusters on Docker
Running High Performance and Fault Tolerant Elasticsearch Clusters on Docker
Sematext Group, Inc.
 
How to Gain Greater Business Intelligence from Lucene/Solr
How to Gain Greater Business Intelligence from Lucene/SolrHow to Gain Greater Business Intelligence from Lucene/Solr
How to Gain Greater Business Intelligence from Lucene/Solr
lucenerevolution
 
Docker Logging Webinar
Docker Logging  WebinarDocker Logging  Webinar
Docker Logging Webinar
Sematext Group, Inc.
 
HBaseConEast2016: Splice machine open source rdbms
HBaseConEast2016: Splice machine open source rdbmsHBaseConEast2016: Splice machine open source rdbms
HBaseConEast2016: Splice machine open source rdbms
Michael Stack
 
Docker Monitoring Webinar
Docker Monitoring  WebinarDocker Monitoring  Webinar
Docker Monitoring Webinar
Sematext Group, Inc.
 
Solr Anti Patterns
Solr Anti PatternsSolr Anti Patterns
Solr Anti Patterns
Sematext Group, Inc.
 

Viewers also liked (20)

Tuning Solr for Logs: Presented by Radu Gheorghe, Sematext
Tuning Solr for Logs: Presented by Radu Gheorghe, SematextTuning Solr for Logs: Presented by Radu Gheorghe, Sematext
Tuning Solr for Logs: Presented by Radu Gheorghe, Sematext
 
Tuning Elasticsearch Indexing Pipeline for Logs
Tuning Elasticsearch Indexing Pipeline for LogsTuning Elasticsearch Indexing Pipeline for Logs
Tuning Elasticsearch Indexing Pipeline for Logs
 
Solr for Indexing and Searching Logs
Solr for Indexing and Searching LogsSolr for Indexing and Searching Logs
Solr for Indexing and Searching Logs
 
Monitoring and Log Management for
Monitoring and Log Management forMonitoring and Log Management for
Monitoring and Log Management for
 
How to Run Solr on Docker and Why
How to Run Solr on Docker and WhyHow to Run Solr on Docker and Why
How to Run Solr on Docker and Why
 
Using Solr to Search and Analyze Logs
Using Solr to Search and Analyze Logs Using Solr to Search and Analyze Logs
Using Solr to Search and Analyze Logs
 
Running High Performance & Fault-tolerant Elasticsearch Clusters on Docker
Running High Performance & Fault-tolerant Elasticsearch Clusters on DockerRunning High Performance & Fault-tolerant Elasticsearch Clusters on Docker
Running High Performance & Fault-tolerant Elasticsearch Clusters on Docker
 
Tuning Solr & Pipeline for Logs
Tuning Solr & Pipeline for LogsTuning Solr & Pipeline for Logs
Tuning Solr & Pipeline for Logs
 
Top Node.js Metrics to Watch
Top Node.js Metrics to WatchTop Node.js Metrics to Watch
Top Node.js Metrics to Watch
 
Elasticsearch for Logs & Metrics - a deep dive
Elasticsearch for Logs & Metrics - a deep diveElasticsearch for Logs & Metrics - a deep dive
Elasticsearch for Logs & Metrics - a deep dive
 
Building Resilient Log Aggregation Pipeline with Elasticsearch & Kafka
Building Resilient Log Aggregation Pipeline with Elasticsearch & KafkaBuilding Resilient Log Aggregation Pipeline with Elasticsearch & Kafka
Building Resilient Log Aggregation Pipeline with Elasticsearch & Kafka
 
Indexing and Searching Logs with Elasticsearch/Solr by Radu Gheorghe from Sem...
Indexing and Searching Logs with Elasticsearch/Solr by Radu Gheorghe from Sem...Indexing and Searching Logs with Elasticsearch/Solr by Radu Gheorghe from Sem...
Indexing and Searching Logs with Elasticsearch/Solr by Radu Gheorghe from Sem...
 
Elasticsearch and Solr for Logs
Elasticsearch and Solr for LogsElasticsearch and Solr for Logs
Elasticsearch and Solr for Logs
 
From Zero to Hero - Centralized Logging with Logstash & Elasticsearch
From Zero to Hero - Centralized Logging with Logstash & ElasticsearchFrom Zero to Hero - Centralized Logging with Logstash & Elasticsearch
From Zero to Hero - Centralized Logging with Logstash & Elasticsearch
 
Running High Performance and Fault Tolerant Elasticsearch Clusters on Docker
Running High Performance and Fault Tolerant Elasticsearch Clusters on DockerRunning High Performance and Fault Tolerant Elasticsearch Clusters on Docker
Running High Performance and Fault Tolerant Elasticsearch Clusters on Docker
 
How to Gain Greater Business Intelligence from Lucene/Solr
How to Gain Greater Business Intelligence from Lucene/SolrHow to Gain Greater Business Intelligence from Lucene/Solr
How to Gain Greater Business Intelligence from Lucene/Solr
 
Docker Logging Webinar
Docker Logging  WebinarDocker Logging  Webinar
Docker Logging Webinar
 
HBaseConEast2016: Splice machine open source rdbms
HBaseConEast2016: Splice machine open source rdbmsHBaseConEast2016: Splice machine open source rdbms
HBaseConEast2016: Splice machine open source rdbms
 
Docker Monitoring Webinar
Docker Monitoring  WebinarDocker Monitoring  Webinar
Docker Monitoring Webinar
 
Solr Anti Patterns
Solr Anti PatternsSolr Anti Patterns
Solr Anti Patterns
 

Similar to Large Scale Log Analytics with Solr (from Lucene Revolution 2015)

ELK Stack - Turn boring logfiles into sexy dashboard
ELK Stack - Turn boring logfiles into sexy dashboardELK Stack - Turn boring logfiles into sexy dashboard
ELK Stack - Turn boring logfiles into sexy dashboard
Georg Sorst
 
Xadoop - new approaches to data analytics
Xadoop - new approaches to data analyticsXadoop - new approaches to data analytics
Xadoop - new approaches to data analytics
Maxim Grinev
 
(Fios#02) 2. elk 포렌식 분석
(Fios#02) 2. elk 포렌식 분석(Fios#02) 2. elk 포렌식 분석
(Fios#02) 2. elk 포렌식 분석
INSIGHT FORENSIC
 
Diagnostics & Debugging webinar
Diagnostics & Debugging webinarDiagnostics & Debugging webinar
Diagnostics & Debugging webinar
MongoDB
 
Introduction to Apache Camel
Introduction to Apache CamelIntroduction to Apache Camel
Introduction to Apache Camel
Claus Ibsen
 
Document Conversion & Retrieve and Rank 一問一答
Document Conversion & Retrieve and Rank 一問一答Document Conversion & Retrieve and Rank 一問一答
Document Conversion & Retrieve and Rank 一問一答
Hisashi Komine
 
Keeping Spark on Track: Productionizing Spark for ETL
Keeping Spark on Track: Productionizing Spark for ETLKeeping Spark on Track: Productionizing Spark for ETL
Keeping Spark on Track: Productionizing Spark for ETL
Databricks
 
Ams adapters
Ams adaptersAms adapters
Ams adapters
Bruno Alló Bacarini
 
Introduction to elasticsearch
Introduction to elasticsearchIntroduction to elasticsearch
Introduction to elasticsearch
Florian Hopf
 
DataFrame: Spark's new abstraction for data science by Reynold Xin of Databricks
DataFrame: Spark's new abstraction for data science by Reynold Xin of DatabricksDataFrame: Spark's new abstraction for data science by Reynold Xin of Databricks
DataFrame: Spark's new abstraction for data science by Reynold Xin of Databricks
Data Con LA
 
IOOF IT System Modernisation
IOOF IT System ModernisationIOOF IT System Modernisation
IOOF IT System Modernisation
MongoDB
 
AWS Hadoop and PIG and overview
AWS Hadoop and PIG and overviewAWS Hadoop and PIG and overview
AWS Hadoop and PIG and overview
Dan Morrill
 
Full-Text Search Explained - Philipp Krenn - Codemotion Rome 2017
Full-Text Search Explained - Philipp Krenn - Codemotion Rome 2017Full-Text Search Explained - Philipp Krenn - Codemotion Rome 2017
Full-Text Search Explained - Philipp Krenn - Codemotion Rome 2017
Codemotion
 
Semantic Web & TYPO3
Semantic Web & TYPO3Semantic Web & TYPO3
Semantic Web & TYPO3
André Wuttig
 
Logstash for SEO: come monitorare i Log del Web Server in realtime
Logstash for SEO: come monitorare i Log del Web Server in realtimeLogstash for SEO: come monitorare i Log del Web Server in realtime
Logstash for SEO: come monitorare i Log del Web Server in realtime
Andrea Cardinale
 
Events Processing and Data Analysis with Lucidworks Fusion: Presented by Kira...
Events Processing and Data Analysis with Lucidworks Fusion: Presented by Kira...Events Processing and Data Analysis with Lucidworks Fusion: Presented by Kira...
Events Processing and Data Analysis with Lucidworks Fusion: Presented by Kira...
Lucidworks
 
Introduction to MongoDB
Introduction to MongoDBIntroduction to MongoDB
Introduction to MongoDB
antoinegirbal
 
2011 Mongo FR - MongoDB introduction
2011 Mongo FR - MongoDB introduction2011 Mongo FR - MongoDB introduction
2011 Mongo FR - MongoDB introduction
antoinegirbal
 
Abusing text/template for data transformation
Abusing text/template for data transformationAbusing text/template for data transformation
Abusing text/template for data transformation
Arnaud Porterie
 
Diagnostics and Debugging
Diagnostics and DebuggingDiagnostics and Debugging
Diagnostics and Debugging
MongoDB
 

Similar to Large Scale Log Analytics with Solr (from Lucene Revolution 2015) (20)

ELK Stack - Turn boring logfiles into sexy dashboard
ELK Stack - Turn boring logfiles into sexy dashboardELK Stack - Turn boring logfiles into sexy dashboard
ELK Stack - Turn boring logfiles into sexy dashboard
 
Xadoop - new approaches to data analytics
Xadoop - new approaches to data analyticsXadoop - new approaches to data analytics
Xadoop - new approaches to data analytics
 
(Fios#02) 2. elk 포렌식 분석
(Fios#02) 2. elk 포렌식 분석(Fios#02) 2. elk 포렌식 분석
(Fios#02) 2. elk 포렌식 분석
 
Diagnostics & Debugging webinar
Diagnostics & Debugging webinarDiagnostics & Debugging webinar
Diagnostics & Debugging webinar
 
Introduction to Apache Camel
Introduction to Apache CamelIntroduction to Apache Camel
Introduction to Apache Camel
 
Document Conversion & Retrieve and Rank 一問一答
Document Conversion & Retrieve and Rank 一問一答Document Conversion & Retrieve and Rank 一問一答
Document Conversion & Retrieve and Rank 一問一答
 
Keeping Spark on Track: Productionizing Spark for ETL
Keeping Spark on Track: Productionizing Spark for ETLKeeping Spark on Track: Productionizing Spark for ETL
Keeping Spark on Track: Productionizing Spark for ETL
 
Ams adapters
Ams adaptersAms adapters
Ams adapters
 
Introduction to elasticsearch
Introduction to elasticsearchIntroduction to elasticsearch
Introduction to elasticsearch
 
DataFrame: Spark's new abstraction for data science by Reynold Xin of Databricks
DataFrame: Spark's new abstraction for data science by Reynold Xin of DatabricksDataFrame: Spark's new abstraction for data science by Reynold Xin of Databricks
DataFrame: Spark's new abstraction for data science by Reynold Xin of Databricks
 
IOOF IT System Modernisation
IOOF IT System ModernisationIOOF IT System Modernisation
IOOF IT System Modernisation
 
AWS Hadoop and PIG and overview
AWS Hadoop and PIG and overviewAWS Hadoop and PIG and overview
AWS Hadoop and PIG and overview
 
Full-Text Search Explained - Philipp Krenn - Codemotion Rome 2017
Full-Text Search Explained - Philipp Krenn - Codemotion Rome 2017Full-Text Search Explained - Philipp Krenn - Codemotion Rome 2017
Full-Text Search Explained - Philipp Krenn - Codemotion Rome 2017
 
Semantic Web & TYPO3
Semantic Web & TYPO3Semantic Web & TYPO3
Semantic Web & TYPO3
 
Logstash for SEO: come monitorare i Log del Web Server in realtime
Logstash for SEO: come monitorare i Log del Web Server in realtimeLogstash for SEO: come monitorare i Log del Web Server in realtime
Logstash for SEO: come monitorare i Log del Web Server in realtime
 
Events Processing and Data Analysis with Lucidworks Fusion: Presented by Kira...
Events Processing and Data Analysis with Lucidworks Fusion: Presented by Kira...Events Processing and Data Analysis with Lucidworks Fusion: Presented by Kira...
Events Processing and Data Analysis with Lucidworks Fusion: Presented by Kira...
 
Introduction to MongoDB
Introduction to MongoDBIntroduction to MongoDB
Introduction to MongoDB
 
2011 Mongo FR - MongoDB introduction
2011 Mongo FR - MongoDB introduction2011 Mongo FR - MongoDB introduction
2011 Mongo FR - MongoDB introduction
 
Abusing text/template for data transformation
Abusing text/template for data transformationAbusing text/template for data transformation
Abusing text/template for data transformation
 
Diagnostics and Debugging
Diagnostics and DebuggingDiagnostics and Debugging
Diagnostics and Debugging
 

More from Sematext Group, Inc.

Tweaking the Base Score: Lucene/Solr Similarities Explained
Tweaking the Base Score: Lucene/Solr Similarities ExplainedTweaking the Base Score: Lucene/Solr Similarities Explained
Tweaking the Base Score: Lucene/Solr Similarities Explained
Sematext Group, Inc.
 
OOPs, OOMs, oh my! Containerizing JVM apps
OOPs, OOMs, oh my! Containerizing JVM appsOOPs, OOMs, oh my! Containerizing JVM apps
OOPs, OOMs, oh my! Containerizing JVM apps
Sematext Group, Inc.
 
Is observability good for your brain?
Is observability good for your brain?Is observability good for your brain?
Is observability good for your brain?
Sematext Group, Inc.
 
Introducing log analysis to your organization
Introducing log analysis to your organization Introducing log analysis to your organization
Introducing log analysis to your organization
Sematext Group, Inc.
 
Solr Search Engine: Optimize Is (Not) Bad for You
Solr Search Engine: Optimize Is (Not) Bad for YouSolr Search Engine: Optimize Is (Not) Bad for You
Solr Search Engine: Optimize Is (Not) Bad for You
Sematext Group, Inc.
 
Solr on Docker - the Good, the Bad and the Ugly
Solr on Docker - the Good, the Bad and the UglySolr on Docker - the Good, the Bad and the Ugly
Solr on Docker - the Good, the Bad and the Ugly
Sematext Group, Inc.
 
Metrics, Logs, Transaction Traces, Anomaly Detection at Scale
Metrics, Logs, Transaction Traces, Anomaly Detection at ScaleMetrics, Logs, Transaction Traces, Anomaly Detection at Scale
Metrics, Logs, Transaction Traces, Anomaly Detection at Scale
Sematext Group, Inc.
 
Tuning Solr for Logs
Tuning Solr for LogsTuning Solr for Logs
Tuning Solr for Logs
Sematext Group, Inc.
 
(Elastic)search in big data
(Elastic)search in big data(Elastic)search in big data
(Elastic)search in big data
Sematext Group, Inc.
 
Open Source Search Evolution
Open Source Search EvolutionOpen Source Search Evolution
Open Source Search Evolution
Sematext Group, Inc.
 
Administering and Monitoring SolrCloud Clusters
Administering and Monitoring SolrCloud ClustersAdministering and Monitoring SolrCloud Clusters
Administering and Monitoring SolrCloud Clusters
Sematext Group, Inc.
 

More from Sematext Group, Inc. (11)

Tweaking the Base Score: Lucene/Solr Similarities Explained
Tweaking the Base Score: Lucene/Solr Similarities ExplainedTweaking the Base Score: Lucene/Solr Similarities Explained
Tweaking the Base Score: Lucene/Solr Similarities Explained
 
OOPs, OOMs, oh my! Containerizing JVM apps
OOPs, OOMs, oh my! Containerizing JVM appsOOPs, OOMs, oh my! Containerizing JVM apps
OOPs, OOMs, oh my! Containerizing JVM apps
 
Is observability good for your brain?
Is observability good for your brain?Is observability good for your brain?
Is observability good for your brain?
 
Introducing log analysis to your organization
Introducing log analysis to your organization Introducing log analysis to your organization
Introducing log analysis to your organization
 
Solr Search Engine: Optimize Is (Not) Bad for You
Solr Search Engine: Optimize Is (Not) Bad for YouSolr Search Engine: Optimize Is (Not) Bad for You
Solr Search Engine: Optimize Is (Not) Bad for You
 
Solr on Docker - the Good, the Bad and the Ugly
Solr on Docker - the Good, the Bad and the UglySolr on Docker - the Good, the Bad and the Ugly
Solr on Docker - the Good, the Bad and the Ugly
 
Metrics, Logs, Transaction Traces, Anomaly Detection at Scale
Metrics, Logs, Transaction Traces, Anomaly Detection at ScaleMetrics, Logs, Transaction Traces, Anomaly Detection at Scale
Metrics, Logs, Transaction Traces, Anomaly Detection at Scale
 
Tuning Solr for Logs
Tuning Solr for LogsTuning Solr for Logs
Tuning Solr for Logs
 
(Elastic)search in big data
(Elastic)search in big data(Elastic)search in big data
(Elastic)search in big data
 
Open Source Search Evolution
Open Source Search EvolutionOpen Source Search Evolution
Open Source Search Evolution
 
Administering and Monitoring SolrCloud Clusters
Administering and Monitoring SolrCloud ClustersAdministering and Monitoring SolrCloud Clusters
Administering and Monitoring SolrCloud Clusters
 

Recently uploaded

一比一原版(heriotwatt学位证书)英国赫瑞瓦特大学毕业证如何办理
一比一原版(heriotwatt学位证书)英国赫瑞瓦特大学毕业证如何办理一比一原版(heriotwatt学位证书)英国赫瑞瓦特大学毕业证如何办理
一比一原版(heriotwatt学位证书)英国赫瑞瓦特大学毕业证如何办理
zoykygu
 
一比一原版加拿大麦吉尔大学毕业证(mcgill毕业证书)如何办理
一比一原版加拿大麦吉尔大学毕业证(mcgill毕业证书)如何办理一比一原版加拿大麦吉尔大学毕业证(mcgill毕业证书)如何办理
一比一原版加拿大麦吉尔大学毕业证(mcgill毕业证书)如何办理
agdhot
 
Discovering Digital Process Twins for What-if Analysis: a Process Mining Appr...
Discovering Digital Process Twins for What-if Analysis: a Process Mining Appr...Discovering Digital Process Twins for What-if Analysis: a Process Mining Appr...
Discovering Digital Process Twins for What-if Analysis: a Process Mining Appr...
Marlon Dumas
 
[VCOSA] Monthly Report - Cotton & Yarn Statistics May 2024
[VCOSA] Monthly Report - Cotton & Yarn Statistics May 2024[VCOSA] Monthly Report - Cotton & Yarn Statistics May 2024
[VCOSA] Monthly Report - Cotton & Yarn Statistics May 2024
Vietnam Cotton & Spinning Association
 
一比一原版(lbs毕业证书)伦敦商学院毕业证如何办理
一比一原版(lbs毕业证书)伦敦商学院毕业证如何办理一比一原版(lbs毕业证书)伦敦商学院毕业证如何办理
一比一原版(lbs毕业证书)伦敦商学院毕业证如何办理
ywqeos
 
Call Girls Hyderabad (india) ☎️ +91-7426014248 Hyderabad Call Girl
Call Girls Hyderabad  (india) ☎️ +91-7426014248 Hyderabad  Call GirlCall Girls Hyderabad  (india) ☎️ +91-7426014248 Hyderabad  Call Girl
Call Girls Hyderabad (india) ☎️ +91-7426014248 Hyderabad Call Girl
sapna sharmap11
 
一比一原版莱斯大学毕业证(rice毕业证)如何办理
一比一原版莱斯大学毕业证(rice毕业证)如何办理一比一原版莱斯大学毕业证(rice毕业证)如何办理
一比一原版莱斯大学毕业证(rice毕业证)如何办理
zsafxbf
 
一比一原版英国赫特福德大学毕业证(hertfordshire毕业证书)如何办理
一比一原版英国赫特福德大学毕业证(hertfordshire毕业证书)如何办理一比一原版英国赫特福德大学毕业证(hertfordshire毕业证书)如何办理
一比一原版英国赫特福德大学毕业证(hertfordshire毕业证书)如何办理
nyvan3
 
Senior Engineering Sample EM DOE - Sheet1.pdf
Senior Engineering Sample EM DOE  - Sheet1.pdfSenior Engineering Sample EM DOE  - Sheet1.pdf
Senior Engineering Sample EM DOE - Sheet1.pdf
Vineet
 
A gentle exploration of Retrieval Augmented Generation
A gentle exploration of Retrieval Augmented GenerationA gentle exploration of Retrieval Augmented Generation
A gentle exploration of Retrieval Augmented Generation
dataschool1
 
Namma-Kalvi-11th-Physics-Study-Material-Unit-1-EM-221086.pdf
Namma-Kalvi-11th-Physics-Study-Material-Unit-1-EM-221086.pdfNamma-Kalvi-11th-Physics-Study-Material-Unit-1-EM-221086.pdf
Namma-Kalvi-11th-Physics-Study-Material-Unit-1-EM-221086.pdf
22ad0301
 
Call Girls Lucknow 0000000000 Independent Call Girl Service Lucknow
Call Girls Lucknow 0000000000 Independent Call Girl Service LucknowCall Girls Lucknow 0000000000 Independent Call Girl Service Lucknow
Call Girls Lucknow 0000000000 Independent Call Girl Service Lucknow
hiju9823
 
一比一原版(uob毕业证书)伯明翰大学毕业证如何办理
一比一原版(uob毕业证书)伯明翰大学毕业证如何办理一比一原版(uob毕业证书)伯明翰大学毕业证如何办理
一比一原版(uob毕业证书)伯明翰大学毕业证如何办理
9gr6pty
 
Telemetry Solution for Gaming (AWS Summit'24)
Telemetry Solution for Gaming (AWS Summit'24)Telemetry Solution for Gaming (AWS Summit'24)
Telemetry Solution for Gaming (AWS Summit'24)
GeorgiiSteshenko
 
一比一原版悉尼大学毕业证如何办理
一比一原版悉尼大学毕业证如何办理一比一原版悉尼大学毕业证如何办理
一比一原版悉尼大学毕业证如何办理
keesa2
 
一比一原版马来西亚博特拉大学毕业证(upm毕业证)如何办理
一比一原版马来西亚博特拉大学毕业证(upm毕业证)如何办理一比一原版马来西亚博特拉大学毕业证(upm毕业证)如何办理
一比一原版马来西亚博特拉大学毕业证(upm毕业证)如何办理
eudsoh
 
Econ3060_Screen Time and Success_ final_GroupProject.pdf
Econ3060_Screen Time and Success_ final_GroupProject.pdfEcon3060_Screen Time and Success_ final_GroupProject.pdf
Econ3060_Screen Time and Success_ final_GroupProject.pdf
blueshagoo1
 
一比一原版(UO毕业证)渥太华大学毕业证如何办理
一比一原版(UO毕业证)渥太华大学毕业证如何办理一比一原版(UO毕业证)渥太华大学毕业证如何办理
一比一原版(UO毕业证)渥太华大学毕业证如何办理
bmucuha
 
一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理
一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理
一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理
eoxhsaa
 
Interview Methods - Marital and Family Therapy and Counselling - Psychology S...
Interview Methods - Marital and Family Therapy and Counselling - Psychology S...Interview Methods - Marital and Family Therapy and Counselling - Psychology S...
Interview Methods - Marital and Family Therapy and Counselling - Psychology S...
PsychoTech Services
 

Recently uploaded (20)

一比一原版(heriotwatt学位证书)英国赫瑞瓦特大学毕业证如何办理
一比一原版(heriotwatt学位证书)英国赫瑞瓦特大学毕业证如何办理一比一原版(heriotwatt学位证书)英国赫瑞瓦特大学毕业证如何办理
一比一原版(heriotwatt学位证书)英国赫瑞瓦特大学毕业证如何办理
 
一比一原版加拿大麦吉尔大学毕业证(mcgill毕业证书)如何办理
一比一原版加拿大麦吉尔大学毕业证(mcgill毕业证书)如何办理一比一原版加拿大麦吉尔大学毕业证(mcgill毕业证书)如何办理
一比一原版加拿大麦吉尔大学毕业证(mcgill毕业证书)如何办理
 
Discovering Digital Process Twins for What-if Analysis: a Process Mining Appr...
Discovering Digital Process Twins for What-if Analysis: a Process Mining Appr...Discovering Digital Process Twins for What-if Analysis: a Process Mining Appr...
Discovering Digital Process Twins for What-if Analysis: a Process Mining Appr...
 
[VCOSA] Monthly Report - Cotton & Yarn Statistics May 2024
[VCOSA] Monthly Report - Cotton & Yarn Statistics May 2024[VCOSA] Monthly Report - Cotton & Yarn Statistics May 2024
[VCOSA] Monthly Report - Cotton & Yarn Statistics May 2024
 
一比一原版(lbs毕业证书)伦敦商学院毕业证如何办理
一比一原版(lbs毕业证书)伦敦商学院毕业证如何办理一比一原版(lbs毕业证书)伦敦商学院毕业证如何办理
一比一原版(lbs毕业证书)伦敦商学院毕业证如何办理
 
Call Girls Hyderabad (india) ☎️ +91-7426014248 Hyderabad Call Girl
Call Girls Hyderabad  (india) ☎️ +91-7426014248 Hyderabad  Call GirlCall Girls Hyderabad  (india) ☎️ +91-7426014248 Hyderabad  Call Girl
Call Girls Hyderabad (india) ☎️ +91-7426014248 Hyderabad Call Girl
 
一比一原版莱斯大学毕业证(rice毕业证)如何办理
一比一原版莱斯大学毕业证(rice毕业证)如何办理一比一原版莱斯大学毕业证(rice毕业证)如何办理
一比一原版莱斯大学毕业证(rice毕业证)如何办理
 
一比一原版英国赫特福德大学毕业证(hertfordshire毕业证书)如何办理
一比一原版英国赫特福德大学毕业证(hertfordshire毕业证书)如何办理一比一原版英国赫特福德大学毕业证(hertfordshire毕业证书)如何办理
一比一原版英国赫特福德大学毕业证(hertfordshire毕业证书)如何办理
 
Senior Engineering Sample EM DOE - Sheet1.pdf
Senior Engineering Sample EM DOE  - Sheet1.pdfSenior Engineering Sample EM DOE  - Sheet1.pdf
Senior Engineering Sample EM DOE - Sheet1.pdf
 
A gentle exploration of Retrieval Augmented Generation
A gentle exploration of Retrieval Augmented GenerationA gentle exploration of Retrieval Augmented Generation
A gentle exploration of Retrieval Augmented Generation
 
Namma-Kalvi-11th-Physics-Study-Material-Unit-1-EM-221086.pdf
Namma-Kalvi-11th-Physics-Study-Material-Unit-1-EM-221086.pdfNamma-Kalvi-11th-Physics-Study-Material-Unit-1-EM-221086.pdf
Namma-Kalvi-11th-Physics-Study-Material-Unit-1-EM-221086.pdf
 
Call Girls Lucknow 0000000000 Independent Call Girl Service Lucknow
Call Girls Lucknow 0000000000 Independent Call Girl Service LucknowCall Girls Lucknow 0000000000 Independent Call Girl Service Lucknow
Call Girls Lucknow 0000000000 Independent Call Girl Service Lucknow
 
一比一原版(uob毕业证书)伯明翰大学毕业证如何办理
一比一原版(uob毕业证书)伯明翰大学毕业证如何办理一比一原版(uob毕业证书)伯明翰大学毕业证如何办理
一比一原版(uob毕业证书)伯明翰大学毕业证如何办理
 
Telemetry Solution for Gaming (AWS Summit'24)
Telemetry Solution for Gaming (AWS Summit'24)Telemetry Solution for Gaming (AWS Summit'24)
Telemetry Solution for Gaming (AWS Summit'24)
 
一比一原版悉尼大学毕业证如何办理
一比一原版悉尼大学毕业证如何办理一比一原版悉尼大学毕业证如何办理
一比一原版悉尼大学毕业证如何办理
 
一比一原版马来西亚博特拉大学毕业证(upm毕业证)如何办理
一比一原版马来西亚博特拉大学毕业证(upm毕业证)如何办理一比一原版马来西亚博特拉大学毕业证(upm毕业证)如何办理
一比一原版马来西亚博特拉大学毕业证(upm毕业证)如何办理
 
Econ3060_Screen Time and Success_ final_GroupProject.pdf
Econ3060_Screen Time and Success_ final_GroupProject.pdfEcon3060_Screen Time and Success_ final_GroupProject.pdf
Econ3060_Screen Time and Success_ final_GroupProject.pdf
 
一比一原版(UO毕业证)渥太华大学毕业证如何办理
一比一原版(UO毕业证)渥太华大学毕业证如何办理一比一原版(UO毕业证)渥太华大学毕业证如何办理
一比一原版(UO毕业证)渥太华大学毕业证如何办理
 
一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理
一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理
一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理
 
Interview Methods - Marital and Family Therapy and Counselling - Psychology S...
Interview Methods - Marital and Family Therapy and Counselling - Psychology S...Interview Methods - Marital and Family Therapy and Counselling - Psychology S...
Interview Methods - Marital and Family Therapy and Counselling - Psychology S...
 

Large Scale Log Analytics with Solr (from Lucene Revolution 2015)