This document summarizes a research paper that evaluates cluster quality using a modified density subspace clustering approach. It discusses how density subspace clustering can be used to identify clusters in high-dimensional datasets by detecting density-connected clusters in all subspaces. The proposed approach uses a density subspace clustering algorithm to select attribute subsets and identify the best clusters. It then calculates intra-cluster and inter-cluster distances to evaluate cluster quality and compares the results to other clustering algorithms in terms of accuracy and runtime. Experimental results showed that the proposed method improves clustering quality and performs faster than existing techniques.