#4 파도타기를 즐기려면
마음: 서핑하고 싶은 마음이 있어야 함. (동경. 호기심, 강요 등등) – 어렵지 않다(할 수 있다). 재밌다(유용하다) -> 자기 효능감
파도가 있어야 함. (이건 주어지는 것이지만 작은 파도는 또 작은 파도대로 즐길 수 있음)
도구가 있어야 함. (파도의 특성과 자기 실력에게 맞는 도구가 있음. 초보자용 롱보드부터 쇼트보드 등. 심지어 Bodysurf라는 것도 있음)
도메인 지식: 바닥에 암초는 없는지 바닥의 지형; 저기서 왜 파도가 솟구치는지;, 뛰어들어도 되는지
파도 타기 기술을 익혀야 함. (파도를 읽는 법 + 자기에게 맞는 서프보드를 선택하고 사용하는 법 등)
#17 무슨 정보든지 이야기로 만들어 버린다.
https://www.nytimes.com/2017/04/08/opinion/sunday/the-utter-uselessness-of-job-interviews.html?smprod=nytcore-iphone&smid=nytcore-iphone-share&_r=0
#18 그럴듯한 것(고정관념과 부합)
린다가 그럴리가 없어.
무슨 정보든지 이야기로 만들어 버린다.
https://www.nytimes.com/2017/04/08/opinion/sunday/the-utter-uselessness-of-job-interviews.html?smprod=nytcore-iphone&smid=nytcore-iphone-share&_r=0
동전 앞면 + 500원일 확률
조부모가 손주 돌보는데 할애하는 시간…(skip)
#19 정보도 완전하지 않고, 모든 가능성 고려할 능력도 시간도 없고, 의사결정 환경도 불확실
사후 합리화: 본인 내린 결론에 정당성 부여
뇌: 인지적 구두쇠 (Cognitive Miser)
합리화: 합리적인 인간이라고 생각해야 마음이 편함. 설명/이해하지 못하는 것에 대한 두려움; 세상의 질서를 파악해서 논리적 결정을 내렸다고 합리화. 자신의 정체성의 연속성을 유지
유전자: 행동(선택)의 결과물에 효용값(선호도) 미리 설정; 린다와 마틸다 중 한명을 채용한다고 했을 때 선호도는 주어짐… 자유의지가 있기는 한가?
#20 Around 3000 BC, the cuneiform script was developed by the Sumerians, who lived in what is now Iraq. This script was a series of pictographs inscribed on clay tablets using a stylus – a sharpened tip of a reed.
One site, the city of Uruk, surpassed all others as an urban center surrounded by a group of secondary settlements. It covered approximately 250 hectares, or .96 square miles, and has been called “the first city in world history.” The site was dominated by large temple estates whose need for accounting and disbursing of revenues led to the recording of economic data on these clay tablets.
Initially, these pictographs were laid out in vertical columns, but later they were read from left to right.
#21 데이터 분석가와 데이터 소비자의 분리
소통의 문제
데이터 마트, 파이프는 표준화 가능.
The Last Mile은 personal and organization-specific.
Personal and Organizational Data Literacy.
#23 데이터로 읽고 쓰고 듣고 말하고
http://www.juiceanalytics.com/writing/4-components-of-the-data-fluency-framework
#26 현실: we can never say what it is…we can only say things about reality
통찰력: 남들은 눈치 채지 못하는 평범한 단서에서 더 큰 무언가를 이끌어내는 능력
https://medium.com/towards-data-science/i-have-data-i-need-insights-where-do-i-start-7ddc935ab365
#40 플라토나이징 platonizing…사물을 분류하는 인간의 강박적 행동 (Nassim Taleb: 블랙 스완)
data (명목 자료): nominal data는 여러 categories(예, 청팀, 백팀, 홍팀)들 중 하나의 이름에 데이터를 분류할 수 있을 때 사용된다. 평균을 계산하는 것이 의미 없고 (백팀과 홍팀의 평균은 연분홍팀?) 비율로는 표현해도 된다. (청팀: 33%, 백팀 33%, 홍팀 34%)
ordinal data (순서 자료): category에 순서가 있는 경우 ordinal data라고 한다. 청팀이 이길 가능성을 묻는 경우 그 답변을 “A. 매우 높다. B. 높다. C. 중립, D. 낮다. E. 매우 낮다."로 설계할 수 있다. nominal data와 마찬가지로 counting을 하고 비율로 표현해도 좋다. (매우 높다: 33%, 높다: 19%…)
#46 The decision to examine averages or to measure variation is rooted in philosophical ideologies that governed the thinking of statisticians, natural philosophers and scientists throughout the 19th century. The emphasis on statistical averages was underpinned by the philosophical tenets of determinism and typological ideas of biological species, which helped to perpetuate the idea of an idealized mean. Determinism implies that there is order and perfection in the universe …
The typological concept of species, which was the dominant thinking of taxonomists,* typologists and morphologists until the end of the 19th century, gave rise to the morphological concept of species. Species were thought to have represented an ideal type.Magnello, Eileen. Introducing Statistics: A Graphic Guide (Introducing...) (Kindle Locations 155-157). Icon Books Ltd. Kindle Edition.
The presence of an ideal type was inferred from some sort of morphological similarity, which became the species criterion for typologists. This could have had the effect of creating a proliferation of species since any deviation from the type would have led to the classification of a new species.Magnello, Eileen. Introducing Statistics: A Graphic Guide (Introducing...) (Kindle Locations 158-160). Icon Books Ltd. Kindle Edition.
#47 The decision to examine averages or to measure variation is rooted in philosophical ideologies that governed the thinking of statisticians, natural philosophers and scientists throughout the 19th century. The emphasis on statistical averages was underpinned by the philosophical tenets of determinism and typological ideas of biological species, which helped to perpetuate the idea of an idealized mean. Determinism implies that there is order and perfection in the universe …
The typological concept of species, which was the dominant thinking of taxonomists,* typologists and morphologists until the end of the 19th century, gave rise to the morphological concept of species. Species were thought to have represented an ideal type.Magnello, Eileen. Introducing Statistics: A Graphic Guide (Introducing...) (Kindle Locations 155-157). Icon Books Ltd. Kindle Edition.
The presence of an ideal type was inferred from some sort of morphological similarity, which became the species criterion for typologists. This could have had the effect of creating a proliferation of species since any deviation from the type would have led to the classification of a new species.Magnello, Eileen. Introducing Statistics: A Graphic Guide (Introducing...) (Kindle Locations 158-160). Icon Books Ltd. Kindle Edition.
#59 ‘till, more than three-fourths do not win a major race. The traditional way of predicting horse success, the data tells us, leaves plenty of room for improvement.’
#60 ‘till, more than three-fourths do not win a major race. The traditional way of predicting horse success, the data tells us, leaves plenty of room for improvement.’
#65 라즐로 복: 인사 하기 가장 좋은 시기
10년 전에 할 수 없던 이야기들 하고 있음 – 기술의 변화 덕
10년 간 걸쳐 일어날 변혁/disruption의 1년차; best practice 없다. 시행착오. 스스로 깨우쳐야 한다.
나 소개
Background: 20
What & Why: 15
Process & Technique: 15
Case Study: 15
시연 & 질의 응답: 15
#70 http://ftp.cs.ucla.edu/pub/stat_ser/r414.pdf
http://vudlab.com/simpsons/
n 1973, the University of California-Berkeley was sued for sex discrimination. The numbers looked pretty incriminating: the graduate schools had just accepted 44% of male applicants but only 35% of female applicants. When researchers looked at the evidence, though, they uncovered something surprising:
If the data are properly pooled...there is a small but statistically significant bias in favor of women.
(p. 403)It was a textbook case of Simpson's paradox.
#87
글자크기
[아침햇살] 산불 나면, 보험회사 돈번다
반기성 조선대 대학원 겸임교수
에너지경제ekn@ekn.kr 2016.09.26 19:08:23
▲반기성 조선대 대학원 겸임교수
[아침햇살] 산불 나면, 보험회사 돈번다 일본 속담에 ‘바람이 많이 불면 나무통 가게가 돈을 번다’는 속담이 있다. 왜 그럴까? 꼭 기차놀이 같은 답이 이어진다. 바람이 불면 먼지가 많이 발생한다. 먼지가 많아지면 눈병이 많이 생긴다. 눈병이 많아지면 실명하는 사람이 많아진다. 맹인은 삼미선을 연주하면서 다닌다. 삼미선은 고양이 가죽으로 만든다. 고양이를 많이 잡으면 쥐가 많아진다. 쥐가 늘어나면 나무통을 갉아먹는다. 결국 통이 많이 팔린다는 이야기다.
#90 과거에는 시킨 것(언어로 기술할 수 있는 것)을 지치고 않고 빠르게
improving its performance without humans having to explain exactly how to accomplish all the tasks
Polanyi’s Paradox: We can know more than we can tell, i.e. many of the tasks we perform rely on tacit, intuitive knowledge that is difficult to codify and automate.
우리는 말할 수 있는 것보다 많이 않다. (인식. 물체를 인식하고 바둑에서 전체 판을 읽고 다음 수를 두는 전략을 짜고)
인식과 인지(의사결정) – 말로 설명 못하지만 잘 함.
we humans know more than we can tell: We can’t explain exactly how we’re able to do a lot of things — from recognizing a face to making a smart move in the ancient Asian strategy game of Go. Prior to ML, this inability to articulate our own knowledge meant that we couldn’t automate many tasks. Now we can.
인식/Perception의 영역에서 발전 (dictation, image인식)
두번째, 과거의 사례에서 배운다.
The machine learns from examples, rather than being explicitly programmed for a particular outcome. This is an important break from previous practice. For most of the past 50 years, advances in information technology and its applications have focused on codifying existing knowledge and procedures and embedding them in machines. Indeed, the term “coding” denotes the painstaking process of transferring knowledge from developers’ heads into a form that machines can understand and execute. This approach has a fundamental weakness: Much of the knowledge we all have is tacit, meaning that we can’t fully explain it. It’s nearly impossible for us to write down instructions that would enable another person to learn how to ride a bike or to recognize a friend’s face.
Second, ML systems are often excellent learners. They can achieve superhuman performance in a wide range of activities, including detecting fraud and diagnosing disease. Excellent digital learners are being deployed across the economy, and their impact will be profound.
#91 “You only need to touch a hot stove once to realize”
#92 he machine is given lots of examples of the correct answer to a particular problem
#93 ‘Ashenfelter, an economist at Princeton
‘He downloaded thirty years of weather data on the Bordeaux region. He also collected auction prices of wines. The auctions, which occur many years after the wine was originally sold, would tell you how the wine turned out.’
https://www.forbes.com/sites/sap/2014/04/30/how-big-data-can-predict-the-wine-of-the-century/1
#98 https://svds.com/machine-learning-vs-statistics/
사회과학 증명의 게임
#101 https://www.farnamstreetblog.com/2015/07/regression-to-the-mean/
why it is that highly intelligent women tend to marry men who are less intelligent than they are?
The rule goes that, in any series with complex phenomena that are dependent on many variables, where chance is involved, extreme outcomes tend to be followed by more moderate ones.
In statistics, regression toward (or to) the mean is the phenomenon that if a variable is extreme on its first measurement, it will tend to be closer to the average on its second measurement—and if it is extreme on its second measurement, it will tend to have been closer to the average on its first
기량의 역설??? 운의 영향
#111 라즐로 복: 인사 하기 가장 좋은 시기
10년 전에 할 수 없던 이야기들 하고 있음 – 기술의 변화 덕
10년 간 걸쳐 일어날 변혁/disruption의 1년차; best practice 없다. 시행착오. 스스로 깨우쳐야 한다.
나 소개
Background: 20
What & Why: 15
Process & Technique: 15
Case Study: 15
시연 & 질의 응답: 15
#120 라즐로 복: 인사 하기 가장 좋은 시기
10년 전에 할 수 없던 이야기들 하고 있음 – 기술의 변화 덕
10년 간 걸쳐 일어날 변혁/disruption의 1년차; best practice 없다. 시행착오. 스스로 깨우쳐야 한다.
나 소개
Background: 20
What & Why: 15
Process & Technique: 15
Case Study: 15
시연 & 질의 응답: 15
#121 https://medium.com/the-many/moving-from-data-science-to-data-literacy-a2f181ba4167
Broken leg problem???
#122 https://medium.com/the-many/moving-from-data-science-to-data-literacy-a2f181ba4167
Broken leg problem???
#123 https://medium.com/the-many/moving-from-data-science-to-data-literacy-a2f181ba4167
Broken leg problem???
#126 The second wave of the second machine age brings with it new risks. In particular, machine learning systems often have low “interpretability,” meaning that humans have difficulty figuring out how the systems reached their decisions. Deep neural networks may have hundreds of millions of connections, each of which contributes a small amount to the ultimate decision. As a result, these systems’ predictions tend to resist simple, clear explanation. Unlike humans, machines are not (yet!) good storytellers. They can’t always give a rationale for why a particular applicant was accepted or rejected for a job, or a particular medicine was recommended. Ironically, even as we have begun to overcome Polanyi’s Paradox, we’re facing a kind of reverse version: Machines know more than they can tell us.
#129
글자크기
[아침햇살] 산불 나면, 보험회사 돈번다
반기성 조선대 대학원 겸임교수
에너지경제ekn@ekn.kr 2016.09.26 19:08:23
▲반기성 조선대 대학원 겸임교수
[아침햇살] 산불 나면, 보험회사 돈번다 일본 속담에 ‘바람이 많이 불면 나무통 가게가 돈을 번다’는 속담이 있다. 왜 그럴까? 꼭 기차놀이 같은 답이 이어진다. 바람이 불면 먼지가 많이 발생한다. 먼지가 많아지면 눈병이 많이 생긴다. 눈병이 많아지면 실명하는 사람이 많아진다. 맹인은 삼미선을 연주하면서 다닌다. 삼미선은 고양이 가죽으로 만든다. 고양이를 많이 잡으면 쥐가 많아진다. 쥐가 늘어나면 나무통을 갉아먹는다. 결국 통이 많이 팔린다는 이야기다.
#136 왜 그렇게 믿냐? 설명의 세가지 재료: 1. 몸으로 안다. 2. 직접 보거나 경험, 책(인터넷)에서 배움
보자기만한 창으로 현실을 보기 -> 다양한 관점에서 현실을 보기 -> 보다 두터운 현실
사실관계가 바뀌면 생각(행동)이 바뀌어야 한다. (그렇지 못함; 설득력; 까리한 패턴; 입장이 애매한 패턴)
https://medium.com/towards-data-science/i-have-data-i-need-insights-where-do-i-start-7ddc935ab365