SlideShare a Scribd company logo
1 of 53
Grid
Computing
Overview
Federating
Compute
and
Storage
Resources
to

  Accelerate
Science
and
Aid
Collaboration




           Ian
Stokes‐Rees,
PhD
    Harvard
Medical
School,
Boston,
USA

     http://portal.sbgrid.org
   ijstokes@hkl.hms.harvard.edu
Slides
and
Contact
         ijstokes@hkl.hms.harvard.edu

         http://linkedin.com/in/ijstokes
         http://slidesha.re/ijstokes-grid2011




Grid Overview - Ian Stokes-Rees   ijstokes@hkl.hms.harvard.edu
Slides
and
Contact
         ijstokes@hkl.hms.harvard.edu

         http://linkedin.com/in/ijstokes
         http://slidesha.re/ijstokes-grid2011


         http://www.sbgrid.org
         http://portal.sbgrid.org
         http://www.opensciencegrid.org



Grid Overview - Ian Stokes-Rees   ijstokes@hkl.hms.harvard.edu
ScientiFic
Research
Today
                • International
collaborations
                   •   IT
becomes
embedded
into
research
process:
data,
results,

                       analysis,
visualization
                   •   Crossing
institutional
and
national
boundaries
                • Computational
techniques
increasingly

                  important
                   •   ...
and
computationally
intensive
techniques
as
well
                   •   requires
use
of
high
performance
computing
systems
                • Data
volumes
are
growing
fast
                   •   hard
to
share
                   •   hard
to
manage
                • ScientiFic
software
often
difFicult
to
use
                   •   or
to
use
properly
                • Web
based
tools
increasingly
important
                   •   but
often
lack
disconnect
from
persisted
and
shared
results

Grid Overview - Ian Stokes-Rees                             ijstokes@hkl.hms.harvard.edu
SBGrid
Consortium                                                   Cornell U.
           Washington U. School of Med.
                                                                                                       R. Cerione              NE-CAT
           T. Ellenberger
                                                                                                       B. Crane                R. Oswald
           D. Fremont
                                                                                                       S. Ealick               C. Parrish
                                               Rosalind Franklin NIH                                   M. Jin                  H. Sondermann
                                               D. Harrison                    M. Mayer
                                                                                                       A. Ke                    UMass Medical
           U. Washington
           T. Gonen
                                                                              U. Maryland                                       W. Royer
                                                                              E. Toth
                                                                                                                                 Brandeis U.
           UC Davis                                                                                                              N. Grigorieff
           H. Stahlberg                                                                                                          Tufts U.
                                                                                                                                 K. Heldwein
           UCSF                                                                                                                  Columbia U.
           JJ Miranda                                                                                                            Q. Fan
           Y. Cheng
                                                                                                                                 Rockefeller U.
           Stanford                                                                                                              R. MacKinnon
           A. Brunger                                                                                               Yale U.
           K. Garcia                                                                                                T. Boggon            K. Reinisch
           T. Jardetzky                                                                                             D. Braddock          J. Schlessinger
                                                                                                                    Y. Ha                F. Sigworth
           CalTech                                                                                                  E. Lolis             F. Zhou
           P. Bjorkman                                                                                              Harvard and Affiliates
           W. Clemons                                                                                                   N. Beglova         A. Leschziner
           G. Jensen                       Rice University                                                              S. Blacklow        K. Miller
           D. Rees                           E. Nikonowicz                                                              B. Chen            A. Rao
                                             Y. Shamoo                Vanderbilt                                        J. Chou            T. Rapoport
                                             Y.J. Tao                 Center for Structural Biology                     J. Clardy          M. Samso
           WesternU
                                                                      W. Chazin          C. Sanders                     M. Eck             P. Sliz
           M. Swairjo
                                                                      B. Eichman         B. Spiller                     B. Furie           T. Springer
                                                                      M. Egli            M. Stone                       R. Gaudet          G. Verdine
           UCSD                                                       B. Lacy            M. Waterman                    M. Grant           G. Wagner
           T. Nakagawa                                                M. Ohi                                            S.C. Harrison      L. Walensky
           H. Viadiu                                                 Thomas Jefferson                                   J. Hogle           S.Walker
                                                                     J. Williams                                        D. Jeruzalmi       T.Walz
                                                                                                                        D. Kahne           J. Wang
       Not Pictured:
       University of Toronto: L. Howell, E. Pai, F. Sicheri; NHRI (Taiwan): G. Liou; Trinity College, Dublin: Amir Khan T. Kirchhausen     S. Wong
Grid Overview - Ian Stokes-Rees                                                                                  ijstokes@hkl.hms.harvard.edu
Boston
Life
Sciences
Hub


   •   Biomedical
researchers
   •   Government
agencies
   •   Life
sciences                                 Tufts



   •   Universities
                                                     Universit
                                                     y
                                                     School
                                                     of
                                                     Medicin
                                                     e



   •   Hospitals




Grid Overview - Ian Stokes-Rees   ijstokes@hkl.hms.harvard.edu
Study
of
Protein
Structure

                  and
Function




Grid Overview - Ian Stokes-Rees   ijstokes@hkl.hms.harvard.edu
Study
of
Protein
Structure

                  and
Function


                            1mm




Grid Overview - Ian Stokes-Rees   ijstokes@hkl.hms.harvard.edu
Study
of
Protein
Structure

                  and
Function




                                  400m
                            1mm




Grid Overview - Ian Stokes-Rees   ijstokes@hkl.hms.harvard.edu
Study
of
Protein
Structure

                  and
Function




                                  400m
                            1mm




Grid Overview - Ian Stokes-Rees   ijstokes@hkl.hms.harvard.edu
Study
of
Protein
Structure

                  and
Function




                                  400m
                            1mm




Grid Overview - Ian Stokes-Rees   ijstokes@hkl.hms.harvard.edu
Study
of
Protein
Structure

                  and
Function




                                  400m
                            1mm




Grid Overview - Ian Stokes-Rees
                                         10nm
                                  ijstokes@hkl.hms.harvard.edu
Study
of
Protein
Structure

                  and
Function




                                                             400m
                            1mm




                                                                    10nm
                                  • Shared
scientiFic
data
collection
facility
                                  • Data
intensive
(10‐100
GB/day)
Grid Overview - Ian Stokes-Rees                             ijstokes@hkl.hms.harvard.edu
Cryo
Electron
Microscopy




      • Previously,
1­10,000
images,
managed
by
hand
      • Now,
robotic
systems
collect
millions
of
images
      • estimate
250,000
CPU­hours
to
reconstruct
model
Grid Overview - Ian Stokes-Rees              ijstokes@hkl.hms.harvard.edu
Cryo
Electron
Microscopy




      • Previously,
1­10,000
images,
managed
by
hand
      • Now,
robotic
systems
collect
millions
of
images
      • estimate
250,000
CPU­hours
to
reconstruct
model
Grid Overview - Ian Stokes-Rees              ijstokes@hkl.hms.harvard.edu
Cryo
Electron
Microscopy




      • Previously,
1­10,000
images,
managed
by
hand
      • Now,
robotic
systems
collect
millions
of
images
      • estimate
250,000
CPU­hours
to
reconstruct
model
Grid Overview - Ian Stokes-Rees              ijstokes@hkl.hms.harvard.edu
Molecular
Dynamics
Simulations
                                   1
fs
time
step
                                   1ns
snapshot
                                   1
us
simulation
                                   1e6
steps
                                   1000
frames
                                   10
MB
/
frame
                                   10
GB
/
sim
                                   20
CPU­years
                                   3
months
(wall­
                                   clock)

Big Data - Ian Stokes-Rees   ijstokes@hkl.hms.harvard.edu
Molecular
Dynamics
Simulations
                                   1
fs
time
step
                                   1ns
snapshot
                                   1
us
simulation
                                   1e6
steps
                                   1000
frames
                                   10
MB
/
frame
                                   10
GB
/
sim
                                   20
CPU­years
                                   3
months
(wall­
                                   clock)

Big Data - Ian Stokes-Rees   ijstokes@hkl.hms.harvard.edu
Required:

  Collaborative
environment
for

compute
and
data
intensive
science
High
Energy
Physics




Grid Overview - Ian Stokes-Rees   ijstokes@hkl.hms.harvard.edu
High
Energy
Physics
                                  40
MHz
bunch
crossing
rate
                                  10
million
data
channels
                                  1
KHz
level
1
event
recording
rate
                                  1­10
MB
per
event
                                  14
hours
per
day,
7+
months
/
year
                                  4
detectors
                                  6
PB
of
data
/
year
                                  globally
distribute
data
for
analysis
(x2)




Grid Overview - Ian Stokes-Rees                    ijstokes@hkl.hms.harvard.edu
Open
Science
Grid
                     http://opensciencegrid.org



  • US
National

    Cyberinfrastructure
  • Primarily
used
for
high

    energy
physics
computing
  • 80
sites
  • ~100,000
job
slots                              5,073,293
hours
                                                    ~570
years
  • ~1,500,000
hours
per
day
  • PB
scale
aggregate
storage
  • ~
1
PB
transferred
each
day

Grid Overview - Ian Stokes-Rees        ijstokes@hkl.hms.harvard.edu
Grid Overview - Ian Stokes-Rees   ijstokes@hkl.hms.harvard.edu
Home
        About Us
        Informations
        TNGP
        News
        Calendar
        Document Download
        Jobs
        Forums
        Photogallery
        Publications
        Blog
        Related Links                                   สัมมนาวิชาการเทคโนโลยีกริดและคลาวด์
        Guestbook                                       ศูนย์ไทยกริดแห่งชาติ สํานักงานส่งเสริมอุตสาหกรรมซอฟต์แวร์
        Contact Us                                      แห่งชาติ (องค์การมหาชน) ร่วมกับมหาวิทยาลัยเทคโนโลยีพะ
        Travel                                          จอมเกล้าธนบุรี (มจธ) เป็นเจ้าภาพในการจัด...
        Healthy                                                                                              6 May 2011
        academic
                                                        ประกาศผลการแข่งขัน โครงการ Grid Technology Innovat...


                                                        ทําการแข่งขันเมื่อวันที่ 12-13 กุมภาพันธ์ 2554

                                                                                                         25 March 2011


                                                        โปรแกรม R สําหรับงานวิเคราะห์และวิจัยด้านสถิติ
                                                        R เป็นซอฟ์ทแวร์ สําหรับใช้ในงานด้านวิเคราะห์และวิจัยทางด้าน
                                                        สถิติซึ่งนิยมใช้กันในผู้ที่ต้องทํางานด้านวิจัยที่เกี่ยวข้องกับการ
                             สมัครรับข่าวสาร   ยกเลิก
                                                        คํานวณทางด้านสถิติ
                                                                                                      28 February 2011




                                                        รัฐบาลมีนโยบายปฏิรูปการทํางาน และเพิ่มศักยภาพ ทุกภาคส่วน
                                                        ของรัฐ ให้เอื้ออํานวยต่อการเสริมสร้าง ความเข้มแข็ง ของภาค
                                                        เอกชน โดยการผลักดัน ยุทธศาสตร์ การเสริมสร้างศักยภาพการ
                                                        แข่งขัน และการพัฒนา ที่ยั่งยืนของประเทศ และต้องการ พัฒนา
                                                        ประเทศไปสู่สังคม แห่งภูมิปัญญา และ การเรียนรู้ (Knowledge
                                                        Based Society)




                            http://www.thaigrid.net/
Grid Overview - Ian Stokes-Rees                                                        ijstokes@hkl.hms.harvard.edu
SimpliFied
Grid
Architecture




Grid Overview - Ian Stokes-Rees   ijstokes@hkl.hms.harvard.edu
Grid
Opportunities
         • New
compute
intensive
workFlows
            •   think
big:
tens
or
hundreds
of
thousands
of
hours
Finished
in
1‐2
days
            •   sharing
resources
for
efFicient
and
large
scale
utilization

         • Data
intensive
problems
            •   we
mirror
20
GB
of
data
to
30
computing
centers

         • Data
movement,
management,
and
archive
         • Federated
identity
and
user
management
            •   labs,
collaborations
or
ad‐hoc
groups
            •   role‐based
access
control
(RBAC)
and
IdM

         • Collaborative
environment
         • Web‐based
access
to
applications
Grid Overview - Ian Stokes-Rees                                 ijstokes@hkl.hms.harvard.edu
Web
Portals
for
Collaborative,

Multi‐disciplinary
Research...
Web
Portals
for
Collaborative,

Multi‐disciplinary
Research...




...
which
leverage
capabilities
of
federated

       grid
computing
environments
The
Browser
as
the

                   Universal
Interface
      • If
it
isn’t
already
obvious
to
you
         •   Any
interactive
application
developed
today
should
be
web‐based
with
a

             RESTful
interface
(if
at
all
possible)
      • A
rich
set
of
tools
and
techniques
         •   AJAX,
HTML4/5,
CSS,
and
JavaScript
         •   Dynamic
content
negotiation
         •   HTTP
headers,
caching,
security,
sessions/cookies
      • Scalable,
replicable,
centralized,
multi‐threaded,

        multi‐user
      • Alternatives
         •   Command
Line
(CLI):
great
for
scriptable
jobs
         •   GUI
toolkits:
necessary
for
applications
with
high
graphics
or
I/O
demands


Grid Overview - Ian Stokes-Rees                              ijstokes@hkl.hms.harvard.edu
What
is
a
web
portal?
         • A
web‐based
gateway
to
resources
and
data
            •   simpliFied
access
            •   centralized
access
            •   uniFied
access
(CGI,
Perl,
Python,
PHP,
static
HTML,
static
Files,
etc.)

         • Attempt
to
provide
uniform
access
to
a
range
of

           services
and
resources
         • Data
access
via
HTTP
         • Leverage
brilliance
of
Apache
HTTPD
and

           associated
modules


Grid Overview - Ian Stokes-Rees                                   ijstokes@hkl.hms.harvard.edu
SBGrid
Science
Portal
Objectives

                                      A.

                    Extensible
infrastructure
to
facilitate

                   development
and
deployment
of
novel

                         computational
workFlows


                                   B.
              Web‐accessible
environment
for
collaborative,

                  compute
and
data
intensive
science



Grid Overview - Ian Stokes-Rees                 ijstokes@hkl.hms.harvard.edu
Grid Overview - Ian Stokes-Rees   ijstokes@hkl.hms.harvard.edu
Grid Overview - Ian Stokes-Rees   ijstokes@hkl.hms.harvard.edu
Protein
Structure
Determination




Grid Overview - Ian Stokes-Rees   ijstokes@hkl.hms.harvard.edu
Grid Overview - Ian Stokes-Rees   ijstokes@hkl.hms.harvard.edu
Results
Visualization
and
Analysis




Grid Overview - Ian Stokes-Rees   ijstokes@hkl.hms.harvard.edu
Data
Access
User
access
to
results
data




Grid Overview - Ian Stokes-Rees   ijstokes@hkl.hms.harvard.edu
Grid Overview - Ian Stokes-Rees   ijstokes@hkl.hms.harvard.edu
Experimental
Data
Access

         •   Collaboration
         •   Access
Control
         •   Identity
Management
         •   Data
Management
         •   High
Performance
Data
Movement
         •   Multi‐modal
Access



Grid Overview - Ian Stokes-Rees          ijstokes@hkl.hms.harvard.edu
About
2PB
with
 100
front
end

 servers
for
high

 bandwidth
parallel

 File
transfer




Grid Overview - Ian Stokes-Rees   ijstokes@hkl.hms.harvard.edu
Globus
Online:
High
Performance

             Reliable
3rd
Party
File
Transfer
GUMS
  DN
to
user
mapping
VOMS
  VO
membership




                   portal

         cluster




                                                                 data collection
                   lab file
                                                                     facility
                   server



Grid Overview - Ian Stokes-Rees   desktop   laptop   ijstokes@hkl.hms.harvard.edu
Grid Overview - Ian Stokes-Rees   ijstokes@hkl.hms.harvard.edu
Identity
Management

    and
Security
Access
Control




Grid Overview - Ian Stokes-Rees      ijstokes@hkl.hms.harvard.edu
Access
Control
   • Need
a
strong
Identity
Management
environment
      •   individuals:
identity
tokens
and
identiFiers
      •   groups:
membership
lists
      •   Active
Directory/CIFS
(Windows),
Open
Directory
(Apple),
FreeIPA
(Unix)
all
LDAP‐
          based




Grid Overview - Ian Stokes-Rees                              ijstokes@hkl.hms.harvard.edu
Access
Control
   • Need
a
strong
Identity
Management
environment
      •   individuals:
identity
tokens
and
identiFiers
      •   groups:
membership
lists
      •   Active
Directory/CIFS
(Windows),
Open
Directory
(Apple),
FreeIPA
(Unix)
all
LDAP‐
          based
   • Need
to
manage
and
communicate
Access
Control
policies
      •   institutionally
driven
      •   user
driven




Grid Overview - Ian Stokes-Rees                              ijstokes@hkl.hms.harvard.edu
Access
Control
   • Need
a
strong
Identity
Management
environment
      •   individuals:
identity
tokens
and
identiFiers
      •   groups:
membership
lists
      •   Active
Directory/CIFS
(Windows),
Open
Directory
(Apple),
FreeIPA
(Unix)
all
LDAP‐
          based
   • Need
to
manage
and
communicate
Access
Control
policies
      •   institutionally
driven
      •   user
driven
   • Need
Authorization
System
      •   Policy
Enforcement
Point
(shell
login,
data
access,
web
access,
start
application)
      •   Policy
Decision
Point
(store
policies
and
understand
relationship
of
identity
token


          and
policy)




Grid Overview - Ian Stokes-Rees                                 ijstokes@hkl.hms.harvard.edu
Access
Control
         • What
is
a
user?
            •   .htaccess
and
.htpasswd
            •   local
system
user
(NIS
or
/etc/passwd)
            •   portal
framework
user
(proprietary
DB
schema)
            •   grid
user
(X.509
DN)

         • What
are
we
securing
access
to?
            •   Web
pages?
            •   URLs?
            •   Data?
            •   SpeciFic
operations?
            •   Meta
Data?

         • What
kind
of
policies
do
we
enable?
            •   Simplify
to
READ
WRITE
EXECUTE
LIST
ADMIN


Grid Overview - Ian Stokes-Rees                           ijstokes@hkl.hms.harvard.edu
UniFied
Account
Management
                                  Hierarchical
LDAP
database
                                    user
basics
                                    passwords
                                  Standard
schemas



                                  Relational
DB
                                   user
custom
proFiles
                                   institutions
                                   lab
groups
                                  Custom
schemas


Grid Overview - Ian Stokes-Rees                    ijstokes@hkl.hms.harvard.edu
Grid Overview - Ian Stokes-Rees   ijstokes@hkl.hms.harvard.edu
Harvard Catalyst brings together
         the intellectual force, technologies,
         and clinical expertise of Harvard
         University and its affiliates and
         partners to reduce the burden of
         human illness.



Grid Overview - Ian Stokes-Rees     ijstokes@hkl.hms.harvard.edu
Architecture
Diagrams

More Related Content

More from Boston Consulting Group

Cloud-native Enterprise Data Science Teams
Cloud-native Enterprise Data Science TeamsCloud-native Enterprise Data Science Teams
Cloud-native Enterprise Data Science TeamsBoston Consulting Group
 
Cloud-native Enterprise Data Science Teams
Cloud-native Enterprise Data Science TeamsCloud-native Enterprise Data Science Teams
Cloud-native Enterprise Data Science TeamsBoston Consulting Group
 
2012 02 pre_hbs_grid_overview_ianstokesrees_pt2
2012 02 pre_hbs_grid_overview_ianstokesrees_pt22012 02 pre_hbs_grid_overview_ianstokesrees_pt2
2012 02 pre_hbs_grid_overview_ianstokesrees_pt2Boston Consulting Group
 
2012 02 pre_hbs_grid_overview_ianstokesrees_pt1
2012 02 pre_hbs_grid_overview_ianstokesrees_pt12012 02 pre_hbs_grid_overview_ianstokesrees_pt1
2012 02 pre_hbs_grid_overview_ianstokesrees_pt1Boston Consulting Group
 
2011 11 pre_cs50_accelerating_sciencegrid_ianstokesrees
2011 11 pre_cs50_accelerating_sciencegrid_ianstokesrees2011 11 pre_cs50_accelerating_sciencegrid_ianstokesrees
2011 11 pre_cs50_accelerating_sciencegrid_ianstokesreesBoston Consulting Group
 
Big Data: tools and techniques for working with large data sets
Big Data: tools and techniques for working with large data setsBig Data: tools and techniques for working with large data sets
Big Data: tools and techniques for working with large data setsBoston Consulting Group
 
Wide Search Molecular Replacement and the NEBioGrid portal interface
Wide Search Molecular Replacement and the NEBioGrid portal interfaceWide Search Molecular Replacement and the NEBioGrid portal interface
Wide Search Molecular Replacement and the NEBioGrid portal interfaceBoston Consulting Group
 

More from Boston Consulting Group (13)

Cloud-native Enterprise Data Science Teams
Cloud-native Enterprise Data Science TeamsCloud-native Enterprise Data Science Teams
Cloud-native Enterprise Data Science Teams
 
Cloud-native Enterprise Data Science Teams
Cloud-native Enterprise Data Science TeamsCloud-native Enterprise Data Science Teams
Cloud-native Enterprise Data Science Teams
 
Beyond the Science Gateway
Beyond the Science GatewayBeyond the Science Gateway
Beyond the Science Gateway
 
Anaconda Data Science Collaboration
Anaconda Data Science CollaborationAnaconda Data Science Collaboration
Anaconda Data Science Collaboration
 
Python Blaze Overview
Python Blaze OverviewPython Blaze Overview
Python Blaze Overview
 
Making Data Analytics Awesome
Making Data Analytics AwesomeMaking Data Analytics Awesome
Making Data Analytics Awesome
 
SBGrid Science Portal - eScience 2012
SBGrid Science Portal - eScience 2012SBGrid Science Portal - eScience 2012
SBGrid Science Portal - eScience 2012
 
2012 02 pre_hbs_grid_overview_ianstokesrees_pt2
2012 02 pre_hbs_grid_overview_ianstokesrees_pt22012 02 pre_hbs_grid_overview_ianstokesrees_pt2
2012 02 pre_hbs_grid_overview_ianstokesrees_pt2
 
2012 02 pre_hbs_grid_overview_ianstokesrees_pt1
2012 02 pre_hbs_grid_overview_ianstokesrees_pt12012 02 pre_hbs_grid_overview_ianstokesrees_pt1
2012 02 pre_hbs_grid_overview_ianstokesrees_pt1
 
2011 11 pre_cs50_accelerating_sciencegrid_ianstokesrees
2011 11 pre_cs50_accelerating_sciencegrid_ianstokesrees2011 11 pre_cs50_accelerating_sciencegrid_ianstokesrees
2011 11 pre_cs50_accelerating_sciencegrid_ianstokesrees
 
Big Data: tools and techniques for working with large data sets
Big Data: tools and techniques for working with large data setsBig Data: tools and techniques for working with large data sets
Big Data: tools and techniques for working with large data sets
 
Wide Search Molecular Replacement and the NEBioGrid portal interface
Wide Search Molecular Replacement and the NEBioGrid portal interfaceWide Search Molecular Replacement and the NEBioGrid portal interface
Wide Search Molecular Replacement and the NEBioGrid portal interface
 
To Infiniband and Beyond
To Infiniband and BeyondTo Infiniband and Beyond
To Infiniband and Beyond
 

Recently uploaded

Danh sách HSG Bộ môn cấp trường - Cấp THPT.pdf
Danh sách HSG Bộ môn cấp trường - Cấp THPT.pdfDanh sách HSG Bộ môn cấp trường - Cấp THPT.pdf
Danh sách HSG Bộ môn cấp trường - Cấp THPT.pdfQucHHunhnh
 
REPRODUCTIVE TOXICITY STUDIE OF MALE AND FEMALEpptx
REPRODUCTIVE TOXICITY  STUDIE OF MALE AND FEMALEpptxREPRODUCTIVE TOXICITY  STUDIE OF MALE AND FEMALEpptx
REPRODUCTIVE TOXICITY STUDIE OF MALE AND FEMALEpptxmanishaJyala2
 
Dementia (Alzheimer & vasular dementia).
Dementia (Alzheimer & vasular dementia).Dementia (Alzheimer & vasular dementia).
Dementia (Alzheimer & vasular dementia).Mohamed Rizk Khodair
 
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽中 央社
 
Championnat de France de Tennis de table/
Championnat de France de Tennis de table/Championnat de France de Tennis de table/
Championnat de France de Tennis de table/siemaillard
 
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...Nguyen Thanh Tu Collection
 
Open Educational Resources Primer PowerPoint
Open Educational Resources Primer PowerPointOpen Educational Resources Primer PowerPoint
Open Educational Resources Primer PowerPointELaRue0
 
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17Celine George
 
How to Analyse Profit of a Sales Order in Odoo 17
How to Analyse Profit of a Sales Order in Odoo 17How to Analyse Profit of a Sales Order in Odoo 17
How to Analyse Profit of a Sales Order in Odoo 17Celine George
 
IATP How-to Foreign Travel May 2024.pdff
IATP How-to Foreign Travel May 2024.pdffIATP How-to Foreign Travel May 2024.pdff
IATP How-to Foreign Travel May 2024.pdff17thcssbs2
 
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...Nguyen Thanh Tu Collection
 
Capitol Tech Univ Doctoral Presentation -May 2024
Capitol Tech Univ Doctoral Presentation -May 2024Capitol Tech Univ Doctoral Presentation -May 2024
Capitol Tech Univ Doctoral Presentation -May 2024CapitolTechU
 
Essential Safety precautions during monsoon season
Essential Safety precautions during monsoon seasonEssential Safety precautions during monsoon season
Essential Safety precautions during monsoon seasonMayur Khatri
 
Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...
Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...
Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...Denish Jangid
 
An overview of the various scriptures in Hinduism
An overview of the various scriptures in HinduismAn overview of the various scriptures in Hinduism
An overview of the various scriptures in HinduismDabee Kamal
 
ppt your views.ppt your views of your college in your eyes
ppt your views.ppt your views of your college in your eyesppt your views.ppt your views of your college in your eyes
ppt your views.ppt your views of your college in your eyesashishpaul799
 
The Last Leaf, a short story by O. Henry
The Last Leaf, a short story by O. HenryThe Last Leaf, a short story by O. Henry
The Last Leaf, a short story by O. HenryEugene Lysak
 
BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...
BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...
BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...Nguyen Thanh Tu Collection
 

Recently uploaded (20)

Danh sách HSG Bộ môn cấp trường - Cấp THPT.pdf
Danh sách HSG Bộ môn cấp trường - Cấp THPT.pdfDanh sách HSG Bộ môn cấp trường - Cấp THPT.pdf
Danh sách HSG Bộ môn cấp trường - Cấp THPT.pdf
 
REPRODUCTIVE TOXICITY STUDIE OF MALE AND FEMALEpptx
REPRODUCTIVE TOXICITY  STUDIE OF MALE AND FEMALEpptxREPRODUCTIVE TOXICITY  STUDIE OF MALE AND FEMALEpptx
REPRODUCTIVE TOXICITY STUDIE OF MALE AND FEMALEpptx
 
Dementia (Alzheimer & vasular dementia).
Dementia (Alzheimer & vasular dementia).Dementia (Alzheimer & vasular dementia).
Dementia (Alzheimer & vasular dementia).
 
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
 
Championnat de France de Tennis de table/
Championnat de France de Tennis de table/Championnat de France de Tennis de table/
Championnat de France de Tennis de table/
 
Operations Management - Book1.p - Dr. Abdulfatah A. Salem
Operations Management - Book1.p  - Dr. Abdulfatah A. SalemOperations Management - Book1.p  - Dr. Abdulfatah A. Salem
Operations Management - Book1.p - Dr. Abdulfatah A. Salem
 
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...
 
“O BEIJO” EM ARTE .
“O BEIJO” EM ARTE                       .“O BEIJO” EM ARTE                       .
“O BEIJO” EM ARTE .
 
Open Educational Resources Primer PowerPoint
Open Educational Resources Primer PowerPointOpen Educational Resources Primer PowerPoint
Open Educational Resources Primer PowerPoint
 
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17
 
How to Analyse Profit of a Sales Order in Odoo 17
How to Analyse Profit of a Sales Order in Odoo 17How to Analyse Profit of a Sales Order in Odoo 17
How to Analyse Profit of a Sales Order in Odoo 17
 
IATP How-to Foreign Travel May 2024.pdff
IATP How-to Foreign Travel May 2024.pdffIATP How-to Foreign Travel May 2024.pdff
IATP How-to Foreign Travel May 2024.pdff
 
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
 
Capitol Tech Univ Doctoral Presentation -May 2024
Capitol Tech Univ Doctoral Presentation -May 2024Capitol Tech Univ Doctoral Presentation -May 2024
Capitol Tech Univ Doctoral Presentation -May 2024
 
Essential Safety precautions during monsoon season
Essential Safety precautions during monsoon seasonEssential Safety precautions during monsoon season
Essential Safety precautions during monsoon season
 
Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...
Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...
Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...
 
An overview of the various scriptures in Hinduism
An overview of the various scriptures in HinduismAn overview of the various scriptures in Hinduism
An overview of the various scriptures in Hinduism
 
ppt your views.ppt your views of your college in your eyes
ppt your views.ppt your views of your college in your eyesppt your views.ppt your views of your college in your eyes
ppt your views.ppt your views of your college in your eyes
 
The Last Leaf, a short story by O. Henry
The Last Leaf, a short story by O. HenryThe Last Leaf, a short story by O. Henry
The Last Leaf, a short story by O. Henry
 
BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...
BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...
BỘ LUYỆN NGHE TIẾNG ANH 8 GLOBAL SUCCESS CẢ NĂM (GỒM 12 UNITS, MỖI UNIT GỒM 3...
 

Grid Computing Overview

  • 1. Grid
Computing
Overview Federating
Compute
and
Storage
Resources
to
 Accelerate
Science
and
Aid
Collaboration Ian
Stokes‐Rees,
PhD Harvard
Medical
School,
Boston,
USA http://portal.sbgrid.org ijstokes@hkl.hms.harvard.edu
  • 2. Slides
and
Contact ijstokes@hkl.hms.harvard.edu http://linkedin.com/in/ijstokes http://slidesha.re/ijstokes-grid2011 Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 3. Slides
and
Contact ijstokes@hkl.hms.harvard.edu http://linkedin.com/in/ijstokes http://slidesha.re/ijstokes-grid2011 http://www.sbgrid.org http://portal.sbgrid.org http://www.opensciencegrid.org Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 4. ScientiFic
Research
Today • International
collaborations • IT
becomes
embedded
into
research
process:
data,
results,
 analysis,
visualization • Crossing
institutional
and
national
boundaries • Computational
techniques
increasingly
 important • ...
and
computationally
intensive
techniques
as
well • requires
use
of
high
performance
computing
systems • Data
volumes
are
growing
fast • hard
to
share • hard
to
manage • ScientiFic
software
often
difFicult
to
use • or
to
use
properly • Web
based
tools
increasingly
important • but
often
lack
disconnect
from
persisted
and
shared
results Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 5. SBGrid
Consortium Cornell U. Washington U. School of Med. R. Cerione NE-CAT T. Ellenberger B. Crane R. Oswald D. Fremont S. Ealick C. Parrish Rosalind Franklin NIH M. Jin H. Sondermann D. Harrison M. Mayer A. Ke UMass Medical U. Washington T. Gonen U. Maryland W. Royer E. Toth Brandeis U. UC Davis N. Grigorieff H. Stahlberg Tufts U. K. Heldwein UCSF Columbia U. JJ Miranda Q. Fan Y. Cheng Rockefeller U. Stanford R. MacKinnon A. Brunger Yale U. K. Garcia T. Boggon K. Reinisch T. Jardetzky D. Braddock J. Schlessinger Y. Ha F. Sigworth CalTech E. Lolis F. Zhou P. Bjorkman Harvard and Affiliates W. Clemons N. Beglova A. Leschziner G. Jensen Rice University S. Blacklow K. Miller D. Rees E. Nikonowicz B. Chen A. Rao Y. Shamoo Vanderbilt J. Chou T. Rapoport Y.J. Tao Center for Structural Biology J. Clardy M. Samso WesternU W. Chazin C. Sanders M. Eck P. Sliz M. Swairjo B. Eichman B. Spiller B. Furie T. Springer M. Egli M. Stone R. Gaudet G. Verdine UCSD B. Lacy M. Waterman M. Grant G. Wagner T. Nakagawa M. Ohi S.C. Harrison L. Walensky H. Viadiu Thomas Jefferson J. Hogle S.Walker J. Williams D. Jeruzalmi T.Walz D. Kahne J. Wang Not Pictured: University of Toronto: L. Howell, E. Pai, F. Sicheri; NHRI (Taiwan): G. Liou; Trinity College, Dublin: Amir Khan T. Kirchhausen S. Wong Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 6. Boston
Life
Sciences
Hub • Biomedical
researchers • Government
agencies • Life
sciences Tufts • Universities Universit y School of Medicin e • Hospitals Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 7. Study
of
Protein
Structure
 and
Function Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 8. Study
of
Protein
Structure
 and
Function 1mm Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 9. Study
of
Protein
Structure
 and
Function 400m 1mm Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 10. Study
of
Protein
Structure
 and
Function 400m 1mm Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 11. Study
of
Protein
Structure
 and
Function 400m 1mm Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 12. Study
of
Protein
Structure
 and
Function 400m 1mm Grid Overview - Ian Stokes-Rees 10nm ijstokes@hkl.hms.harvard.edu
  • 13. Study
of
Protein
Structure
 and
Function 400m 1mm 10nm • Shared
scientiFic
data
collection
facility • Data
intensive
(10‐100
GB/day) Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 14. Cryo
Electron
Microscopy • Previously,
1­10,000
images,
managed
by
hand • Now,
robotic
systems
collect
millions
of
images • estimate
250,000
CPU­hours
to
reconstruct
model Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 15. Cryo
Electron
Microscopy • Previously,
1­10,000
images,
managed
by
hand • Now,
robotic
systems
collect
millions
of
images • estimate
250,000
CPU­hours
to
reconstruct
model Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 16. Cryo
Electron
Microscopy • Previously,
1­10,000
images,
managed
by
hand • Now,
robotic
systems
collect
millions
of
images • estimate
250,000
CPU­hours
to
reconstruct
model Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 17. Molecular
Dynamics
Simulations 1
fs
time
step 1ns
snapshot 1
us
simulation 1e6
steps 1000
frames 10
MB
/
frame 10
GB
/
sim 20
CPU­years 3
months
(wall­ clock) Big Data - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 18. Molecular
Dynamics
Simulations 1
fs
time
step 1ns
snapshot 1
us
simulation 1e6
steps 1000
frames 10
MB
/
frame 10
GB
/
sim 20
CPU­years 3
months
(wall­ clock) Big Data - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 20. High
Energy
Physics Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 21. High
Energy
Physics 40
MHz
bunch
crossing
rate 10
million
data
channels 1
KHz
level
1
event
recording
rate 1­10
MB
per
event 14
hours
per
day,
7+
months
/
year 4
detectors 6
PB
of
data
/
year globally
distribute
data
for
analysis
(x2) Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 22. Open
Science
Grid http://opensciencegrid.org • US
National
 Cyberinfrastructure • Primarily
used
for
high
 energy
physics
computing • 80
sites • ~100,000
job
slots 5,073,293
hours ~570
years • ~1,500,000
hours
per
day • PB
scale
aggregate
storage • ~
1
PB
transferred
each
day Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 23. Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 24. Home About Us Informations TNGP News Calendar Document Download Jobs Forums Photogallery Publications Blog Related Links สัมมนาวิชาการเทคโนโลยีกริดและคลาวด์ Guestbook ศูนย์ไทยกริดแห่งชาติ สํานักงานส่งเสริมอุตสาหกรรมซอฟต์แวร์ Contact Us แห่งชาติ (องค์การมหาชน) ร่วมกับมหาวิทยาลัยเทคโนโลยีพะ Travel จอมเกล้าธนบุรี (มจธ) เป็นเจ้าภาพในการจัด... Healthy 6 May 2011 academic ประกาศผลการแข่งขัน โครงการ Grid Technology Innovat... ทําการแข่งขันเมื่อวันที่ 12-13 กุมภาพันธ์ 2554 25 March 2011 โปรแกรม R สําหรับงานวิเคราะห์และวิจัยด้านสถิติ R เป็นซอฟ์ทแวร์ สําหรับใช้ในงานด้านวิเคราะห์และวิจัยทางด้าน สถิติซึ่งนิยมใช้กันในผู้ที่ต้องทํางานด้านวิจัยที่เกี่ยวข้องกับการ สมัครรับข่าวสาร ยกเลิก คํานวณทางด้านสถิติ 28 February 2011 รัฐบาลมีนโยบายปฏิรูปการทํางาน และเพิ่มศักยภาพ ทุกภาคส่วน ของรัฐ ให้เอื้ออํานวยต่อการเสริมสร้าง ความเข้มแข็ง ของภาค เอกชน โดยการผลักดัน ยุทธศาสตร์ การเสริมสร้างศักยภาพการ แข่งขัน และการพัฒนา ที่ยั่งยืนของประเทศ และต้องการ พัฒนา ประเทศไปสู่สังคม แห่งภูมิปัญญา และ การเรียนรู้ (Knowledge Based Society) http://www.thaigrid.net/ Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 25. SimpliFied
Grid
Architecture Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 26. Grid
Opportunities • New
compute
intensive
workFlows • think
big:
tens
or
hundreds
of
thousands
of
hours
Finished
in
1‐2
days • sharing
resources
for
efFicient
and
large
scale
utilization • Data
intensive
problems • we
mirror
20
GB
of
data
to
30
computing
centers • Data
movement,
management,
and
archive • Federated
identity
and
user
management • labs,
collaborations
or
ad‐hoc
groups • role‐based
access
control
(RBAC)
and
IdM • Collaborative
environment • Web‐based
access
to
applications Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 29. The
Browser
as
the
 Universal
Interface • If
it
isn’t
already
obvious
to
you • Any
interactive
application
developed
today
should
be
web‐based
with
a
 RESTful
interface
(if
at
all
possible) • A
rich
set
of
tools
and
techniques • AJAX,
HTML4/5,
CSS,
and
JavaScript • Dynamic
content
negotiation • HTTP
headers,
caching,
security,
sessions/cookies • Scalable,
replicable,
centralized,
multi‐threaded,
 multi‐user • Alternatives • Command
Line
(CLI):
great
for
scriptable
jobs • GUI
toolkits:
necessary
for
applications
with
high
graphics
or
I/O
demands Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 30. What
is
a
web
portal? • A
web‐based
gateway
to
resources
and
data • simpliFied
access • centralized
access • uniFied
access
(CGI,
Perl,
Python,
PHP,
static
HTML,
static
Files,
etc.) • Attempt
to
provide
uniform
access
to
a
range
of
 services
and
resources • Data
access
via
HTTP • Leverage
brilliance
of
Apache
HTTPD
and
 associated
modules Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 31. SBGrid
Science
Portal
Objectives A.
 Extensible
infrastructure
to
facilitate
 development
and
deployment
of
novel
 computational
workFlows
 B. Web‐accessible
environment
for
collaborative,
 compute
and
data
intensive
science Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 32. Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 33. Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 34. Protein
Structure
Determination Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 35. Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 36. Results
Visualization
and
Analysis Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 38. User
access
to
results
data Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 39. Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 40. Experimental
Data
Access • Collaboration • Access
Control • Identity
Management • Data
Management • High
Performance
Data
Movement • Multi‐modal
Access Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 41. About
2PB
with 100
front
end
 servers
for
high
 bandwidth
parallel
 File
transfer Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 42. Globus
Online:
High
Performance
 Reliable
3rd
Party
File
Transfer GUMS DN
to
user
mapping VOMS VO
membership portal cluster data collection lab file facility server Grid Overview - Ian Stokes-Rees desktop laptop ijstokes@hkl.hms.harvard.edu
  • 43. Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 44. Identity
Management
 and
Security
  • 45. Access
Control Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 46. Access
Control • Need
a
strong
Identity
Management
environment • individuals:
identity
tokens
and
identiFiers • groups:
membership
lists • Active
Directory/CIFS
(Windows),
Open
Directory
(Apple),
FreeIPA
(Unix)
all
LDAP‐ based Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 47. Access
Control • Need
a
strong
Identity
Management
environment • individuals:
identity
tokens
and
identiFiers • groups:
membership
lists • Active
Directory/CIFS
(Windows),
Open
Directory
(Apple),
FreeIPA
(Unix)
all
LDAP‐ based • Need
to
manage
and
communicate
Access
Control
policies • institutionally
driven • user
driven Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 48. Access
Control • Need
a
strong
Identity
Management
environment • individuals:
identity
tokens
and
identiFiers • groups:
membership
lists • Active
Directory/CIFS
(Windows),
Open
Directory
(Apple),
FreeIPA
(Unix)
all
LDAP‐ based • Need
to
manage
and
communicate
Access
Control
policies • institutionally
driven • user
driven • Need
Authorization
System • Policy
Enforcement
Point
(shell
login,
data
access,
web
access,
start
application) • Policy
Decision
Point
(store
policies
and
understand
relationship
of
identity
token

 and
policy) Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 49. Access
Control • What
is
a
user? • .htaccess
and
.htpasswd • local
system
user
(NIS
or
/etc/passwd) • portal
framework
user
(proprietary
DB
schema) • grid
user
(X.509
DN) • What
are
we
securing
access
to? • Web
pages? • URLs? • Data? • SpeciFic
operations? • Meta
Data? • What
kind
of
policies
do
we
enable? • Simplify
to
READ
WRITE
EXECUTE
LIST
ADMIN Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 50. UniFied
Account
Management Hierarchical
LDAP
database user
basics passwords Standard
schemas Relational
DB user
custom
proFiles institutions lab
groups Custom
schemas Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 51. Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 52. Harvard Catalyst brings together the intellectual force, technologies, and clinical expertise of Harvard University and its affiliates and partners to reduce the burden of human illness. Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 54. Service
Architecture GlobusOnline UC San Diego @Argonne GUMS User GUMS GridFTP + glideinWMS data Hadoop factory Open Science Grid computations MyProxy @NCSA, UIUC monitoring interfaces data computation ID mgmt Ganglia scp Condor FreeIPA Apache DOEGrids CA Nagios GridFTP Cycle Server @Lawrence GridSite LDAP RSV SRM VDT Berkley Labs Django VOMS Globus pacct WebDAV Sage Math GUMS glideinWMS Gratia Acct'ing R-Studio GACL @FermiLab file SQL shell CLI server DB cluster Monitoring SBGrid Science Portal @ Harvard Medical School @Indiana Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 55. Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 56. Acknowledgements
&
Questions • Piotr
Sliz • Principle
Investigator,
head
of
SBGrid • SBGrid
Science
Portal • Daniel
O’Donovan,
Meghan
Porter‐Mahoney • SBGrid
System
Administrators • Ian
Levesque,
Peter
Doherty,
Steve
Jahl • Globus
Online
Team • Steve
Tueke,
Ian
Foster,
Rachana
 Ananthakrishnan,
Raj
Kettimuthu
 • Ruth
Pordes • Director
of
OSG,
for
championing
SBGrid Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 57. Acknowledgements
&
Questions • Piotr
Sliz Please
contact
me
 • Principle
Investigator,
head
of
SBGrid with
any
questions: • SBGrid
Science
Portal • Ian
Stokes‐Rees • Daniel
O’Donovan,
Meghan
Porter‐Mahoney • ijstokes@hkl.hms.harvard.edu • SBGrid
System
Administrators • ijstokes@spmetric.com • Ian
Levesque,
Peter
Doherty,
Steve
Jahl • Globus
Online
Team Look
at
our
work • Steve
Tueke,
Ian
Foster,
Rachana
 • portal.sbgrid.org Ananthakrishnan,
Raj
Kettimuthu
 • www.sbgrid.org • Ruth
Pordes • www.opensciencegrid.org • Director
of
OSG,
for
championing
SBGrid Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 58. Extra
Slides Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 59. Grid
Architectural
Details • Resources • Information • Uniform
compute
clusters • LDAP
based
most
common
(not
 • Managed
via
batch
queues optimized
for
writes) • Local
scratch
disk • Domain
speciFic
layer • Sometimes
high
perf.
network
 • Open
problem! (e.g.
InFiniBand) • Fabric • Behind
NAT
and
Firewall • In
most
cases,
assume
functioning
 • No
shell
access Internet • Data • Some
sites
part
of
experimental
 private
networks • Tape‐backed
mass
storage • Disk
arrays
(100s
TB
to
PB) • Security • High
bandwidth
(multi‐stream)
 • Typically
underpinned
by
X.509
 transfer
protocols Public
Key
Infrastructure • File
catalogs • Same
standards
as
SSL/TLS
and
 • Meta‐data “server
certs”
for
“https” • Replica
management Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 60. TeraGrid SBGrid User NERSC Community Open Science Grid National Federated Cyberinfrastructure Odyssey Facilitate
interface
 between
community
 and
cyberinfrastructure Orchestra EC2 Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 61. Existing
Security
 Infrastructure • X.509
certiFicates • Department
of
Energy
CA • Regional/Institutional
RAs
(SBGrid
is
an
RA) • X.509
proxy
certiFicate
system • Users
self‐sign
a
short‐lived
passwordless
proxy
certiFicate
used
for
“portable”
 and
“automated”
grid
processing
identity
token • Similarities
to
Kerberos
tokens • Virtual
Organizations
(VO)
for
deFinitions
of
roles,
 groups,
attrs • Attribute
CertiFicates • Users
can
(attempt)
to
fetch
ACs
from
the
VO
to
be
attached
to
proxy
certs • POSIX‐like
File
access
control
(Grid
ACL)
 Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 62. Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 63. Data
Model • Data
Tiers • VO­wide:
all
sites,
admin
managed,
very
stable • User
project:
all
sites,
user
managed,
1‐10
weeks,
1‐3
GB • User
static:
all
sites,
user
managed,
indeFinite,
10
MB • Job
set:
all
sites,
infrastructure
managed,
1‐10
days,
0.1‐1
GB • Job:
direct
to
worker
node,
infrastructure
managed,
1
day,
<10
MB • Job
indirect:
to
worker
node
via
UCSD,
infrastructure
managed,
1
 day,
<10
GB Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 64. Data
Management quota du
scan tmpwatch conventions workFlow
integration Data
Movement scp
(users) rsync
(VO‐wide) grid‐ftp
(UCSD) curl
(WNs) cp
(NFS) htcp
(secure
web) Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 65. red
­
push
Diles green
­
pull
Diles Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 66. red
­
push
Diles green
­
pull
Diles 1.
user
Dile
upload Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 67. red
­
push
Diles green
­
pull
Diles 2.
replicate
gold
standard 1.
user
Dile
upload Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 68. 3.
Auto­replicate red
­
push
Diles green
­
pull
Diles 2.
replicate
gold
standard 1.
user
Dile
upload Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 69. 4.
pull
Diles
from UCSD
to
WNs 3.
Auto­replicate red
­
push
Diles green
­
pull
Diles 2.
replicate
gold
standard 1.
user
Dile
upload Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 70. 4.
pull
Diles
from UCSD
to
WNs 5.
pull
Diles
from 3.
Auto­replicate local
NSF
to
WNs red
­
push
Diles green
­
pull
Diles 2.
replicate
gold
standard 1.
user
Dile
upload Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 71. 4.
pull
Diles
from UCSD
to
WNs 5.
pull
Diles
from 3.
Auto­replicate local
NSF
to
WNs 6.
pull
Diles
from SBGrid
to
WNs red
­
push
Diles green
­
pull
Diles 2.
replicate
gold
standard 1.
user
Dile
upload Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 72. 4.
pull
Diles
from UCSD
to
WNs 5.
pull
Diles
from 3.
Auto­replicate local
NSF
to
WNs 6.
pull
Diles
from SBGrid
to
WNs red
­
push
Diles green
­
pull
Diles 2.
replicate
gold
standard 7.
job
results
copied
 back
to
SBGrid 1.
user
Dile
upload Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 73. 4.
pull
Diles
from UCSD
to
WNs 5.
pull
Diles
from 3.
Auto­replicate local
NSF
to
WNs 6.
pull
Diles
from SBGrid
to
WNs red
­
push
Diles green
­
pull
Diles 2.
replicate
gold
standard 7.
job
results
copied
 back
to
SBGrid 8a.
large
job
results
 copied
to
UCSD 8b.
later
pulled
to
 1.
user
Dile
upload SBGrid Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 74. Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 75. Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 76. Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 77. Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 78. Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 79. Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 80. Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 81. “weak” solution 2nx5q2 Log Likelihood Gain MHC‐TCR:
2VLJ “strong” solution 1im3a2 Translation Z score Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 82. NEBioGrid
Django
Portal • PyGACL Interactive
dynamic
web
portal
for
 Python
representation
of
GACL
model
 workFlow
deFinition,
submission,
 and
API
to
work
with
GACL
Files monitoring,
and
access
control • osg_wrap • NEBioGrid
Web
Portal Swiss
army
knife
OSG
wrapper
script
to
 GridSite
based
web
portal
for
File‐system
 handle
File
staging,
parameter
sweep,
 level
access
(raw
job
output),
meta‐data
 DAG,
results
aggregation,
monitoring tagging,
X.509
access
control/sharing,
 • sbanalysis CGI data
analysis
and
graphing
tools
for
 • PyCCP4 structural
biology
data
sets Python
wrappers
around
CCP4
 • osg.monitoring structural
biology
applications tools
to
enhance
monitoring
of
job
set
 • PyCondor and
remote
OSG
site
status Python
wrappers
around
common
 • shex Condor
operations Write
bash
scripts
in
Python:
replicate
 enhanced
Condor
log
analysis commands,
syntax,
behavior • PyOSG • xconDig Python
wrappers
around
common
OSG
 Universal
conFiguration operations Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 83. 10k
grid
jobs Example
Job
Set approx
30k
CPU
hours 99.7%
success
rate evicted - red 24
wall
clock
hours completed - green held - orange MIT 5292 UWisc 1173 1077 120 1657 3 662 Cornell 840 20 Buffalo 720 628 ND 76 407 47 421 Caltech 190 FNAL 1409 237 12 24 79 4 47 UNL 6 1159 3 HMS 60 20 Purdue 349 10,000 jobs 52 17 39 UCR RENCI local queue remote queue SPRACE 1216 running 316 248 Grid Overview - Ian Stokes-Rees 24 hours ijstokes@hkl.hms.harvard.edu
  • 84. Job
Lifelines Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 85. Typical
Layered
Environment Fortran bin • Command
line
application
(e.g.
Fortran) • Friendly
application
API
wrapper Python API Map- • Batch
execution
wrapper
for
N‐iterations Multi-exec wrapper Reduce • Results
extraction
and
aggregation Result aggregator • Grid
job
management
wrapper Grid management • Web
interface Web interface • forms,
views,
static
HTML
results • GOAL
eliminate
shell
scripts • often
found
as
“glue”
language
between
layers Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 86. REST • Don’t
try
to
read
too
much
into
the
name • REpresentational
State
Transfer:
coined
by
Roy
Fielding,
co‐author
of
 HTTP
protocol
and
contributor
to
original
Apache
httpd
server • Idea • The
web
is
the
worlds
largest
asynchronous,
distributed,
parallel
 computational
system • Resources
are
“hidden”
but
representations
are
accessible
via
URLs • Representations
can
be
manipulated
via
HTTP
operations
GET
PUT
POST
 HEAD
DELETE
and
associated
state • State
transitions
are
initiated
by
software
or
by
humans • Implication • Clean
URLs
(e.g.
Flickr) Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 87. Big Data - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 88. Cloud
Computing: Industry
solution
to
the
Grid • Virtualization
has
taken
off
in
the
past
5
years • VMWare,
Xen,
VirtualPC,
VirtualBox,
QEMU,
etc. • Builds
on
ideas
from
VMS
(i.e.
old) • (Good)
System
administrators
are
hard
to
come
by • And
operating
a
large
data
center
is
costly • Internet
boom
means
there
are
companies
that
have
Figured
out
 how
to
do
this
really
well • Google,
Amazon,
Yahoo,
Microsoft,
etc. • Outsource
IT
infrastructure!

Outsource
software
hosting! • Amazon
EC2,
Microsoft
Azure,
RightScale,
Force.com,
Google
Apps • Over
simpliFied: • You
can’t
install
a
cloud • You
can’t
buy
a
grid Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 89. Is
“Cloud”
the
new
“Grid”? • Grid
is
about
mechanisms
for
federated,
 distributed,
heterogeneous
shared
compute
and
 storage
resources • standards
and
software • Cloud
is
about
on‐demand
provisioning
of
 compute
and
storage
resources • services No
one
buys
a
grid.

No
one
installs
a
cloud. Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 90. The
interesting
thing
about
Cloud
Computing
is
that
 we’ve
redeTined
Cloud
Computing
to
include
 everything
that
we
already
do.
.
.
.
I
don’t
understand
 what
we
would
do
differently
in
the
light
of
Cloud
 Computing
other
than
change
the
wording
of
some
of
 our
ads. Larry
Ellison,
Oracle
CEO,
quoted
in
the
Wall
Street
Journal,
September
26,
2008*
 *http://blogs.wsj.com/biztech/2008/09/25/larry‐ellisons‐brilliant‐anti‐cloud‐computing‐rant/ Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu
  • 91. When
is
cloud
computing
 interesting? • My
deFinition
of
“cloud
computing” • Dynamic
compute
and
storage
infrastructure
provisioning
in
a
scalable
manner
providing
 uniform
interfaces
to
virtualized
resources • The
underlying
resources
could
be • 
“in‐house”
using
licensed/purchased
software/hardware • “external”
hosted
by
a
service/infrastructure
provider • Consider
using
cloud
computing
if • You
have
operational
problems/constraints
in
your
current
data
center • You
need
to
dynamically
scale
(up
or
down)
access
to
services
and
data • You
want
fast
provisioning,
lots
of
bandwidth,
and
low
latency • Organizationally
you
can
live
with
outsourcing
responsibility
for
(some
of)
your
data
and
 applications • Consider
providing
cloud
computing
services
if • You
have
an
ace
team
efFiciently
running
your
existing
data
center • You
have
lots
of
experience
with
virtualization • You
have
a
speciFic
application/domain
that
could
beneFit
from
being
tied
to
a
large
compute
 farm
or
disk
array
with
great
Internet
connectivity Grid Overview - Ian Stokes-Rees ijstokes@hkl.hms.harvard.edu

Editor's Notes

  1. \n
  2. \n
  3. \n
  4. \n
  5. \n
  6. \n
  7. \n
  8. \n
  9. \n
  10. \n
  11. \n
  12. \n
  13. \n
  14. \n
  15. \n
  16. \n
  17. \n
  18. \n
  19. \n
  20. \n
  21. \n
  22. \n
  23. \n
  24. \n
  25. \n
  26. \n
  27. \n
  28. \n
  29. \n
  30. \n
  31. \n
  32. \n
  33. \n
  34. \n
  35. \n
  36. \n
  37. \n
  38. \n
  39. \n
  40. \n
  41. \n
  42. \n
  43. \n
  44. \n
  45. \n
  46. \n
  47. \n
  48. \n
  49. \n
  50. \n
  51. \n
  52. \n
  53. \n
  54. \n
  55. \n
  56. \n
  57. \n
  58. \n
  59. \n
  60. \n
  61. \n
  62. \n
  63. \n
  64. \n
  65. \n
  66. \n
  67. \n
  68. \n
  69. \n
  70. \n
  71. \n
  72. \n
  73. \n
  74. \n
  75. \n
  76. \n
  77. \n
  78. \n
  79. \n
  80. \n