SlideShare a Scribd company logo
1 of 69
2012 INTERNATIONAL ASIAN SUMMER SCHOOL IN LINKED DATA
             IASLOD 2012, August 13-17, 2012, KAIST, Daejeon, Korea




         General Introduction
for Semantic Web and Linked Open Data


                Hideaki Takeda
        National Institute of Informatics
               takeda@nii.ac.jp
                                        Hideaki Takeda / National Institute of Informatics
Semantic Web and Linked Data
• Semantic Web
   – What is Semantic Web
   – How to realize Semantic Web
       •   Metadata
       •   RDF
       •   RDFS
       •   OWL
• Linked Data
   – What is Linked Data?
   – The State-of-the-Art of Linked Data
       • Linking Open Data (LOD)
   – How to use Linked Data
       • Linked Data Browser
       • Linked Data Search Engine
       • Linked Data Applications
   – How to use RDF
       • RDFa
   – SPARQL
                                     Hideaki Takeda / National Institute of Informatics
Semantic Web




      Hideaki Takeda / National Institute of Informatics
The Aim of The Semantic Web
• "The Semantic Web is an extension of the current web in
  which information is given well-defined meaning, better
  enabling computers and people to work in cooperation."
   The Semantic Web, Scientific American, May 2001, Tim Berners-Lee, James Hendler and Ora Lassila



• The Semantic Web is a vision: the idea of having data on
  the web defined and linked in a way that it can be used by
  machines not just for display purposes, but for
  automation, integration and reuse of data across various
  applications.
                                                                                              http://www.w3.org/2001/sw/




                                                             Hideaki Takeda / National Institute of Informatics
Semantic Web
• Realization of various information exchanging via Web




                                  Automation
                                    自動化
                                  Integration
                                      統合
                                 Re-use of data
                                 データの再利用




                                         Hideaki Takeda / National Institute of Informatics
Next Generation Web?
• Evolution of Web
   – HTML: Web for Display
   – XML: Web with Syntax
   – ?? : Web with Semantics

• Why should we embed semantics into Web?
     From
   – Web for Human
      To
   – Web for human and machines
   cf. Web for machines


                               Hideaki Takeda / National Institute of Informatics
A brief introduction of XML
• Limitation of HTML
   – Chaos by mixture of displaying and text structures
        • e.g.,
            – <h3></h3> should be used for “the third-level heading”, but are often
                used just for bigger fonts
            – <b></b> is specifying “bold” , not “emphasis”.
   – Fixed Structure
        • e.g.,
            – If you need <h7></h7>….
            – I need a structure just for my data
                    <h1> A list of lectures</h1>
                    <h2> Knowledge Sharing Systems</h2>
                    <h3> Lecturer: Hideaki Takeda</h3>
                    <h3>Wednesday 3rd</h3>


                                         Hideaki Takeda / National Institute of Informatics
XML
• XML(eXtensible Markup Language)
  – Can define original tags
  – Represent logical structures of data
     • DTD
  – Do not include style information
                        <lecturelist>
     • XST              <lecture>
                        <title id=1234> Knowledge Sharing Systems</title>
                        <lecturer> Hideaki Takeda</lecturer>
                        <schedule>
                          <week>Wednesday</week>
                          <time>3rd</time>
                        </lecture>
                        ...
                        </lecturelist>
                             Hideaki Takeda / National Institute of Informatics
Whey is XML not sufficient?
<person>                                 <個人>
  <name> Hideaki Takeda</name>             <名前>Hideaki Takeda</名前>
  <age> 20</age>                           <年齢> 20</年齢>
</person>                                </個人>




•   What are specified by “person” and “name” ?
•   Is “name” and “名前” the same?
•   Is this description sufficient as a description for “person”?
•   …

• In short, syntax alone cannot solve these problems
                                   Hideaki Takeda / National Institute of Informatics
Architecture for the Semantic Web




   Tim Berners-Lee http://www.w3.org/2002/Talks/09-lcs-sweb-tbl/
                                  Hideaki Takeda / National Institute of Informatics
How to describe “meaning”?
• Need to describe “information on information”
  – “Meaning of something” is a description (“meaning”)
    to a description (“something”) in computers
  – Metadata
     • Data about data
• Need to architecture for common understanding
  – Syntax (language or scheme)
  – Vocabulary (ontology)



                            Hideaki Takeda / National Institute of Informatics
Metadata
• What is metadata?
  – Data about data
  – What one can say about any information object
• What is described as metadata?
  – Content relates to what the object contains or is
    about, and is intrinsic to an information object.
  – Context indicates the who, what, why, where, how aspects
    associated with the object's creation and is extrinsic to an
    information object.
  – Structure relates to the formal set of associations within or
    among individual information objects and can be intrinsic
    or extrinsic

   Setting the State, Anne J.Gilliand-Swetland, Introduction to Metadata – Pathways to Digital
   Information, Murthsa Baca (ed.), Getty Information Institute.
                                               Hideaki Takeda / National Institute of Informatics
Metadata
• Metadata to individual information objects
  – Bibliography,Dublin Core
• Metadata to part or structure of information objects
  – Drawings,RDF,RDFS, OWL

                                                      Type:tractor
                                                      Owner:Taro
                                                   Product year:2002



                     Body

  Axis:
  Connect body to wheel


                Wheel


                                Hideaki Takeda / National Institute of Informatics
A Layer model for Semantic Web
•   RDF (Resource Description Framework)
     – The most primitive model for metadata description
         • SVO model
         • Entity-Relation Model
         • Semantic net
•   RDF Schema
     – Addition of “concept” to RDF
         • class-subclass,constraints
•   OWL
     – More general concept description language
         • Logical consistency
         • Various class expressions
         • Various constraints
•   DAML-S
     – Descriptions on processes




                        Tim Berners-Lee http://www.w3.org/2002/Talks/09-lcs-sweb-tbl/
                                           Hideaki Takeda / National Institute of Informatics
RDF (Resource Description
             Framework)
• A framework to describe metadata
• Separation of model and syntax
• W3C Recommendation (2004)




                       Hideaki Takeda / National Institute of Informatics
RDF Model
• Element
  – Resource:
     • URI(Universal Resource Identifier)
     • Literal(string)
        – No need to be specified by Web
  – Property:
     • Attribute when describing resources
     • URI or Literal just as Resource
  – Statement: triad of resource, property, and
    resource


                                 Hideaki Takeda / National Institute of Informatics
RDF model
•   Statement
     – Creator of http://www-kasm.nii.ac.jp/~takeda is “Hideaki Takeda”
•   Structure
     – Resource (subject): http://www-kasm.nii.ac.jp/~takeda
     – Property (predicate): Creator
     – Value (object): “Hideaki Takeda”

                                              Creator
         http://www-kasm.nii.ac.jp/~takeda                               “Hideaki Takeda”



                      Resource               Property                 Value




                                                   Hideaki Takeda / National Institute of Informatics
RDF model
•   Creator of http://www-kasm.nii.ac.jp/~takeda is http://www.nii.ac.jp/staffid/123456 which
    has name “Hideaki Takeda” and email “takeda@nii.ac.jp” .

                                               Creator
         http://www-kasm.nii.ac.jp/~takeda                      http://www.nii.ac.jp/staffid/123456



                                                            name                     email




                                             “Hideaki Takeda”                     “takeda@nii.ac.jp”




                                                    Hideaki Takeda / National Institute of Informatics
RDF model
• Creator of http://www-kasm.nii.ac.jp/~takeda has name
  “Hideaki Takeda” email “takeda@nii.ac.jp” .
                                           Creator
     http://www-kasm.nii.ac.jp/~takeda



                                                        name                    email




                                         “Hideaki Takeda”                   “takeda@nii.ac.jp”




                                                Hideaki Takeda / National Institute of Informatics
RDF syntax
• Creator of http://www-kasm.nii.ac.jp/~takeda is “Hideaki Takeda”

                                            Creator
       http://www-kasm.nii.ac.jp/~takeda                               “Hideaki Takeda”



                    Resource               Property                 Value
           <?xml version="1.0"?>
           <rdf:RDF
                xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
                xmlns:dc="http://dublincore.org/2001/08/14/dces#">
              <rdf:Description about="http://www-kasm.nii.ac.jp/~takeda">
                   <dc:Creator>Hideaki Takeda</dc:Creator>
              </rdf:Description>
           </rdf:RDF>
           <rdf:RDF>
              <rdf:Description about="http://www-kasm.nii.ac.jp/~takeda">
                   <dc:Creator rdf:resource=“Hideaki Takeda” />
              </rdf:Description>
           </rdf:RDF>
                                                Hideaki Takeda / National Institute of Informatics
RDFS (RDF Schema)
• Stronger knowledge representation model
   – RDF: ER model,semantic net
   – RDF Schema: Frame model,object-oriented
     paradigm
      • Minimal definition
      • Property-centered approach
• RDFS is defined as extension of RDF
• RDFS gives definitions of RDF descriptions



                         Hideaki Takeda / National Institute of Informatics
RDFS
•   Class Definition
     – rdfs:Resource
     – rdfs:Class
     – rdf:Property
     – rdfs:ConstraintProperty
     – rdfs:Literal
•   Property Definition
     – rdf:type
     – rdfs:subClassOf
     – rdfs:subPropertyOf
     – rdfs:comment
     – rdfs:label
     – rdfs:seeAlso
     – rdfs:isDefinedBy
•   ConstraintProperty Definition
     – rdfs:range                                           RDFS Structure by RDF
     – rdfs:domain                  Resource Description Framework(RDF) Schema Specification 1.0
                                    http://www.w3.org/TR/2000/CR-rdf-schema-20000327/

                                             Hideaki Takeda / National Institute of Informatics
RDF Schema
• rdfs:Class                       Range
• rdfs:SubclassOf                     Only one

  – Detailed class                       No cardinality

  – Multiple                       Domain
  – Transivity                        Multiple (or)
• rdf:type
  – Indicate an instance of a
    class
• rdf:property
  – Attribute
• rdfs:subPropertyOf
  – Detailed property
  – Transivity
                                Hideaki Takeda / National Institute of Informatics
<rdf:RDF xml:lang="en"               RDF Schema
  xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" “The class of person”
                                                                                         Animal

                                                                                               s
  xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
                                                                        rdfs:comment
<rdfs:Class rdf:ID="Person">
                                                                                          Person
 <rdfs:comment>The class of people.</rdfs:comment>                             d                       d
 <rdfs:subClassOf rdf:resource="http://www.w3.org/          maritalStatus                      d
         2000/03/example/                                                r                                  ssn
   classes#Animal"/>                                                                      age
</rdfs:Class>                                                    MaritalStatus
                                                                                             r
<rdf:Property ID="maritalStatus">                                                                           rdfs:comment
 <rdfs:range rdf:resource="#MaritalStatus"/>                                            Integer
 <rdfs:domain rdf:resource="#Person"/>                       t
                                                                                   t
</rdf:Property>
                                                         Married                             “Social Security Number”
<rdf:Property ID="ssn">                                              t          Single
 <rdfs:comment>Social Security Number</rdfs:comment>            Windowed
 <rdfs:range                                                                                       t = rdf:type
     rdf:resource="http://www.w3.org/2000/03/example/classes#Integer"/>              t             d = rdfs:domain
 <rdfs:domain rdf:resource="#Person"/>                                           Divorced
                                                                                                   r = rdfs:range
</rdf:Property>                                                                                      = class
<rdf:Property ID="age">                                                                              = class instance
 <rdfs:range                                                                                         = property
     rdf:resource="http://www.w3.org/2000/03/example/classes#Integer"/>
 <rdfs:domain rdf:resource="#Person"/>
</rdf:Property>
<rdfs:Class rdf:ID="MaritalStatus"/>
<MaritalStatus rdf:ID="Married"/>
<MaritalStatus rdf:ID="Divorced"/>
                                                Resource Description Framework(RDF) Schema Specification 1.0
<MaritalStatus rdf:ID="Single"/>
                                                http://www.w3.org/TR/2000/CR-rdf-schema-20000327/
<MaritalStatus rdf:ID="Widowed"/>
</rdf:RDF>                                             Hideaki Takeda / National Institute of Informatics
OWL(Web Ontology Language)
•   More general knowledge representation
•   Based on Description Logics
•   Features
     – Class
         • Necessary condition / necessary and sufficient condition
         • Class expression:
              – Constraint by property
                  » Like slot definition of a class
                  » Type constraint (all/some), cardinality, typed cardinality
              – Logical operation of classes: union, intersection, negation
     – Property
         • Multiple ranges and domains
         • Specifying meta-property
     – Import of definitions


                                           Hideaki Takeda / National Institute of Informatics
Linked Data




     Hideaki Takeda / National Institute of Informatics
Linked Data
• What is Linked Data?
• The State-of-the-Art of Linked Data
  – Linking Open Data (LOD)
• How to use Linked Data
  – Linked Data Browser
  – Linked Data Search Engine
  – Linked Data Applications
• How to use RDF
  – RDFa
  – SPARQL


                              Hideaki Takeda / National Institute of Informatics
Linked Data
• What is Linked Data?
• The State-of-the-Art of Linked Data
  – Linking Open Data (LOD)
• How to use Linked Data
  – Linked Data Browser
  – Linked Data Search Engine
  – Linked Data Applications
• How to use RDF
  – RDFa
  – SPARQL


                              Hideaki Takeda / National Institute of Informatics
Architecture for the Semantic Web
   The world of classes (Ontologies)
   The world of instances
    (Linked Data)




           Tim Berners-Lee http://www.w3.org/2002/Talks/09-lcs-sweb-tbl/
                                          Hideaki Takeda / National Institute of Informatics
Layers of Semantic Web
• Ontology
   – Descriptions on classes
   – RDFS, OWL
   – Challenges for ontology building
       • Ontology building is difficult by nature
           – Consistency, comprehensiveness, logicality
       • Alignment of ontologies is more difficult


  Descriptions on classes
                                     Ontology

  インスタンスに関する記述
                                     Linked Data


                            Tim Berners-Lee http://www.w3.org/2002/Talks/09-lcs-sweb-tbl/
                                               Hideaki Takeda / National Institute of Informatics
Layers of Semantic Web
• Linked Data
   – Descriptions on instances (individuals)
   – RDF + (RDFS, OWL)
   – Pros for Linked Data
       • Easy to write (mainly fact description)
       • Easy to link (fact to fact link)
   – Cons for Linked Data
       • Difficult to describe complex structures
       • Still need for class description (-> ontology)
   Descriptions on classes
                                      Ontology

  Description on instances
                                      Linked Data


                             Tim Berners-Lee http://www.w3.org/2002/Talks/09-lcs-sweb-tbl/
                                                Hideaki Takeda / National Institute of Informatics
Linked Data
   Linked Data is “Web of Data”
     – Data published as RDF
     – Can refer from outside
• The four rules for Linked Data




                             Hideaki Takeda / National Institute of Informatics
Linked Data
• The four rules for Linked Data
   – Use URIs as names for things
       • Give a URI to every object in the world!
   – Use HTTP URIs so that people can look up those names.
       • Don’t use URN
   – When someone looks up a URI, provide useful information, using the
     standards (RDF, SPARQL)
       • Provide machine-readable data for URI
   – Include links to other URIs. so that they can discover more things.
       • Make data linked together just like Web




   Linked Data, TBL, http://www.w3.org/DesignIssues/LinkedData.html

                                                   Hideaki Takeda / National Institute of Informatics
Linked Data
• What is Linked Data?
• The State-of-the-Art of Linked Data
  – Linking Open Data (LOD)
• How to use Linked Data
  – Linked Data Browser
  – Linked Data Search Engine
  – Linked Data Applications
• How to use RDF
  – RDFa
  – SPARQL


                              Hideaki Takeda / National Institute of Informatics
Linking Open Data (LOD)
•   The project to collect published Linked Data
•   Major Linked Data
•   (Translated from the original resources)
     – Dbpedia (Wikipedia) 270 Million Triples
     – Geonames:Geo names and their latitudes and longitudes, 93 Million
        Triples
     – MusicBrainz:Music
     – WordNet:Dictionary
     – DBLP bibliography:Bibliography for technical papers. 28 Million Triples
     – US Census Data: 1 Billion Triples
•   (Crawling)
     – FOAF (Friend Of A Friend)
•   (Wrapper)
     – Flickr Wrapper


                                         Hideaki Takeda / National Institute of Informatics
Hideaki Takeda / National Institute of Informatics
Hideaki Takeda / National Institute of Informatics
LOD Cloud
(Linking Open Data)




         Hideaki Takeda / National Institute of Informatics
http://dbpedia.org/page/Tokyo




Hideaki Takeda / National Institute of Informatics
http://en.wikipedia.org/wiki/Tokyo




Hideaki Takeda / National Institute of Informatics
Hideaki Takeda / National Institute of Informatics
Hideaki Takeda / National Institute of Informatics
Linked Data
• What is Linked Data?
• The State-of-the-Art of Linked Data
  – Linking Open Data (LOD)
• How to use Linked Data
  – Linked Data Browser
  – Linked Data Search Engine
  – Linked Data Applications
• How to use RDF
  – RDFa
  – SPARQL


                              Hideaki Takeda / National Institute of Informatics
How to use Linked Data

Linked Data            Linked Data                Linked Data
  Browser                Mashup                  Search Engine




Things        Things      Things              Things               Things




                           Hideaki Takeda / National Institute of Informatics
Linked Data
• What is Linked Data?
• The State-of-the-Art of Linked Data
  – Linking Open Data (LOD)
• How to use Linked Data
  – Linked Data Browser
  – Linked Data Search Engine
  – Linked Data Applications
• How to use RDF
  – RDFa
  – SPARQL


                              Hideaki Takeda / National Institute of Informatics
Linked Data Browser
• Browse linked data just as browsing web pages
  – Show RDF data
  – Prompt links to follow
• System/Service
  – Mables
     • Display data by following links
  – Tabulator
     • Firefox plugin/online
     • Adding information in a single page
  – Sig.ma
     • Showing RDF resources which can be operated



                                  Hideaki Takeda / National Institute of Informatics
Hideaki Takeda / National Institute of Informatics
Tabulator




    Hideaki Takeda / National Institute of Informatics
Hideaki Takeda / National Institute of Informatics
Linked Data
• What is Linked Data?
• The State-of-the-Art of Linked Data
  – Linking Open Data (LOD)
• How to use Linked Data
  – Linked Data Browser
  – Linked Data Search Engine
  – Linked Data Applications
• How to use RDF
  – RDFa
  – SPARQL


                              Hideaki Takeda / National Institute of Informatics
Linked Data Search Engine
• Search RDF data with crawled data set
  – Swoogle
  – Sindice
  – watson




                        Hideaki Takeda / National Institute of Informatics
http://sindice.com/




Hideaki Takeda / National Institute of Informatics
Hideaki Takeda / National Institute of Informatics
Linked Data
• What is Linked Data?
• The State-of-the-Art of Linked Data
  – Linking Open Data (LOD)
• How to use Linked Data
  – Linked Data Browser
  – Linked Data Search Engine
  – Linked Data Applications
• How to use RDF
  – RDFa
  – SPARQL


                              Hideaki Takeda / National Institute of Informatics
How to use Linked Data
• Semantic Data Mash-up Applications

  – SemaPlorer
     • http://btc.isweb.uni-koblenz.de/
  – Dbpedia Mobile
     • http://wiki.dbpedia.org/DBpediaMobile
  – Bio2RDF
     • http://bio2rdf.org/



                              Hideaki Takeda / National Institute of Informatics
DBpedia Mobile




                 Hideaki Takeda / National Institute of Informatics
Bio2RDF
• Search LOD in
  bioscience
• Translate data into RDF
  if not




                            Hideaki Takeda / National Institute of Informatics
Bio2RDF




   Hideaki Takeda / National Institute of Informatics
Linked Data
• What is Linked Data?
• The State-of-the-Art of Linked Data
  – Linking Open Data (LOD)
• How to use Linked Data
  – Linked Data Browser
  – Linked Data Search Engine
  – Linked Data Applications
• How to use RDF
  – RDFa
  – SPARQL


                              Hideaki Takeda / National Institute of Informatics
RDFa
• Add extra structured content to the (X)HTML
  pages
  – adds new (X)HTML/XML attributes
     • “RDF in attributes”
  – Programs can extract those and turn into RDF
  – Flexibility for using Literals and URI resources




                             Hideaki Takeda / National Institute of Informatics
Principles of RDFa
• RDF contents are defined through XML
  attributes (no elements)
• XML/HTML tree structure is used
• Various attributes are defined by RDFa
  – Some attributes (@href, @rel) are also reused
• The text content can be also reused




                          Hideaki Takeda / National Institute of Informatics
Examples
 http://example.com/alice/posts/trouble_with_bob
 <div xmlns:dc="http://purl.org/dc/elements/1.1/">
  <h2 property="dc:title">The trouble with Bob</h2>
  <h3 property="dc:creator">Alice</h3>
   ...
 </div>




In N3
<http://www.example.com/alice/posts/trouble_with_bob>
 <http://purl.org/dc/elements/1.1/title> "The Trouble with Bob";
 <http://purl.org/dc/elements/1.1/creator> "Alice" .



                                       Hideaki Takeda / National Institute of Informatics
<div xmlns:dc="http://purl.org/dc/elements/1.1/">
 <div about="/alice/posts/trouble_with_bob">
   <h2 property="dc:title">The trouble with Bob</h2>
      <h3 property="dc:creator">Alice</h3>
  ...
 </div>
 <div about="/alice/posts/jos_barbecue">
    <h2 property="dc:title">Jo's Barbecue</h2>
      <h3 property="dc:creator">Eve</h3>
    ...
 </div>
  ...
</div>




                                  Hideaki Takeda / National Institute of Informatics
<div about="/alice/posts/trouble_with_bob">
 <h2 property="dc:title">The trouble with Bob</h2>
   The trouble with Bob is that he takes much better photos than I do:
 <div about="http://example.com/bob/photos/sunset.jpg">
  <img src="http://example.com/bob/photos/sunset.jpg" />
  <span property="dc:title">Beautiful Sunset</span>
   by
   <span property="dc:creator">Bob</span>.
  </div>
</div>




                                                   Hideaki Takeda / National Institute of Informatics
<div typeof="foaf:Person" xmlns:foaf="http://xmlns.com/foaf/0.1/">
 <p property="foaf:name"> Alice Birpemswick </p>
 <p> Email: <a rel="foaf:mbox" href="mailto:alice@example.com">alice@example.com</a></p>
 <p> Phone: <a rel="foaf:phone" href="tel:+1-617-555-7332">+1 617.555.7332</a> </p>
</div>




                                             Hideaki Takeda / National Institute of Informatics
<div xmlns:foaf="http://xmlns.com/foaf/0.1/" about="#me" rel="foaf:knows">
 <ul>
  <li typeof="foaf:Person">
    <a property="foaf:name" rel="foaf:homepage" href="http://example.com/bob">Bob</a>
  </li>
  <li typeof="foaf:Person">
    <a property="foaf:name" rel="foaf:homepage" href="http://example.com/eve">Eve</a>
  </li>
  <li typeof="foaf:Person">
    <a property="foaf:name" rel="foaf:homepage" href="http://example.com/manu">Manu</a>
  </li>
 </ul>
</div>




                                            Hideaki Takeda / National Institute of Informatics
Using RDFa
• RDF Validator
  – http://validator.w3.org/
• RDF Distiller
  – http://www.w3.org/2007/08/pyRdfa/




                           Hideaki Takeda / National Institute of Informatics
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.0//EN"
  "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
  xmlns:foaf="http://xmlns.com/foaf/0.1/"              <body about="http://example.org/john-d/#me">
  xmlns:dc="http://purl.org/dc/elements/1.1/"             <h1>John's Home Page</h1>
  version="XHTML+RDFa 1.0" xml:lang="en">                 <p>My name is <span property="foaf:nick">John D</span>
 <head>                                                    and I like
  <title>John's Home Page</title>                          <a href="http://www.neubauten.org/" rel="foaf:interest"
  <base href="http://example.org/john-d/" />                xml:lang="de">Einsturzende Neubauten</a>.
  <meta property="dc:creator" content="Jonathan Doe" /> </p>
  <link rel="foaf:primaryTopic"                           <p>
     href="http://example.org/john-d/#me" />               My <span rel="foaf:interest"
 </head>                                               resource="urn:ISBN:0752820907">favorite
                                                           book is the inspiring <span about="urn:ISBN:0752820907">
                                                          <cite property="dc:title">Weaving the Web</cite> by
                                                           <span property="dc:creator">Tim Berners-Lee</span></span>
                                                          </span>
                                                          </p>
                                                        </body>
                                                       </html>

 <http://example.org/john-d/> <http://xmlns.com/foaf/0.1/primaryTopic> <http://example.org/john-
 d/#me>.
 <http://example.org/john-d/> <http://purl.org/dc/elements/1.1/creator> "Jonathan Doe"@en.
 <http://example.org/john-d/#me> <http://xmlns.com/foaf/0.1/nick> "John D"@en.
 <http://example.org/john-d/#me> <http://xmlns.com/foaf/0.1/interest> <http://www.neubauten.org/>.
 <http://example.org/john-d/#me> <http://xmlns.com/foaf/0.1/interest> <urn:ISBN:0752820907>.
 <urn:ISBN:0752820907> <http://purl.org/dc/elements/1.1/title> "Weaving the Web"@en.
 <urn:ISBN:0752820907> <http://purl.org/dc/elements/1.1/creator> "Tim Berners-Lee"@en.
                                                         Hideaki Takeda / National Institute of Informatics
Summary
• Linked Data is the practical application of
  Semantic Web
  – The bottom-up approach
  – Postpone the ontology issue
• A technological solution for data sharing
  – Data science
  – Open Government



                          Hideaki Takeda / National Institute of Informatics

More Related Content

What's hot

Neno/Fhat: Semantic Network Programming Language and Virtual Machine Specific...
Neno/Fhat: Semantic Network Programming Language and Virtual Machine Specific...Neno/Fhat: Semantic Network Programming Language and Virtual Machine Specific...
Neno/Fhat: Semantic Network Programming Language and Virtual Machine Specific...Marko Rodriguez
 
Linked Data and Knowledge Graphs -- Constructing and Understanding Knowledge ...
Linked Data and Knowledge Graphs -- Constructing and Understanding Knowledge ...Linked Data and Knowledge Graphs -- Constructing and Understanding Knowledge ...
Linked Data and Knowledge Graphs -- Constructing and Understanding Knowledge ...Jeff Z. Pan
 
Corrib.org - OpenSource and Research
Corrib.org - OpenSource and ResearchCorrib.org - OpenSource and Research
Corrib.org - OpenSource and Researchadameq
 
Tutorial on Semantic Digital Libraries (WWW'2007)
Tutorial on Semantic Digital Libraries (WWW'2007)Tutorial on Semantic Digital Libraries (WWW'2007)
Tutorial on Semantic Digital Libraries (WWW'2007)Sebastian Ryszard Kruk
 
The Semantic Web
The Semantic WebThe Semantic Web
The Semantic WebBarry Smith
 
Ontology development in protégé-آنتولوژی در پروتوغه
Ontology development in protégé-آنتولوژی در پروتوغهOntology development in protégé-آنتولوژی در پروتوغه
Ontology development in protégé-آنتولوژی در پروتوغهsadegh salehi
 
Owl web ontology language
Owl  web ontology languageOwl  web ontology language
Owl web ontology languagehassco2011
 

What's hot (9)

Neno/Fhat: Semantic Network Programming Language and Virtual Machine Specific...
Neno/Fhat: Semantic Network Programming Language and Virtual Machine Specific...Neno/Fhat: Semantic Network Programming Language and Virtual Machine Specific...
Neno/Fhat: Semantic Network Programming Language and Virtual Machine Specific...
 
Linked Data and Knowledge Graphs -- Constructing and Understanding Knowledge ...
Linked Data and Knowledge Graphs -- Constructing and Understanding Knowledge ...Linked Data and Knowledge Graphs -- Constructing and Understanding Knowledge ...
Linked Data and Knowledge Graphs -- Constructing and Understanding Knowledge ...
 
Introduction to RDF
Introduction to RDFIntroduction to RDF
Introduction to RDF
 
Corrib.org - OpenSource and Research
Corrib.org - OpenSource and ResearchCorrib.org - OpenSource and Research
Corrib.org - OpenSource and Research
 
Tutorial on Semantic Digital Libraries (WWW'2007)
Tutorial on Semantic Digital Libraries (WWW'2007)Tutorial on Semantic Digital Libraries (WWW'2007)
Tutorial on Semantic Digital Libraries (WWW'2007)
 
Semantic Web
Semantic WebSemantic Web
Semantic Web
 
The Semantic Web
The Semantic WebThe Semantic Web
The Semantic Web
 
Ontology development in protégé-آنتولوژی در پروتوغه
Ontology development in protégé-آنتولوژی در پروتوغهOntology development in protégé-آنتولوژی در پروتوغه
Ontology development in protégé-آنتولوژی در پروتوغه
 
Owl web ontology language
Owl  web ontology languageOwl  web ontology language
Owl web ontology language
 

Similar to General Introduction for Semantic Web and Linked Open Data

A review of the state of the art in Machine Learning on the Semantic Web
A review of the state of the art in Machine Learning on the Semantic WebA review of the state of the art in Machine Learning on the Semantic Web
A review of the state of the art in Machine Learning on the Semantic WebSimon Price
 
ontology.ppt
ontology.pptontology.ppt
ontology.pptPrerak10
 
Structural Metadata in RDF (IS575)
Structural Metadata in RDF (IS575)Structural Metadata in RDF (IS575)
Structural Metadata in RDF (IS575)Robert Sanderson
 
Semantic Web: introduction & overview
Semantic Web: introduction & overviewSemantic Web: introduction & overview
Semantic Web: introduction & overviewAmit Sheth
 
Union catalogandknowledge engineering for teldap
Union catalogandknowledge engineering for teldapUnion catalogandknowledge engineering for teldap
Union catalogandknowledge engineering for teldapAAT Taiwan
 
Linked data demystified:Practical efforts to transform CONTENTDM metadata int...
Linked data demystified:Practical efforts to transform CONTENTDM metadata int...Linked data demystified:Practical efforts to transform CONTENTDM metadata int...
Linked data demystified:Practical efforts to transform CONTENTDM metadata int...Cory Lampert
 
06 gioca-ontologies
06 gioca-ontologies06 gioca-ontologies
06 gioca-ontologiesnidzokus
 
The Mysteries of Metadata
The Mysteries of MetadataThe Mysteries of Metadata
The Mysteries of MetadataAmit Sheth
 
The Semantic Web #4 - RDF (1)
The Semantic Web #4 - RDF (1)The Semantic Web #4 - RDF (1)
The Semantic Web #4 - RDF (1)Myungjin Lee
 
SemWeb Fundamentals - Info Linking & Layering in Practice
SemWeb Fundamentals - Info Linking & Layering in PracticeSemWeb Fundamentals - Info Linking & Layering in Practice
SemWeb Fundamentals - Info Linking & Layering in PracticeDan Brickley
 
Introduction to Metadata for IDAH Fellows
Introduction to Metadata for IDAH FellowsIntroduction to Metadata for IDAH Fellows
Introduction to Metadata for IDAH FellowsJenn Riley
 
Breaking Down Walls in Enterprise with Social Semantics
Breaking Down Walls in Enterprise with Social SemanticsBreaking Down Walls in Enterprise with Social Semantics
Breaking Down Walls in Enterprise with Social SemanticsJohn Breslin
 
RDFa: introduction, comparison with microdata and microformats and how to use it
RDFa: introduction, comparison with microdata and microformats and how to use itRDFa: introduction, comparison with microdata and microformats and how to use it
RDFa: introduction, comparison with microdata and microformats and how to use itJose Luis Lopez Pino
 
Why I don't use Semantic Web technologies anymore, event if they still influe...
Why I don't use Semantic Web technologies anymore, event if they still influe...Why I don't use Semantic Web technologies anymore, event if they still influe...
Why I don't use Semantic Web technologies anymore, event if they still influe...Gautier Poupeau
 
Intro to the semantic web (for libraries)
Intro to the semantic web (for libraries) Intro to the semantic web (for libraries)
Intro to the semantic web (for libraries) robin fay
 

Similar to General Introduction for Semantic Web and Linked Open Data (20)

A review of the state of the art in Machine Learning on the Semantic Web
A review of the state of the art in Machine Learning on the Semantic WebA review of the state of the art in Machine Learning on the Semantic Web
A review of the state of the art in Machine Learning on the Semantic Web
 
Schema and Identity for Linked Data
Schema and Identity for Linked DataSchema and Identity for Linked Data
Schema and Identity for Linked Data
 
LOD Examplar - LOD Museum -
LOD Examplar - LOD Museum -LOD Examplar - LOD Museum -
LOD Examplar - LOD Museum -
 
ontology.ppt
ontology.pptontology.ppt
ontology.ppt
 
Building DBpedia Japanese and Linked Data Cloud in Japanese
Building DBpedia Japanese and Linked Data Cloud in JapaneseBuilding DBpedia Japanese and Linked Data Cloud in Japanese
Building DBpedia Japanese and Linked Data Cloud in Japanese
 
Structural Metadata in RDF (IS575)
Structural Metadata in RDF (IS575)Structural Metadata in RDF (IS575)
Structural Metadata in RDF (IS575)
 
Semantic Web: introduction & overview
Semantic Web: introduction & overviewSemantic Web: introduction & overview
Semantic Web: introduction & overview
 
Union catalogandknowledge engineering for teldap
Union catalogandknowledge engineering for teldapUnion catalogandknowledge engineering for teldap
Union catalogandknowledge engineering for teldap
 
Linked data demystified:Practical efforts to transform CONTENTDM metadata int...
Linked data demystified:Practical efforts to transform CONTENTDM metadata int...Linked data demystified:Practical efforts to transform CONTENTDM metadata int...
Linked data demystified:Practical efforts to transform CONTENTDM metadata int...
 
06 gioca-ontologies
06 gioca-ontologies06 gioca-ontologies
06 gioca-ontologies
 
Metadata is back!
Metadata is back!Metadata is back!
Metadata is back!
 
The Mysteries of Metadata
The Mysteries of MetadataThe Mysteries of Metadata
The Mysteries of Metadata
 
The Semantic Web #4 - RDF (1)
The Semantic Web #4 - RDF (1)The Semantic Web #4 - RDF (1)
The Semantic Web #4 - RDF (1)
 
SemWeb Fundamentals - Info Linking & Layering in Practice
SemWeb Fundamentals - Info Linking & Layering in PracticeSemWeb Fundamentals - Info Linking & Layering in Practice
SemWeb Fundamentals - Info Linking & Layering in Practice
 
Introduction to Metadata for IDAH Fellows
Introduction to Metadata for IDAH FellowsIntroduction to Metadata for IDAH Fellows
Introduction to Metadata for IDAH Fellows
 
Breaking Down Walls in Enterprise with Social Semantics
Breaking Down Walls in Enterprise with Social SemanticsBreaking Down Walls in Enterprise with Social Semantics
Breaking Down Walls in Enterprise with Social Semantics
 
Semantic Web Technology
Semantic Web TechnologySemantic Web Technology
Semantic Web Technology
 
RDFa: introduction, comparison with microdata and microformats and how to use it
RDFa: introduction, comparison with microdata and microformats and how to use itRDFa: introduction, comparison with microdata and microformats and how to use it
RDFa: introduction, comparison with microdata and microformats and how to use it
 
Why I don't use Semantic Web technologies anymore, event if they still influe...
Why I don't use Semantic Web technologies anymore, event if they still influe...Why I don't use Semantic Web technologies anymore, event if they still influe...
Why I don't use Semantic Web technologies anymore, event if they still influe...
 
Intro to the semantic web (for libraries)
Intro to the semantic web (for libraries) Intro to the semantic web (for libraries)
Intro to the semantic web (for libraries)
 

More from National Institute of Informatics (NII)

趙簡単LOD入門 〜デジタル庁をデジタル化する〜 (改訂版)
趙簡単LOD入門 〜デジタル庁をデジタル化する〜 (改訂版)趙簡単LOD入門 〜デジタル庁をデジタル化する〜 (改訂版)
趙簡単LOD入門 〜デジタル庁をデジタル化する〜 (改訂版)National Institute of Informatics (NII)
 
趙簡単LOD入門 〜デジタル庁をデジタル化する〜
趙簡単LOD入門 〜デジタル庁をデジタル化する〜趙簡単LOD入門 〜デジタル庁をデジタル化する〜
趙簡単LOD入門 〜デジタル庁をデジタル化する〜National Institute of Informatics (NII)
 
セマンティックWeb技術を用いた農業分野の標準語彙の構築
セマンティックWeb技術を用いた農業分野の標準語彙の構築セマンティックWeb技術を用いた農業分野の標準語彙の構築
セマンティックWeb技術を用いた農業分野の標準語彙の構築National Institute of Informatics (NII)
 
NII研究100連発 ウェブと人工知能の融合 -人間の創造性を刺激するコンピュータ
NII研究100連発 ウェブと人工知能の融合 -人間の創造性を刺激するコンピュータ NII研究100連発 ウェブと人工知能の融合 -人間の創造性を刺激するコンピュータ
NII研究100連発 ウェブと人工知能の融合 -人間の創造性を刺激するコンピュータ National Institute of Informatics (NII)
 
Presenting and Preserving the Change in Taxonomic Knowledge for Linked Data
Presenting and Preserving the Change in Taxonomic Knowledge for Linked DataPresenting and Preserving the Change in Taxonomic Knowledge for Linked Data
Presenting and Preserving the Change in Taxonomic Knowledge for Linked DataNational Institute of Informatics (NII)
 
共通語彙の構築の基本的な考え方と方法 〜研究データのために語彙・スキーマを作るには〜
共通語彙の構築の基本的な考え方と方法 〜研究データのために語彙・スキーマを作るには〜共通語彙の構築の基本的な考え方と方法 〜研究データのために語彙・スキーマを作るには〜
共通語彙の構築の基本的な考え方と方法 〜研究データのために語彙・スキーマを作るには〜National Institute of Informatics (NII)
 
研究データ利活用に関する国内活動及び国際動向について
研究データ利活用に関する国内活動及び国際動向について研究データ利活用に関する国内活動及び国際動向について
研究データ利活用に関する国内活動及び国際動向についてNational Institute of Informatics (NII)
 

More from National Institute of Informatics (NII) (20)

趙簡単LOD入門 〜デジタル庁をデジタル化する〜 (改訂版)
趙簡単LOD入門 〜デジタル庁をデジタル化する〜 (改訂版)趙簡単LOD入門 〜デジタル庁をデジタル化する〜 (改訂版)
趙簡単LOD入門 〜デジタル庁をデジタル化する〜 (改訂版)
 
趙簡単LOD入門 〜デジタル庁をデジタル化する〜
趙簡単LOD入門 〜デジタル庁をデジタル化する〜趙簡単LOD入門 〜デジタル庁をデジタル化する〜
趙簡単LOD入門 〜デジタル庁をデジタル化する〜
 
"分人"型社会とAI
"分人"型社会とAI"分人"型社会とAI
"分人"型社会とAI
 
セマンティックWeb技術を用いた農業分野の標準語彙の構築
セマンティックWeb技術を用いた農業分野の標準語彙の構築セマンティックWeb技術を用いた農業分野の標準語彙の構築
セマンティックWeb技術を用いた農業分野の標準語彙の構築
 
研究オープンデータにおける大学と研究者の役割
研究オープンデータにおける大学と研究者の役割研究オープンデータにおける大学と研究者の役割
研究オープンデータにおける大学と研究者の役割
 
NII研究100連発 ウェブと人工知能の融合 -人間の創造性を刺激するコンピュータ
NII研究100連発 ウェブと人工知能の融合 -人間の創造性を刺激するコンピュータ NII研究100連発 ウェブと人工知能の融合 -人間の創造性を刺激するコンピュータ
NII研究100連発 ウェブと人工知能の融合 -人間の創造性を刺激するコンピュータ
 
Presenting and Preserving the Change in Taxonomic Knowledge for Linked Data
Presenting and Preserving the Change in Taxonomic Knowledge for Linked DataPresenting and Preserving the Change in Taxonomic Knowledge for Linked Data
Presenting and Preserving the Change in Taxonomic Knowledge for Linked Data
 
Crop vocabulary (CVO): Core vocabulary of crop names
Crop vocabulary (CVO): Core vocabulary of crop namesCrop vocabulary (CVO): Core vocabulary of crop names
Crop vocabulary (CVO): Core vocabulary of crop names
 
ORCIDとオープンサイエンス
ORCIDとオープンサイエンスORCIDとオープンサイエンス
ORCIDとオープンサイエンス
 
How to build ontologies - a case study of Agriculture Activity Ontology
How to build ontologies - a case study of Agriculture Activity OntologyHow to build ontologies - a case study of Agriculture Activity Ontology
How to build ontologies - a case study of Agriculture Activity Ontology
 
LODとオープンデータ (DBpediaとIMIの周辺を中心に)
LODとオープンデータ(DBpediaとIMIの周辺を中心に)LODとオープンデータ(DBpediaとIMIの周辺を中心に)
LODとオープンデータ (DBpediaとIMIの周辺を中心に)
 
共通語彙の構築の基本的な考え方と方法 〜研究データのために語彙・スキーマを作るには〜
共通語彙の構築の基本的な考え方と方法 〜研究データのために語彙・スキーマを作るには〜共通語彙の構築の基本的な考え方と方法 〜研究データのために語彙・スキーマを作るには〜
共通語彙の構築の基本的な考え方と方法 〜研究データのために語彙・スキーマを作るには〜
 
Working with Global Infrastructure at a National Level
Working with Global Infrastructure at a National LevelWorking with Global Infrastructure at a National Level
Working with Global Infrastructure at a National Level
 
Activities of JaLC as a national service
Activities of JaLC as a national serviceActivities of JaLC as a national service
Activities of JaLC as a national service
 
Development and Application of Agriculture Ontologies
Development and Application of Agriculture Ontologies Development and Application of Agriculture Ontologies
Development and Application of Agriculture Ontologies
 
Design Process of Agriculture Ontologies
Design Process of Agriculture OntologiesDesign Process of Agriculture Ontologies
Design Process of Agriculture Ontologies
 
AIの未来 ~技術と社会の関係のダイナミクス~
AIの未来~技術と社会の関係のダイナミクス~AIの未来~技術と社会の関係のダイナミクス~
AIの未来 ~技術と社会の関係のダイナミクス~
 
Towards Knowledge-Enabled Society
Towards Knowledge-Enabled SocietyTowards Knowledge-Enabled Society
Towards Knowledge-Enabled Society
 
研究データ利活用に関する国内活動及び国際動向について
研究データ利活用に関する国内活動及び国際動向について研究データ利活用に関する国内活動及び国際動向について
研究データ利活用に関する国内活動及び国際動向について
 
オープンサイエンスとオープンデータ
オープンサイエンスとオープンデータオープンサイエンスとオープンデータ
オープンサイエンスとオープンデータ
 

Recently uploaded

Personalisation of Education by AI and Big Data - Lourdes Guàrdia
Personalisation of Education by AI and Big Data - Lourdes GuàrdiaPersonalisation of Education by AI and Big Data - Lourdes Guàrdia
Personalisation of Education by AI and Big Data - Lourdes GuàrdiaEADTU
 
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文中 央社
 
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...Nguyen Thanh Tu Collection
 
Observing-Correct-Grammar-in-Making-Definitions.pptx
Observing-Correct-Grammar-in-Making-Definitions.pptxObserving-Correct-Grammar-in-Making-Definitions.pptx
Observing-Correct-Grammar-in-Making-Definitions.pptxAdelaideRefugio
 
When Quality Assurance Meets Innovation in Higher Education - Report launch w...
When Quality Assurance Meets Innovation in Higher Education - Report launch w...When Quality Assurance Meets Innovation in Higher Education - Report launch w...
When Quality Assurance Meets Innovation in Higher Education - Report launch w...Gary Wood
 
Major project report on Tata Motors and its marketing strategies
Major project report on Tata Motors and its marketing strategiesMajor project report on Tata Motors and its marketing strategies
Major project report on Tata Motors and its marketing strategiesAmanpreetKaur157993
 
8 Tips for Effective Working Capital Management
8 Tips for Effective Working Capital Management8 Tips for Effective Working Capital Management
8 Tips for Effective Working Capital ManagementMBA Assignment Experts
 
SPLICE Working Group: Reusable Code Examples
SPLICE Working Group:Reusable Code ExamplesSPLICE Working Group:Reusable Code Examples
SPLICE Working Group: Reusable Code ExamplesPeter Brusilovsky
 
Đề tieng anh thpt 2024 danh cho cac ban hoc sinh
Đề tieng anh thpt 2024 danh cho cac ban hoc sinhĐề tieng anh thpt 2024 danh cho cac ban hoc sinh
Đề tieng anh thpt 2024 danh cho cac ban hoc sinhleson0603
 
How To Create Editable Tree View in Odoo 17
How To Create Editable Tree View in Odoo 17How To Create Editable Tree View in Odoo 17
How To Create Editable Tree View in Odoo 17Celine George
 
AIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptAIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptNishitharanjan Rout
 
The Story of Village Palampur Class 9 Free Study Material PDF
The Story of Village Palampur Class 9 Free Study Material PDFThe Story of Village Palampur Class 9 Free Study Material PDF
The Story of Village Palampur Class 9 Free Study Material PDFVivekanand Anglo Vedic Academy
 
ANTI PARKISON DRUGS.pptx
ANTI         PARKISON          DRUGS.pptxANTI         PARKISON          DRUGS.pptx
ANTI PARKISON DRUGS.pptxPoojaSen20
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSAnaAcapella
 
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfFICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfPondicherry University
 
Improved Approval Flow in Odoo 17 Studio App
Improved Approval Flow in Odoo 17 Studio AppImproved Approval Flow in Odoo 17 Studio App
Improved Approval Flow in Odoo 17 Studio AppCeline George
 

Recently uploaded (20)

Personalisation of Education by AI and Big Data - Lourdes Guàrdia
Personalisation of Education by AI and Big Data - Lourdes GuàrdiaPersonalisation of Education by AI and Big Data - Lourdes Guàrdia
Personalisation of Education by AI and Big Data - Lourdes Guàrdia
 
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
 
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
 
Observing-Correct-Grammar-in-Making-Definitions.pptx
Observing-Correct-Grammar-in-Making-Definitions.pptxObserving-Correct-Grammar-in-Making-Definitions.pptx
Observing-Correct-Grammar-in-Making-Definitions.pptx
 
When Quality Assurance Meets Innovation in Higher Education - Report launch w...
When Quality Assurance Meets Innovation in Higher Education - Report launch w...When Quality Assurance Meets Innovation in Higher Education - Report launch w...
When Quality Assurance Meets Innovation in Higher Education - Report launch w...
 
Major project report on Tata Motors and its marketing strategies
Major project report on Tata Motors and its marketing strategiesMajor project report on Tata Motors and its marketing strategies
Major project report on Tata Motors and its marketing strategies
 
8 Tips for Effective Working Capital Management
8 Tips for Effective Working Capital Management8 Tips for Effective Working Capital Management
8 Tips for Effective Working Capital Management
 
SPLICE Working Group: Reusable Code Examples
SPLICE Working Group:Reusable Code ExamplesSPLICE Working Group:Reusable Code Examples
SPLICE Working Group: Reusable Code Examples
 
Đề tieng anh thpt 2024 danh cho cac ban hoc sinh
Đề tieng anh thpt 2024 danh cho cac ban hoc sinhĐề tieng anh thpt 2024 danh cho cac ban hoc sinh
Đề tieng anh thpt 2024 danh cho cac ban hoc sinh
 
OS-operating systems- ch05 (CPU Scheduling) ...
OS-operating systems- ch05 (CPU Scheduling) ...OS-operating systems- ch05 (CPU Scheduling) ...
OS-operating systems- ch05 (CPU Scheduling) ...
 
VAMOS CUIDAR DO NOSSO PLANETA! .
VAMOS CUIDAR DO NOSSO PLANETA!                    .VAMOS CUIDAR DO NOSSO PLANETA!                    .
VAMOS CUIDAR DO NOSSO PLANETA! .
 
How To Create Editable Tree View in Odoo 17
How To Create Editable Tree View in Odoo 17How To Create Editable Tree View in Odoo 17
How To Create Editable Tree View in Odoo 17
 
Mattingly "AI & Prompt Design: Named Entity Recognition"
Mattingly "AI & Prompt Design: Named Entity Recognition"Mattingly "AI & Prompt Design: Named Entity Recognition"
Mattingly "AI & Prompt Design: Named Entity Recognition"
 
AIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptAIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.ppt
 
The Story of Village Palampur Class 9 Free Study Material PDF
The Story of Village Palampur Class 9 Free Study Material PDFThe Story of Village Palampur Class 9 Free Study Material PDF
The Story of Village Palampur Class 9 Free Study Material PDF
 
ANTI PARKISON DRUGS.pptx
ANTI         PARKISON          DRUGS.pptxANTI         PARKISON          DRUGS.pptx
ANTI PARKISON DRUGS.pptx
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
 
Supporting Newcomer Multilingual Learners
Supporting Newcomer  Multilingual LearnersSupporting Newcomer  Multilingual Learners
Supporting Newcomer Multilingual Learners
 
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfFICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
 
Improved Approval Flow in Odoo 17 Studio App
Improved Approval Flow in Odoo 17 Studio AppImproved Approval Flow in Odoo 17 Studio App
Improved Approval Flow in Odoo 17 Studio App
 

General Introduction for Semantic Web and Linked Open Data

  • 1. 2012 INTERNATIONAL ASIAN SUMMER SCHOOL IN LINKED DATA IASLOD 2012, August 13-17, 2012, KAIST, Daejeon, Korea General Introduction for Semantic Web and Linked Open Data Hideaki Takeda National Institute of Informatics takeda@nii.ac.jp Hideaki Takeda / National Institute of Informatics
  • 2. Semantic Web and Linked Data • Semantic Web – What is Semantic Web – How to realize Semantic Web • Metadata • RDF • RDFS • OWL • Linked Data – What is Linked Data? – The State-of-the-Art of Linked Data • Linking Open Data (LOD) – How to use Linked Data • Linked Data Browser • Linked Data Search Engine • Linked Data Applications – How to use RDF • RDFa – SPARQL Hideaki Takeda / National Institute of Informatics
  • 3. Semantic Web Hideaki Takeda / National Institute of Informatics
  • 4. The Aim of The Semantic Web • "The Semantic Web is an extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in cooperation." The Semantic Web, Scientific American, May 2001, Tim Berners-Lee, James Hendler and Ora Lassila • The Semantic Web is a vision: the idea of having data on the web defined and linked in a way that it can be used by machines not just for display purposes, but for automation, integration and reuse of data across various applications. http://www.w3.org/2001/sw/ Hideaki Takeda / National Institute of Informatics
  • 5. Semantic Web • Realization of various information exchanging via Web Automation 自動化 Integration 統合 Re-use of data データの再利用 Hideaki Takeda / National Institute of Informatics
  • 6. Next Generation Web? • Evolution of Web – HTML: Web for Display – XML: Web with Syntax – ?? : Web with Semantics • Why should we embed semantics into Web? From – Web for Human To – Web for human and machines cf. Web for machines Hideaki Takeda / National Institute of Informatics
  • 7. A brief introduction of XML • Limitation of HTML – Chaos by mixture of displaying and text structures • e.g., – <h3></h3> should be used for “the third-level heading”, but are often used just for bigger fonts – <b></b> is specifying “bold” , not “emphasis”. – Fixed Structure • e.g., – If you need <h7></h7>…. – I need a structure just for my data <h1> A list of lectures</h1> <h2> Knowledge Sharing Systems</h2> <h3> Lecturer: Hideaki Takeda</h3> <h3>Wednesday 3rd</h3> Hideaki Takeda / National Institute of Informatics
  • 8. XML • XML(eXtensible Markup Language) – Can define original tags – Represent logical structures of data • DTD – Do not include style information <lecturelist> • XST <lecture> <title id=1234> Knowledge Sharing Systems</title> <lecturer> Hideaki Takeda</lecturer> <schedule> <week>Wednesday</week> <time>3rd</time> </lecture> ... </lecturelist> Hideaki Takeda / National Institute of Informatics
  • 9. Whey is XML not sufficient? <person> <個人> <name> Hideaki Takeda</name> <名前>Hideaki Takeda</名前> <age> 20</age> <年齢> 20</年齢> </person> </個人> • What are specified by “person” and “name” ? • Is “name” and “名前” the same? • Is this description sufficient as a description for “person”? • … • In short, syntax alone cannot solve these problems Hideaki Takeda / National Institute of Informatics
  • 10. Architecture for the Semantic Web Tim Berners-Lee http://www.w3.org/2002/Talks/09-lcs-sweb-tbl/ Hideaki Takeda / National Institute of Informatics
  • 11. How to describe “meaning”? • Need to describe “information on information” – “Meaning of something” is a description (“meaning”) to a description (“something”) in computers – Metadata • Data about data • Need to architecture for common understanding – Syntax (language or scheme) – Vocabulary (ontology) Hideaki Takeda / National Institute of Informatics
  • 12. Metadata • What is metadata? – Data about data – What one can say about any information object • What is described as metadata? – Content relates to what the object contains or is about, and is intrinsic to an information object. – Context indicates the who, what, why, where, how aspects associated with the object's creation and is extrinsic to an information object. – Structure relates to the formal set of associations within or among individual information objects and can be intrinsic or extrinsic Setting the State, Anne J.Gilliand-Swetland, Introduction to Metadata – Pathways to Digital Information, Murthsa Baca (ed.), Getty Information Institute. Hideaki Takeda / National Institute of Informatics
  • 13. Metadata • Metadata to individual information objects – Bibliography,Dublin Core • Metadata to part or structure of information objects – Drawings,RDF,RDFS, OWL Type:tractor Owner:Taro Product year:2002 Body Axis: Connect body to wheel Wheel Hideaki Takeda / National Institute of Informatics
  • 14. A Layer model for Semantic Web • RDF (Resource Description Framework) – The most primitive model for metadata description • SVO model • Entity-Relation Model • Semantic net • RDF Schema – Addition of “concept” to RDF • class-subclass,constraints • OWL – More general concept description language • Logical consistency • Various class expressions • Various constraints • DAML-S – Descriptions on processes Tim Berners-Lee http://www.w3.org/2002/Talks/09-lcs-sweb-tbl/ Hideaki Takeda / National Institute of Informatics
  • 15. RDF (Resource Description Framework) • A framework to describe metadata • Separation of model and syntax • W3C Recommendation (2004) Hideaki Takeda / National Institute of Informatics
  • 16. RDF Model • Element – Resource: • URI(Universal Resource Identifier) • Literal(string) – No need to be specified by Web – Property: • Attribute when describing resources • URI or Literal just as Resource – Statement: triad of resource, property, and resource Hideaki Takeda / National Institute of Informatics
  • 17. RDF model • Statement – Creator of http://www-kasm.nii.ac.jp/~takeda is “Hideaki Takeda” • Structure – Resource (subject): http://www-kasm.nii.ac.jp/~takeda – Property (predicate): Creator – Value (object): “Hideaki Takeda” Creator http://www-kasm.nii.ac.jp/~takeda “Hideaki Takeda” Resource Property Value Hideaki Takeda / National Institute of Informatics
  • 18. RDF model • Creator of http://www-kasm.nii.ac.jp/~takeda is http://www.nii.ac.jp/staffid/123456 which has name “Hideaki Takeda” and email “takeda@nii.ac.jp” . Creator http://www-kasm.nii.ac.jp/~takeda http://www.nii.ac.jp/staffid/123456 name email “Hideaki Takeda” “takeda@nii.ac.jp” Hideaki Takeda / National Institute of Informatics
  • 19. RDF model • Creator of http://www-kasm.nii.ac.jp/~takeda has name “Hideaki Takeda” email “takeda@nii.ac.jp” . Creator http://www-kasm.nii.ac.jp/~takeda name email “Hideaki Takeda” “takeda@nii.ac.jp” Hideaki Takeda / National Institute of Informatics
  • 20. RDF syntax • Creator of http://www-kasm.nii.ac.jp/~takeda is “Hideaki Takeda” Creator http://www-kasm.nii.ac.jp/~takeda “Hideaki Takeda” Resource Property Value <?xml version="1.0"?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://dublincore.org/2001/08/14/dces#"> <rdf:Description about="http://www-kasm.nii.ac.jp/~takeda"> <dc:Creator>Hideaki Takeda</dc:Creator> </rdf:Description> </rdf:RDF> <rdf:RDF> <rdf:Description about="http://www-kasm.nii.ac.jp/~takeda"> <dc:Creator rdf:resource=“Hideaki Takeda” /> </rdf:Description> </rdf:RDF> Hideaki Takeda / National Institute of Informatics
  • 21. RDFS (RDF Schema) • Stronger knowledge representation model – RDF: ER model,semantic net – RDF Schema: Frame model,object-oriented paradigm • Minimal definition • Property-centered approach • RDFS is defined as extension of RDF • RDFS gives definitions of RDF descriptions Hideaki Takeda / National Institute of Informatics
  • 22. RDFS • Class Definition – rdfs:Resource – rdfs:Class – rdf:Property – rdfs:ConstraintProperty – rdfs:Literal • Property Definition – rdf:type – rdfs:subClassOf – rdfs:subPropertyOf – rdfs:comment – rdfs:label – rdfs:seeAlso – rdfs:isDefinedBy • ConstraintProperty Definition – rdfs:range RDFS Structure by RDF – rdfs:domain Resource Description Framework(RDF) Schema Specification 1.0 http://www.w3.org/TR/2000/CR-rdf-schema-20000327/ Hideaki Takeda / National Institute of Informatics
  • 23. RDF Schema • rdfs:Class  Range • rdfs:SubclassOf  Only one – Detailed class  No cardinality – Multiple  Domain – Transivity  Multiple (or) • rdf:type – Indicate an instance of a class • rdf:property – Attribute • rdfs:subPropertyOf – Detailed property – Transivity Hideaki Takeda / National Institute of Informatics
  • 24. <rdf:RDF xml:lang="en" RDF Schema xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" “The class of person” Animal s xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"> rdfs:comment <rdfs:Class rdf:ID="Person"> Person <rdfs:comment>The class of people.</rdfs:comment> d d <rdfs:subClassOf rdf:resource="http://www.w3.org/ maritalStatus d 2000/03/example/ r ssn classes#Animal"/> age </rdfs:Class> MaritalStatus r <rdf:Property ID="maritalStatus"> rdfs:comment <rdfs:range rdf:resource="#MaritalStatus"/> Integer <rdfs:domain rdf:resource="#Person"/> t t </rdf:Property> Married “Social Security Number” <rdf:Property ID="ssn"> t Single <rdfs:comment>Social Security Number</rdfs:comment> Windowed <rdfs:range t = rdf:type rdf:resource="http://www.w3.org/2000/03/example/classes#Integer"/> t d = rdfs:domain <rdfs:domain rdf:resource="#Person"/> Divorced r = rdfs:range </rdf:Property> = class <rdf:Property ID="age"> = class instance <rdfs:range = property rdf:resource="http://www.w3.org/2000/03/example/classes#Integer"/> <rdfs:domain rdf:resource="#Person"/> </rdf:Property> <rdfs:Class rdf:ID="MaritalStatus"/> <MaritalStatus rdf:ID="Married"/> <MaritalStatus rdf:ID="Divorced"/> Resource Description Framework(RDF) Schema Specification 1.0 <MaritalStatus rdf:ID="Single"/> http://www.w3.org/TR/2000/CR-rdf-schema-20000327/ <MaritalStatus rdf:ID="Widowed"/> </rdf:RDF> Hideaki Takeda / National Institute of Informatics
  • 25. OWL(Web Ontology Language) • More general knowledge representation • Based on Description Logics • Features – Class • Necessary condition / necessary and sufficient condition • Class expression: – Constraint by property » Like slot definition of a class » Type constraint (all/some), cardinality, typed cardinality – Logical operation of classes: union, intersection, negation – Property • Multiple ranges and domains • Specifying meta-property – Import of definitions Hideaki Takeda / National Institute of Informatics
  • 26. Linked Data Hideaki Takeda / National Institute of Informatics
  • 27. Linked Data • What is Linked Data? • The State-of-the-Art of Linked Data – Linking Open Data (LOD) • How to use Linked Data – Linked Data Browser – Linked Data Search Engine – Linked Data Applications • How to use RDF – RDFa – SPARQL Hideaki Takeda / National Institute of Informatics
  • 28. Linked Data • What is Linked Data? • The State-of-the-Art of Linked Data – Linking Open Data (LOD) • How to use Linked Data – Linked Data Browser – Linked Data Search Engine – Linked Data Applications • How to use RDF – RDFa – SPARQL Hideaki Takeda / National Institute of Informatics
  • 29. Architecture for the Semantic Web  The world of classes (Ontologies)  The world of instances (Linked Data) Tim Berners-Lee http://www.w3.org/2002/Talks/09-lcs-sweb-tbl/ Hideaki Takeda / National Institute of Informatics
  • 30. Layers of Semantic Web • Ontology – Descriptions on classes – RDFS, OWL – Challenges for ontology building • Ontology building is difficult by nature – Consistency, comprehensiveness, logicality • Alignment of ontologies is more difficult Descriptions on classes Ontology インスタンスに関する記述 Linked Data Tim Berners-Lee http://www.w3.org/2002/Talks/09-lcs-sweb-tbl/ Hideaki Takeda / National Institute of Informatics
  • 31. Layers of Semantic Web • Linked Data – Descriptions on instances (individuals) – RDF + (RDFS, OWL) – Pros for Linked Data • Easy to write (mainly fact description) • Easy to link (fact to fact link) – Cons for Linked Data • Difficult to describe complex structures • Still need for class description (-> ontology) Descriptions on classes Ontology Description on instances Linked Data Tim Berners-Lee http://www.w3.org/2002/Talks/09-lcs-sweb-tbl/ Hideaki Takeda / National Institute of Informatics
  • 32. Linked Data  Linked Data is “Web of Data” – Data published as RDF – Can refer from outside • The four rules for Linked Data Hideaki Takeda / National Institute of Informatics
  • 33. Linked Data • The four rules for Linked Data – Use URIs as names for things • Give a URI to every object in the world! – Use HTTP URIs so that people can look up those names. • Don’t use URN – When someone looks up a URI, provide useful information, using the standards (RDF, SPARQL) • Provide machine-readable data for URI – Include links to other URIs. so that they can discover more things. • Make data linked together just like Web Linked Data, TBL, http://www.w3.org/DesignIssues/LinkedData.html Hideaki Takeda / National Institute of Informatics
  • 34. Linked Data • What is Linked Data? • The State-of-the-Art of Linked Data – Linking Open Data (LOD) • How to use Linked Data – Linked Data Browser – Linked Data Search Engine – Linked Data Applications • How to use RDF – RDFa – SPARQL Hideaki Takeda / National Institute of Informatics
  • 35. Linking Open Data (LOD) • The project to collect published Linked Data • Major Linked Data • (Translated from the original resources) – Dbpedia (Wikipedia) 270 Million Triples – Geonames:Geo names and their latitudes and longitudes, 93 Million Triples – MusicBrainz:Music – WordNet:Dictionary – DBLP bibliography:Bibliography for technical papers. 28 Million Triples – US Census Data: 1 Billion Triples • (Crawling) – FOAF (Friend Of A Friend) • (Wrapper) – Flickr Wrapper Hideaki Takeda / National Institute of Informatics
  • 36. Hideaki Takeda / National Institute of Informatics
  • 37. Hideaki Takeda / National Institute of Informatics
  • 38. LOD Cloud (Linking Open Data) Hideaki Takeda / National Institute of Informatics
  • 39. http://dbpedia.org/page/Tokyo Hideaki Takeda / National Institute of Informatics
  • 40. http://en.wikipedia.org/wiki/Tokyo Hideaki Takeda / National Institute of Informatics
  • 41. Hideaki Takeda / National Institute of Informatics
  • 42. Hideaki Takeda / National Institute of Informatics
  • 43. Linked Data • What is Linked Data? • The State-of-the-Art of Linked Data – Linking Open Data (LOD) • How to use Linked Data – Linked Data Browser – Linked Data Search Engine – Linked Data Applications • How to use RDF – RDFa – SPARQL Hideaki Takeda / National Institute of Informatics
  • 44. How to use Linked Data Linked Data Linked Data Linked Data Browser Mashup Search Engine Things Things Things Things Things Hideaki Takeda / National Institute of Informatics
  • 45. Linked Data • What is Linked Data? • The State-of-the-Art of Linked Data – Linking Open Data (LOD) • How to use Linked Data – Linked Data Browser – Linked Data Search Engine – Linked Data Applications • How to use RDF – RDFa – SPARQL Hideaki Takeda / National Institute of Informatics
  • 46. Linked Data Browser • Browse linked data just as browsing web pages – Show RDF data – Prompt links to follow • System/Service – Mables • Display data by following links – Tabulator • Firefox plugin/online • Adding information in a single page – Sig.ma • Showing RDF resources which can be operated Hideaki Takeda / National Institute of Informatics
  • 47. Hideaki Takeda / National Institute of Informatics
  • 48. Tabulator Hideaki Takeda / National Institute of Informatics
  • 49. Hideaki Takeda / National Institute of Informatics
  • 50. Linked Data • What is Linked Data? • The State-of-the-Art of Linked Data – Linking Open Data (LOD) • How to use Linked Data – Linked Data Browser – Linked Data Search Engine – Linked Data Applications • How to use RDF – RDFa – SPARQL Hideaki Takeda / National Institute of Informatics
  • 51. Linked Data Search Engine • Search RDF data with crawled data set – Swoogle – Sindice – watson Hideaki Takeda / National Institute of Informatics
  • 52. http://sindice.com/ Hideaki Takeda / National Institute of Informatics
  • 53. Hideaki Takeda / National Institute of Informatics
  • 54. Linked Data • What is Linked Data? • The State-of-the-Art of Linked Data – Linking Open Data (LOD) • How to use Linked Data – Linked Data Browser – Linked Data Search Engine – Linked Data Applications • How to use RDF – RDFa – SPARQL Hideaki Takeda / National Institute of Informatics
  • 55. How to use Linked Data • Semantic Data Mash-up Applications – SemaPlorer • http://btc.isweb.uni-koblenz.de/ – Dbpedia Mobile • http://wiki.dbpedia.org/DBpediaMobile – Bio2RDF • http://bio2rdf.org/ Hideaki Takeda / National Institute of Informatics
  • 56. DBpedia Mobile Hideaki Takeda / National Institute of Informatics
  • 57. Bio2RDF • Search LOD in bioscience • Translate data into RDF if not Hideaki Takeda / National Institute of Informatics
  • 58. Bio2RDF Hideaki Takeda / National Institute of Informatics
  • 59. Linked Data • What is Linked Data? • The State-of-the-Art of Linked Data – Linking Open Data (LOD) • How to use Linked Data – Linked Data Browser – Linked Data Search Engine – Linked Data Applications • How to use RDF – RDFa – SPARQL Hideaki Takeda / National Institute of Informatics
  • 60. RDFa • Add extra structured content to the (X)HTML pages – adds new (X)HTML/XML attributes • “RDF in attributes” – Programs can extract those and turn into RDF – Flexibility for using Literals and URI resources Hideaki Takeda / National Institute of Informatics
  • 61. Principles of RDFa • RDF contents are defined through XML attributes (no elements) • XML/HTML tree structure is used • Various attributes are defined by RDFa – Some attributes (@href, @rel) are also reused • The text content can be also reused Hideaki Takeda / National Institute of Informatics
  • 62. Examples http://example.com/alice/posts/trouble_with_bob <div xmlns:dc="http://purl.org/dc/elements/1.1/"> <h2 property="dc:title">The trouble with Bob</h2> <h3 property="dc:creator">Alice</h3> ... </div> In N3 <http://www.example.com/alice/posts/trouble_with_bob> <http://purl.org/dc/elements/1.1/title> "The Trouble with Bob"; <http://purl.org/dc/elements/1.1/creator> "Alice" . Hideaki Takeda / National Institute of Informatics
  • 63. <div xmlns:dc="http://purl.org/dc/elements/1.1/"> <div about="/alice/posts/trouble_with_bob"> <h2 property="dc:title">The trouble with Bob</h2> <h3 property="dc:creator">Alice</h3> ... </div> <div about="/alice/posts/jos_barbecue"> <h2 property="dc:title">Jo's Barbecue</h2> <h3 property="dc:creator">Eve</h3> ... </div> ... </div> Hideaki Takeda / National Institute of Informatics
  • 64. <div about="/alice/posts/trouble_with_bob"> <h2 property="dc:title">The trouble with Bob</h2> The trouble with Bob is that he takes much better photos than I do: <div about="http://example.com/bob/photos/sunset.jpg"> <img src="http://example.com/bob/photos/sunset.jpg" /> <span property="dc:title">Beautiful Sunset</span> by <span property="dc:creator">Bob</span>. </div> </div> Hideaki Takeda / National Institute of Informatics
  • 65. <div typeof="foaf:Person" xmlns:foaf="http://xmlns.com/foaf/0.1/"> <p property="foaf:name"> Alice Birpemswick </p> <p> Email: <a rel="foaf:mbox" href="mailto:alice@example.com">alice@example.com</a></p> <p> Phone: <a rel="foaf:phone" href="tel:+1-617-555-7332">+1 617.555.7332</a> </p> </div> Hideaki Takeda / National Institute of Informatics
  • 66. <div xmlns:foaf="http://xmlns.com/foaf/0.1/" about="#me" rel="foaf:knows"> <ul> <li typeof="foaf:Person"> <a property="foaf:name" rel="foaf:homepage" href="http://example.com/bob">Bob</a> </li> <li typeof="foaf:Person"> <a property="foaf:name" rel="foaf:homepage" href="http://example.com/eve">Eve</a> </li> <li typeof="foaf:Person"> <a property="foaf:name" rel="foaf:homepage" href="http://example.com/manu">Manu</a> </li> </ul> </div> Hideaki Takeda / National Institute of Informatics
  • 67. Using RDFa • RDF Validator – http://validator.w3.org/ • RDF Distiller – http://www.w3.org/2007/08/pyRdfa/ Hideaki Takeda / National Institute of Informatics
  • 68. <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.0//EN" "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:foaf="http://xmlns.com/foaf/0.1/" <body about="http://example.org/john-d/#me"> xmlns:dc="http://purl.org/dc/elements/1.1/" <h1>John's Home Page</h1> version="XHTML+RDFa 1.0" xml:lang="en"> <p>My name is <span property="foaf:nick">John D</span> <head> and I like <title>John's Home Page</title> <a href="http://www.neubauten.org/" rel="foaf:interest" <base href="http://example.org/john-d/" /> xml:lang="de">Einsturzende Neubauten</a>. <meta property="dc:creator" content="Jonathan Doe" /> </p> <link rel="foaf:primaryTopic" <p> href="http://example.org/john-d/#me" /> My <span rel="foaf:interest" </head> resource="urn:ISBN:0752820907">favorite book is the inspiring <span about="urn:ISBN:0752820907"> <cite property="dc:title">Weaving the Web</cite> by <span property="dc:creator">Tim Berners-Lee</span></span> </span> </p> </body> </html> <http://example.org/john-d/> <http://xmlns.com/foaf/0.1/primaryTopic> <http://example.org/john- d/#me>. <http://example.org/john-d/> <http://purl.org/dc/elements/1.1/creator> "Jonathan Doe"@en. <http://example.org/john-d/#me> <http://xmlns.com/foaf/0.1/nick> "John D"@en. <http://example.org/john-d/#me> <http://xmlns.com/foaf/0.1/interest> <http://www.neubauten.org/>. <http://example.org/john-d/#me> <http://xmlns.com/foaf/0.1/interest> <urn:ISBN:0752820907>. <urn:ISBN:0752820907> <http://purl.org/dc/elements/1.1/title> "Weaving the Web"@en. <urn:ISBN:0752820907> <http://purl.org/dc/elements/1.1/creator> "Tim Berners-Lee"@en. Hideaki Takeda / National Institute of Informatics
  • 69. Summary • Linked Data is the practical application of Semantic Web – The bottom-up approach – Postpone the ontology issue • A technological solution for data sharing – Data science – Open Government Hideaki Takeda / National Institute of Informatics