SlideShare a Scribd company logo
Cointegration and Error
Correction Models
Introduction
• Assess the importance of stationary variables
when running OLS regressions.
• Describe the Dickey-Fuller test for stationarity
• Explain the concept of Cointegration with a bi-
variate model
• Discuss the importance of error correction
models and their relationship to cointegration.
• Describe how to test for a set theory using
cointegration.
OLS Regression with I(1) data
• The following results were produced when
output was regressed against stock prices:
DW
R
DW
R
y
s t
t





2
2
3
.
0
,
9
.
0
(0.1)
(0.4)
4
.
0
6
.
0
ˆ
OLS Regression with I(1) data
• In the previous slide, the results can not be interpreted
as there is clear evidence of autocorrelation.
• However the explanatory power is very high suggesting
a very good result.
• In this case the drift in both variables is related, but not
explicitly modelled, causing autocorrelation. But as the
drifts in the two variables is related, the explanatory
power is high
• This produces the case where the R-squared statistic is
larger than the DW statistic, often referred to as an
indirect test for cointegration
Difference Stationary and Trend
Stationary
• The main method for inducing stationarity is
to difference the data. For instance the
random walk becomes stationary on
differencing:
t
t
t
t
t
t
t
u
y
y
y
u
y
y








1
1
Trend Stationary
• A series is said to be trend stationary when
it is stationary around a trend:
trend
t
u
t
y t
t



 1
0 

Differenced Variables
• If in a bi-variate model, both variables are
difference-stationary, then one way
around the problem is to run a model with
differenced variables instead of level
variables:
t
t
t u
x
y 



 1
0 

Differenced Variables
• However this option may not be acceptable as:
- The variables in this form may not be in
accordance with the original theory
- This model could be omitting important
long-run information, differenced
variables are usually thought of as
representing the short-run.
- This model may not have the correct
functional form.
Stationary data
• One of the most important tests for stationarity is
the Dickey-Fuller Test or Augmented Dickey-
Fuller Test (ADF).
• The test is based on a random walk and the fact
that a random walk has a unit root.
• If the variable in question follows a random walk,
it is therefore not stationary.
• This is why when testing to determine if a
variable is stationary, it is said to be testing for a
‘unit root’.
Dickey-Fuller Test for Stationarity
• The test is based on the following
regression. The coefficient on the lagged
level variable is then used to test if it
equals zero, in the same way as a t-test:
t
t
t u
y
y 

 1

Dickey-Fuller Test
• This test assumes that the error term (u) follows
the Gauss-Markov assumptions.
• The test statistic does not follow the t-
distribution, the critical values have been
produced specifically for this test.
• A constant and trend could also be included in
this test, the test statistic would still be the test
for whether the coefficient on the lagged level
variable equals zero
• In this case the test is for a unit root against no
unit root, i.e. the variable needs to be
differenced once to induce stationarity.
Augmented Dickey-Fuller Test
(ADF)
• The error term in the Dickey-Fuller test
usually has autocorrelation, which needs
to be removed if the result is to be valid.
The main way is to add lagged dependent
variables until the autocorrelation has
been mopped up.
• The test is the same as before in that it is
the coefficient on the lagged dependent
variable that is tested.
Augmented Dickey-Fuller Test
• The test is as follows, where the number of
lagged dependent variables is determined
by an information criteria:
t
N
i
i
t
t
t u
y
y
y 



 



0
1

I(2) Variables
• When a variable contains two unit roots, it is said
to be I(2) and needs to be differenced twice to
induce stationarity.
• When using the ADF test, the data is first tested
to determine if it contains a unit root, i.e. it is I(1)
and not I(0)
• If it is not I(0), it could be I(1), I(2) or have a
higher order of unit roots
• In this case the ADF test needs to be conducted
on the differenced variable to determine if it is
I(1) or I(2). (It is very rare to find I(3) or higher
orders).
Dickey-Fuller Test
• Most tests using the Dickey-Fuller (DF) and
Augmented Dickey-Fuller (ADF) technique are
considered to have low power. (Accept the null of a
unit root more often than should). The power
depends on:
• The time span of the data rather than the number of
observations.
• If  is roughly equal to one, but not exactly, the ADF
test may indicate a non-stationary process
• These tests assume a single unit root, but many time
series are I (2) or higher
• The tests fail to account for structural breaks in the
time series.
Engle-Granger Approach to
Cointegration
• This is essentially a bi-variate approach and is
based on the Augmented Dickey-Fuller test for
stationarity.
• If we have two non-stationary variables
containing a unit root (i.e. I(1) variables), then
we describe them as being cointegrated if the
error term is stationary (i.e. I(0)).
• We test for the stationarity of the error term
using the ADF test in the same way as the
individual variables.
Cointegration
• When we have an I(0) error term, with two
I(1) variables, in effect the drift process in
the I(1) variables have cancelled each
other out to produce an error term with no
drift.
• If there is evidence of cointegration
between X and Y, we say that there is a
long-run equilibrium relationship between
X and Y
Granger Representation Theorem
• According to Granger, if there is evidence of
cointegration between two or more variables,
then a valid error correction model should also
exist between the two variables.
• The error correction model is then a
representation of the short-run dynamic
relationship between X and Y, in which the error
correction term incorporates the long-run
information about X and Y into our model.
• This implies that the error correction term will be
significant, if cointegration exists.
Engle-Granger Two-Step Method
• The method involves firstly estimating the
cointegrating relationship and test for
cointegration.
• The second stage involves forming the
error correction model, where the error
correction term is the residual from the
cointegrating relationship, lagged once.
Cointegration Example
• The following cointegrating relationship was run, the
residual was then tested to determine if it was
stationary and the error correction model (ECM)
formed:
ECM
u
s
u
u
u
s
y
t
t
t
t
t
t
t














)
(
y
2.89)
-
is
value
critical
ADF
s,
parenthese
in
(SE
(0.24)
78
.
0
ˆ
1
1
0
t
1
1
0





Cointegration Example
• In the previous slide, to determine if the
variables are cointegrated, the ADF test has
been conducted on the residual, giving a test
statistic of (-0.78/0.24)= -3.25, this is more
negative than the -2.89 critical value so we reject
the null hypothesis of no cointegration.
• The ECM is then formed using the residual
lagged one time period as the error correction
term.
Error Correction Models
• An error correction model includes only I(0)
variables.
• This requires all our non-stationary variables to
be first-differenced, to produce stationary
variables
• The error correction term is the residual from the
cointegrating relationship, lagged one time
period, this too will be I(0) if the variables are
cointegrated
• The error correction model can include a
number of lags on both variables
Error Correction Models
• The ECM models the short-run dynamics of the
model.
• As with short-run models including lags, it can
be used for forecasting.
• The coefficient on the error correction term can
be used as a further test for cointegration. It is
called the Bannerjee ECM test and requires a
separate set of critical values to determine if
cointegration has occurred.
Error Correction Term
• The error correction term tells us the speed with which
our model returns to equilibrium following an exogenous
shock.
• It should be negatively signed, indicating a move back
towards equilibrium, a positive sign indicates movement
away from equilibrium
• The coefficient should lie between 0 and 1, 0 suggesting
no adjustment one time period later, 1 indicates full
adjustment
• The error correction term can be either the difference
between the dependent and explanatory variable (lagged
once) or the error term (lagged once), they are in effect
the same thing.
Example of ECM
• The following ECM was formed, using 60
observations:
ip)
relationsh
ing
cointegrat
a
from
residual
the
is
u
s,
parenthese
in
(SE
(0.08)
(0.12)
(0.56)
)
(
32
.
0
24
.
0
78
.
0
ˆ 1





 t
t
t u
x
y
Example of an ECM
• The error correction term has a t-statistic
of 4, which is highly significant supporting
the cointegration result.
• The coefficient on the error correction term
is negative, so the model is stable.
• The coefficient of -0.32, suggests 32%
movement back towards equilibrium
following a shock to the model, one time
period later.
Potential Problems with
Cointegration
• The ADF test often indicates acceptance of the null
hypothesis (no cointegration), when in fact cointegration
is present
• The ADF test is best when we have a long time span of
data, rather than large amounts of observations over a
short time span. This can be a problem with financial
data which tends to cover a couple of years, but with
high frequency data (i.e. daily data)
• It is only really used for bi-variate cointegration tests,
although it can be used for multivariate models, a
different set of critical values is required.
Multivariate Approach to
Cointegration
• A different approach to testing for cointegration
is generally required when we have more then 2
variables in the model
• If we assume all the variables are endogenous,
we can construct a VAR and then test for
cointegration
• One of the most common approaches to
multivariate cointegration is the Johansen
Maximum Likelihood (ML) test.
• This test involves testing the characteristic roots
or eigenvalues of the π matrix (coefficients on
the lagged dependent variable).
Steps in Testing for Cointegration
1) Test all the variables to determine if they are I(0), I(1)
or I(2) using the ADF test.
2) If both variables are I(1), then carry out the test for
cointegration
3) If there is evidence of cointegration, use the residual to
form the error correction term in the corresponding
ECM
4) Add in a number of lags of both explanatory and
dependent variables to the ECM
5) Omit those lags that are insignificant to form a
parsimonious model
6) Use the ECM for dynamic forecasting of the dependent
variable and assess the accuracy of the forecasts.
Conclusion
• The Dickey-Fuller or Augmented Dickey-Fuller
tests test for stationarity, based on the test for a
random walk.
• The Engle-Granger approach to cointegration in
a bi-variate model, involves testing for
stationarity of the residual using the ADF test.
• According to the Granger representation
theorem, if there is cointegration between our
two variables, we should be able to form the
appropriate error correction model.

More Related Content

Similar to FE3.ppt

Diagnostic Tests.ppt
Diagnostic Tests.pptDiagnostic Tests.ppt
Diagnostic Tests.ppt
NavyaPS2
 
Panel Data Models
Panel Data ModelsPanel Data Models
Panel Data Models
Economic Research Forum
 
ders 3.3 Unit root testing section 3 .pptx
ders 3.3 Unit root testing section 3 .pptxders 3.3 Unit root testing section 3 .pptx
ders 3.3 Unit root testing section 3 .pptx
Ergin Akalpler
 
Validity andreliability
Validity andreliabilityValidity andreliability
Validity andreliability
nuwan udugampala
 
factor-analysis (1).pdf
factor-analysis (1).pdffactor-analysis (1).pdf
factor-analysis (1).pdf
Yashwanth Rm
 
Sem with amos ii
Sem with amos iiSem with amos ii
Sem with amos ii
Jordan Sitorus
 
Autocorrelation (1)
Autocorrelation (1)Autocorrelation (1)
Autocorrelation (1)
Manokamna Kochar
 
ACF.ppt
ACF.pptACF.ppt
Common mistakes in measurement uncertainty calculations
Common mistakes in measurement uncertainty calculationsCommon mistakes in measurement uncertainty calculations
Common mistakes in measurement uncertainty calculations
GH Yeoh
 
Logistical Regression.pptx
Logistical Regression.pptxLogistical Regression.pptx
Logistical Regression.pptx
Ramakrishna Reddy Bijjam
 
MSc Finance_EF_0853352_Kartik Malla
MSc Finance_EF_0853352_Kartik MallaMSc Finance_EF_0853352_Kartik Malla
MSc Finance_EF_0853352_Kartik Malla
Kartik Malla
 
Diagnostic Test of Applied Economics
 Diagnostic Test of Applied Economics Diagnostic Test of Applied Economics
Diagnostic Test of Applied Economics
Suniya Sheikh
 
AIAA-Aviation-VariableFidelity-2014-Mehmani
AIAA-Aviation-VariableFidelity-2014-MehmaniAIAA-Aviation-VariableFidelity-2014-Mehmani
AIAA-Aviation-VariableFidelity-2014-Mehmani
OptiModel
 
ders 6 Panel data analysis.pptx
ders 6 Panel data analysis.pptxders 6 Panel data analysis.pptx
ders 6 Panel data analysis.pptx
Ergin Akalpler
 
Chemometrics-ANALYTICAL DATA SIGNIFICANCE TESTS.pptx
Chemometrics-ANALYTICAL DATA SIGNIFICANCE TESTS.pptxChemometrics-ANALYTICAL DATA SIGNIFICANCE TESTS.pptx
Chemometrics-ANALYTICAL DATA SIGNIFICANCE TESTS.pptx
HakimuNsubuga2
 
Econometrcis-Multivariate Time Series Analysis.pptx
Econometrcis-Multivariate Time Series Analysis.pptxEconometrcis-Multivariate Time Series Analysis.pptx
Econometrcis-Multivariate Time Series Analysis.pptx
jbhandari1
 
panel data.ppt
panel data.pptpanel data.ppt
panel data.ppt
VinayKhandelwal23
 
Panel data_25412547859_andbcbgajkje852.ppt
Panel data_25412547859_andbcbgajkje852.pptPanel data_25412547859_andbcbgajkje852.ppt
Panel data_25412547859_andbcbgajkje852.ppt
HinhMo
 
Factor analysis ppt
Factor analysis pptFactor analysis ppt
Factor analysis ppt
Mukesh Bisht
 
An Introduction to Factor analysis ppt
An Introduction to Factor analysis pptAn Introduction to Factor analysis ppt
An Introduction to Factor analysis ppt
Mukesh Bisht
 

Similar to FE3.ppt (20)

Diagnostic Tests.ppt
Diagnostic Tests.pptDiagnostic Tests.ppt
Diagnostic Tests.ppt
 
Panel Data Models
Panel Data ModelsPanel Data Models
Panel Data Models
 
ders 3.3 Unit root testing section 3 .pptx
ders 3.3 Unit root testing section 3 .pptxders 3.3 Unit root testing section 3 .pptx
ders 3.3 Unit root testing section 3 .pptx
 
Validity andreliability
Validity andreliabilityValidity andreliability
Validity andreliability
 
factor-analysis (1).pdf
factor-analysis (1).pdffactor-analysis (1).pdf
factor-analysis (1).pdf
 
Sem with amos ii
Sem with amos iiSem with amos ii
Sem with amos ii
 
Autocorrelation (1)
Autocorrelation (1)Autocorrelation (1)
Autocorrelation (1)
 
ACF.ppt
ACF.pptACF.ppt
ACF.ppt
 
Common mistakes in measurement uncertainty calculations
Common mistakes in measurement uncertainty calculationsCommon mistakes in measurement uncertainty calculations
Common mistakes in measurement uncertainty calculations
 
Logistical Regression.pptx
Logistical Regression.pptxLogistical Regression.pptx
Logistical Regression.pptx
 
MSc Finance_EF_0853352_Kartik Malla
MSc Finance_EF_0853352_Kartik MallaMSc Finance_EF_0853352_Kartik Malla
MSc Finance_EF_0853352_Kartik Malla
 
Diagnostic Test of Applied Economics
 Diagnostic Test of Applied Economics Diagnostic Test of Applied Economics
Diagnostic Test of Applied Economics
 
AIAA-Aviation-VariableFidelity-2014-Mehmani
AIAA-Aviation-VariableFidelity-2014-MehmaniAIAA-Aviation-VariableFidelity-2014-Mehmani
AIAA-Aviation-VariableFidelity-2014-Mehmani
 
ders 6 Panel data analysis.pptx
ders 6 Panel data analysis.pptxders 6 Panel data analysis.pptx
ders 6 Panel data analysis.pptx
 
Chemometrics-ANALYTICAL DATA SIGNIFICANCE TESTS.pptx
Chemometrics-ANALYTICAL DATA SIGNIFICANCE TESTS.pptxChemometrics-ANALYTICAL DATA SIGNIFICANCE TESTS.pptx
Chemometrics-ANALYTICAL DATA SIGNIFICANCE TESTS.pptx
 
Econometrcis-Multivariate Time Series Analysis.pptx
Econometrcis-Multivariate Time Series Analysis.pptxEconometrcis-Multivariate Time Series Analysis.pptx
Econometrcis-Multivariate Time Series Analysis.pptx
 
panel data.ppt
panel data.pptpanel data.ppt
panel data.ppt
 
Panel data_25412547859_andbcbgajkje852.ppt
Panel data_25412547859_andbcbgajkje852.pptPanel data_25412547859_andbcbgajkje852.ppt
Panel data_25412547859_andbcbgajkje852.ppt
 
Factor analysis ppt
Factor analysis pptFactor analysis ppt
Factor analysis ppt
 
An Introduction to Factor analysis ppt
An Introduction to Factor analysis pptAn Introduction to Factor analysis ppt
An Introduction to Factor analysis ppt
 

Recently uploaded

快速办理(SMU毕业证书)南卫理公会大学毕业证毕业完成信一模一样
快速办理(SMU毕业证书)南卫理公会大学毕业证毕业完成信一模一样快速办理(SMU毕业证书)南卫理公会大学毕业证毕业完成信一模一样
快速办理(SMU毕业证书)南卫理公会大学毕业证毕业完成信一模一样
5spllj1l
 
Unlock-the-Power-of-UAN-Your-Key-to-Secure-Retirement.pptx
Unlock-the-Power-of-UAN-Your-Key-to-Secure-Retirement.pptxUnlock-the-Power-of-UAN-Your-Key-to-Secure-Retirement.pptx
Unlock-the-Power-of-UAN-Your-Key-to-Secure-Retirement.pptx
cosmo-soil
 
Using Online job postings and survey data to understand labour market trends
Using Online job postings and survey data to understand labour market trendsUsing Online job postings and survey data to understand labour market trends
Using Online job postings and survey data to understand labour market trends
Labour Market Information Council | Conseil de l’information sur le marché du travail
 
Detailed power point presentation on compound interest and how it is calculated
Detailed power point presentation on compound interest  and how it is calculatedDetailed power point presentation on compound interest  and how it is calculated
Detailed power point presentation on compound interest and how it is calculated
KishanChaudhary23
 
在线办理(TAMU毕业证书)美国德州农工大学毕业证PDF成绩单一模一样
在线办理(TAMU毕业证书)美国德州农工大学毕业证PDF成绩单一模一样在线办理(TAMU毕业证书)美国德州农工大学毕业证PDF成绩单一模一样
在线办理(TAMU毕业证书)美国德州农工大学毕业证PDF成绩单一模一样
5spllj1l
 
^%$Zone1:+971)581248768’][* Legit & Safe #Abortion #Pills #For #Sale In #Duba...
^%$Zone1:+971)581248768’][* Legit & Safe #Abortion #Pills #For #Sale In #Duba...^%$Zone1:+971)581248768’][* Legit & Safe #Abortion #Pills #For #Sale In #Duba...
^%$Zone1:+971)581248768’][* Legit & Safe #Abortion #Pills #For #Sale In #Duba...
mayaclinic18
 
Solution Manual For Financial Accounting, 8th Canadian Edition 2024, by Libby...
Solution Manual For Financial Accounting, 8th Canadian Edition 2024, by Libby...Solution Manual For Financial Accounting, 8th Canadian Edition 2024, by Libby...
Solution Manual For Financial Accounting, 8th Canadian Edition 2024, by Libby...
Donc Test
 
Independent Study - College of Wooster Research (2023-2024)
Independent Study - College of Wooster Research (2023-2024)Independent Study - College of Wooster Research (2023-2024)
Independent Study - College of Wooster Research (2023-2024)
AntoniaOwensDetwiler
 
South Dakota State University degree offer diploma Transcript
South Dakota State University degree offer diploma TranscriptSouth Dakota State University degree offer diploma Transcript
South Dakota State University degree offer diploma Transcript
ynfqplhm
 
New Visa Rules for Tourists and Students in Thailand | Amit Kakkar Easy Visa
New Visa Rules for Tourists and Students in Thailand | Amit Kakkar Easy VisaNew Visa Rules for Tourists and Students in Thailand | Amit Kakkar Easy Visa
New Visa Rules for Tourists and Students in Thailand | Amit Kakkar Easy Visa
Amit Kakkar
 
Economic Risk Factor Update: June 2024 [SlideShare]
Economic Risk Factor Update: June 2024 [SlideShare]Economic Risk Factor Update: June 2024 [SlideShare]
Economic Risk Factor Update: June 2024 [SlideShare]
Commonwealth
 
falcon-invoice-discounting-a-premier-investment-platform-for-superior-returns...
falcon-invoice-discounting-a-premier-investment-platform-for-superior-returns...falcon-invoice-discounting-a-premier-investment-platform-for-superior-returns...
falcon-invoice-discounting-a-premier-investment-platform-for-superior-returns...
Falcon Invoice Discounting
 
OAT_RI_Ep20 WeighingTheRisks_May24_Trade Wars.pptx
OAT_RI_Ep20 WeighingTheRisks_May24_Trade Wars.pptxOAT_RI_Ep20 WeighingTheRisks_May24_Trade Wars.pptx
OAT_RI_Ep20 WeighingTheRisks_May24_Trade Wars.pptx
hiddenlevers
 
University of North Carolina at Charlotte degree offer diploma Transcript
University of North Carolina at Charlotte degree offer diploma TranscriptUniversity of North Carolina at Charlotte degree offer diploma Transcript
University of North Carolina at Charlotte degree offer diploma Transcript
tscdzuip
 
Applying the Global Internal Audit Standards_AIS.pdf
Applying the Global Internal Audit Standards_AIS.pdfApplying the Global Internal Audit Standards_AIS.pdf
Applying the Global Internal Audit Standards_AIS.pdf
alexiusbrian1
 
在线办理(GU毕业证书)美国贡萨加大学毕业证学历证书一模一样
在线办理(GU毕业证书)美国贡萨加大学毕业证学历证书一模一样在线办理(GU毕业证书)美国贡萨加大学毕业证学历证书一模一样
在线办理(GU毕业证书)美国贡萨加大学毕业证学历证书一模一样
5spllj1l
 
Seeman_Fiintouch_LLP_Newsletter_Jun_2024.pdf
Seeman_Fiintouch_LLP_Newsletter_Jun_2024.pdfSeeman_Fiintouch_LLP_Newsletter_Jun_2024.pdf
Seeman_Fiintouch_LLP_Newsletter_Jun_2024.pdf
Ashis Kumar Dey
 
1.2 Business Ideas Business Ideas Busine
1.2 Business Ideas Business Ideas Busine1.2 Business Ideas Business Ideas Busine
1.2 Business Ideas Business Ideas Busine
Lawrence101
 
Tdasx: In-Depth Analysis of Cryptocurrency Giveaway Scams and Security Strate...
Tdasx: In-Depth Analysis of Cryptocurrency Giveaway Scams and Security Strate...Tdasx: In-Depth Analysis of Cryptocurrency Giveaway Scams and Security Strate...
Tdasx: In-Depth Analysis of Cryptocurrency Giveaway Scams and Security Strate...
nimaruinazawa258
 
Who Is Abhay Bhutada, MD of Poonawalla Fincorp
Who Is Abhay Bhutada, MD of Poonawalla FincorpWho Is Abhay Bhutada, MD of Poonawalla Fincorp
Who Is Abhay Bhutada, MD of Poonawalla Fincorp
beulahfernandes8
 

Recently uploaded (20)

快速办理(SMU毕业证书)南卫理公会大学毕业证毕业完成信一模一样
快速办理(SMU毕业证书)南卫理公会大学毕业证毕业完成信一模一样快速办理(SMU毕业证书)南卫理公会大学毕业证毕业完成信一模一样
快速办理(SMU毕业证书)南卫理公会大学毕业证毕业完成信一模一样
 
Unlock-the-Power-of-UAN-Your-Key-to-Secure-Retirement.pptx
Unlock-the-Power-of-UAN-Your-Key-to-Secure-Retirement.pptxUnlock-the-Power-of-UAN-Your-Key-to-Secure-Retirement.pptx
Unlock-the-Power-of-UAN-Your-Key-to-Secure-Retirement.pptx
 
Using Online job postings and survey data to understand labour market trends
Using Online job postings and survey data to understand labour market trendsUsing Online job postings and survey data to understand labour market trends
Using Online job postings and survey data to understand labour market trends
 
Detailed power point presentation on compound interest and how it is calculated
Detailed power point presentation on compound interest  and how it is calculatedDetailed power point presentation on compound interest  and how it is calculated
Detailed power point presentation on compound interest and how it is calculated
 
在线办理(TAMU毕业证书)美国德州农工大学毕业证PDF成绩单一模一样
在线办理(TAMU毕业证书)美国德州农工大学毕业证PDF成绩单一模一样在线办理(TAMU毕业证书)美国德州农工大学毕业证PDF成绩单一模一样
在线办理(TAMU毕业证书)美国德州农工大学毕业证PDF成绩单一模一样
 
^%$Zone1:+971)581248768’][* Legit & Safe #Abortion #Pills #For #Sale In #Duba...
^%$Zone1:+971)581248768’][* Legit & Safe #Abortion #Pills #For #Sale In #Duba...^%$Zone1:+971)581248768’][* Legit & Safe #Abortion #Pills #For #Sale In #Duba...
^%$Zone1:+971)581248768’][* Legit & Safe #Abortion #Pills #For #Sale In #Duba...
 
Solution Manual For Financial Accounting, 8th Canadian Edition 2024, by Libby...
Solution Manual For Financial Accounting, 8th Canadian Edition 2024, by Libby...Solution Manual For Financial Accounting, 8th Canadian Edition 2024, by Libby...
Solution Manual For Financial Accounting, 8th Canadian Edition 2024, by Libby...
 
Independent Study - College of Wooster Research (2023-2024)
Independent Study - College of Wooster Research (2023-2024)Independent Study - College of Wooster Research (2023-2024)
Independent Study - College of Wooster Research (2023-2024)
 
South Dakota State University degree offer diploma Transcript
South Dakota State University degree offer diploma TranscriptSouth Dakota State University degree offer diploma Transcript
South Dakota State University degree offer diploma Transcript
 
New Visa Rules for Tourists and Students in Thailand | Amit Kakkar Easy Visa
New Visa Rules for Tourists and Students in Thailand | Amit Kakkar Easy VisaNew Visa Rules for Tourists and Students in Thailand | Amit Kakkar Easy Visa
New Visa Rules for Tourists and Students in Thailand | Amit Kakkar Easy Visa
 
Economic Risk Factor Update: June 2024 [SlideShare]
Economic Risk Factor Update: June 2024 [SlideShare]Economic Risk Factor Update: June 2024 [SlideShare]
Economic Risk Factor Update: June 2024 [SlideShare]
 
falcon-invoice-discounting-a-premier-investment-platform-for-superior-returns...
falcon-invoice-discounting-a-premier-investment-platform-for-superior-returns...falcon-invoice-discounting-a-premier-investment-platform-for-superior-returns...
falcon-invoice-discounting-a-premier-investment-platform-for-superior-returns...
 
OAT_RI_Ep20 WeighingTheRisks_May24_Trade Wars.pptx
OAT_RI_Ep20 WeighingTheRisks_May24_Trade Wars.pptxOAT_RI_Ep20 WeighingTheRisks_May24_Trade Wars.pptx
OAT_RI_Ep20 WeighingTheRisks_May24_Trade Wars.pptx
 
University of North Carolina at Charlotte degree offer diploma Transcript
University of North Carolina at Charlotte degree offer diploma TranscriptUniversity of North Carolina at Charlotte degree offer diploma Transcript
University of North Carolina at Charlotte degree offer diploma Transcript
 
Applying the Global Internal Audit Standards_AIS.pdf
Applying the Global Internal Audit Standards_AIS.pdfApplying the Global Internal Audit Standards_AIS.pdf
Applying the Global Internal Audit Standards_AIS.pdf
 
在线办理(GU毕业证书)美国贡萨加大学毕业证学历证书一模一样
在线办理(GU毕业证书)美国贡萨加大学毕业证学历证书一模一样在线办理(GU毕业证书)美国贡萨加大学毕业证学历证书一模一样
在线办理(GU毕业证书)美国贡萨加大学毕业证学历证书一模一样
 
Seeman_Fiintouch_LLP_Newsletter_Jun_2024.pdf
Seeman_Fiintouch_LLP_Newsletter_Jun_2024.pdfSeeman_Fiintouch_LLP_Newsletter_Jun_2024.pdf
Seeman_Fiintouch_LLP_Newsletter_Jun_2024.pdf
 
1.2 Business Ideas Business Ideas Busine
1.2 Business Ideas Business Ideas Busine1.2 Business Ideas Business Ideas Busine
1.2 Business Ideas Business Ideas Busine
 
Tdasx: In-Depth Analysis of Cryptocurrency Giveaway Scams and Security Strate...
Tdasx: In-Depth Analysis of Cryptocurrency Giveaway Scams and Security Strate...Tdasx: In-Depth Analysis of Cryptocurrency Giveaway Scams and Security Strate...
Tdasx: In-Depth Analysis of Cryptocurrency Giveaway Scams and Security Strate...
 
Who Is Abhay Bhutada, MD of Poonawalla Fincorp
Who Is Abhay Bhutada, MD of Poonawalla FincorpWho Is Abhay Bhutada, MD of Poonawalla Fincorp
Who Is Abhay Bhutada, MD of Poonawalla Fincorp
 

FE3.ppt

  • 2. Introduction • Assess the importance of stationary variables when running OLS regressions. • Describe the Dickey-Fuller test for stationarity • Explain the concept of Cointegration with a bi- variate model • Discuss the importance of error correction models and their relationship to cointegration. • Describe how to test for a set theory using cointegration.
  • 3. OLS Regression with I(1) data • The following results were produced when output was regressed against stock prices: DW R DW R y s t t      2 2 3 . 0 , 9 . 0 (0.1) (0.4) 4 . 0 6 . 0 ˆ
  • 4. OLS Regression with I(1) data • In the previous slide, the results can not be interpreted as there is clear evidence of autocorrelation. • However the explanatory power is very high suggesting a very good result. • In this case the drift in both variables is related, but not explicitly modelled, causing autocorrelation. But as the drifts in the two variables is related, the explanatory power is high • This produces the case where the R-squared statistic is larger than the DW statistic, often referred to as an indirect test for cointegration
  • 5. Difference Stationary and Trend Stationary • The main method for inducing stationarity is to difference the data. For instance the random walk becomes stationary on differencing: t t t t t t t u y y y u y y         1 1
  • 6. Trend Stationary • A series is said to be trend stationary when it is stationary around a trend: trend t u t y t t     1 0  
  • 7. Differenced Variables • If in a bi-variate model, both variables are difference-stationary, then one way around the problem is to run a model with differenced variables instead of level variables: t t t u x y      1 0  
  • 8. Differenced Variables • However this option may not be acceptable as: - The variables in this form may not be in accordance with the original theory - This model could be omitting important long-run information, differenced variables are usually thought of as representing the short-run. - This model may not have the correct functional form.
  • 9. Stationary data • One of the most important tests for stationarity is the Dickey-Fuller Test or Augmented Dickey- Fuller Test (ADF). • The test is based on a random walk and the fact that a random walk has a unit root. • If the variable in question follows a random walk, it is therefore not stationary. • This is why when testing to determine if a variable is stationary, it is said to be testing for a ‘unit root’.
  • 10. Dickey-Fuller Test for Stationarity • The test is based on the following regression. The coefficient on the lagged level variable is then used to test if it equals zero, in the same way as a t-test: t t t u y y    1 
  • 11. Dickey-Fuller Test • This test assumes that the error term (u) follows the Gauss-Markov assumptions. • The test statistic does not follow the t- distribution, the critical values have been produced specifically for this test. • A constant and trend could also be included in this test, the test statistic would still be the test for whether the coefficient on the lagged level variable equals zero • In this case the test is for a unit root against no unit root, i.e. the variable needs to be differenced once to induce stationarity.
  • 12. Augmented Dickey-Fuller Test (ADF) • The error term in the Dickey-Fuller test usually has autocorrelation, which needs to be removed if the result is to be valid. The main way is to add lagged dependent variables until the autocorrelation has been mopped up. • The test is the same as before in that it is the coefficient on the lagged dependent variable that is tested.
  • 13. Augmented Dickey-Fuller Test • The test is as follows, where the number of lagged dependent variables is determined by an information criteria: t N i i t t t u y y y          0 1 
  • 14. I(2) Variables • When a variable contains two unit roots, it is said to be I(2) and needs to be differenced twice to induce stationarity. • When using the ADF test, the data is first tested to determine if it contains a unit root, i.e. it is I(1) and not I(0) • If it is not I(0), it could be I(1), I(2) or have a higher order of unit roots • In this case the ADF test needs to be conducted on the differenced variable to determine if it is I(1) or I(2). (It is very rare to find I(3) or higher orders).
  • 15. Dickey-Fuller Test • Most tests using the Dickey-Fuller (DF) and Augmented Dickey-Fuller (ADF) technique are considered to have low power. (Accept the null of a unit root more often than should). The power depends on: • The time span of the data rather than the number of observations. • If  is roughly equal to one, but not exactly, the ADF test may indicate a non-stationary process • These tests assume a single unit root, but many time series are I (2) or higher • The tests fail to account for structural breaks in the time series.
  • 16. Engle-Granger Approach to Cointegration • This is essentially a bi-variate approach and is based on the Augmented Dickey-Fuller test for stationarity. • If we have two non-stationary variables containing a unit root (i.e. I(1) variables), then we describe them as being cointegrated if the error term is stationary (i.e. I(0)). • We test for the stationarity of the error term using the ADF test in the same way as the individual variables.
  • 17. Cointegration • When we have an I(0) error term, with two I(1) variables, in effect the drift process in the I(1) variables have cancelled each other out to produce an error term with no drift. • If there is evidence of cointegration between X and Y, we say that there is a long-run equilibrium relationship between X and Y
  • 18. Granger Representation Theorem • According to Granger, if there is evidence of cointegration between two or more variables, then a valid error correction model should also exist between the two variables. • The error correction model is then a representation of the short-run dynamic relationship between X and Y, in which the error correction term incorporates the long-run information about X and Y into our model. • This implies that the error correction term will be significant, if cointegration exists.
  • 19. Engle-Granger Two-Step Method • The method involves firstly estimating the cointegrating relationship and test for cointegration. • The second stage involves forming the error correction model, where the error correction term is the residual from the cointegrating relationship, lagged once.
  • 20. Cointegration Example • The following cointegrating relationship was run, the residual was then tested to determine if it was stationary and the error correction model (ECM) formed: ECM u s u u u s y t t t t t t t               ) ( y 2.89) - is value critical ADF s, parenthese in (SE (0.24) 78 . 0 ˆ 1 1 0 t 1 1 0     
  • 21. Cointegration Example • In the previous slide, to determine if the variables are cointegrated, the ADF test has been conducted on the residual, giving a test statistic of (-0.78/0.24)= -3.25, this is more negative than the -2.89 critical value so we reject the null hypothesis of no cointegration. • The ECM is then formed using the residual lagged one time period as the error correction term.
  • 22. Error Correction Models • An error correction model includes only I(0) variables. • This requires all our non-stationary variables to be first-differenced, to produce stationary variables • The error correction term is the residual from the cointegrating relationship, lagged one time period, this too will be I(0) if the variables are cointegrated • The error correction model can include a number of lags on both variables
  • 23. Error Correction Models • The ECM models the short-run dynamics of the model. • As with short-run models including lags, it can be used for forecasting. • The coefficient on the error correction term can be used as a further test for cointegration. It is called the Bannerjee ECM test and requires a separate set of critical values to determine if cointegration has occurred.
  • 24. Error Correction Term • The error correction term tells us the speed with which our model returns to equilibrium following an exogenous shock. • It should be negatively signed, indicating a move back towards equilibrium, a positive sign indicates movement away from equilibrium • The coefficient should lie between 0 and 1, 0 suggesting no adjustment one time period later, 1 indicates full adjustment • The error correction term can be either the difference between the dependent and explanatory variable (lagged once) or the error term (lagged once), they are in effect the same thing.
  • 25. Example of ECM • The following ECM was formed, using 60 observations: ip) relationsh ing cointegrat a from residual the is u s, parenthese in (SE (0.08) (0.12) (0.56) ) ( 32 . 0 24 . 0 78 . 0 ˆ 1       t t t u x y
  • 26. Example of an ECM • The error correction term has a t-statistic of 4, which is highly significant supporting the cointegration result. • The coefficient on the error correction term is negative, so the model is stable. • The coefficient of -0.32, suggests 32% movement back towards equilibrium following a shock to the model, one time period later.
  • 27. Potential Problems with Cointegration • The ADF test often indicates acceptance of the null hypothesis (no cointegration), when in fact cointegration is present • The ADF test is best when we have a long time span of data, rather than large amounts of observations over a short time span. This can be a problem with financial data which tends to cover a couple of years, but with high frequency data (i.e. daily data) • It is only really used for bi-variate cointegration tests, although it can be used for multivariate models, a different set of critical values is required.
  • 28. Multivariate Approach to Cointegration • A different approach to testing for cointegration is generally required when we have more then 2 variables in the model • If we assume all the variables are endogenous, we can construct a VAR and then test for cointegration • One of the most common approaches to multivariate cointegration is the Johansen Maximum Likelihood (ML) test. • This test involves testing the characteristic roots or eigenvalues of the π matrix (coefficients on the lagged dependent variable).
  • 29. Steps in Testing for Cointegration 1) Test all the variables to determine if they are I(0), I(1) or I(2) using the ADF test. 2) If both variables are I(1), then carry out the test for cointegration 3) If there is evidence of cointegration, use the residual to form the error correction term in the corresponding ECM 4) Add in a number of lags of both explanatory and dependent variables to the ECM 5) Omit those lags that are insignificant to form a parsimonious model 6) Use the ECM for dynamic forecasting of the dependent variable and assess the accuracy of the forecasts.
  • 30. Conclusion • The Dickey-Fuller or Augmented Dickey-Fuller tests test for stationarity, based on the test for a random walk. • The Engle-Granger approach to cointegration in a bi-variate model, involves testing for stationarity of the residual using the ADF test. • According to the Granger representation theorem, if there is cointegration between our two variables, we should be able to form the appropriate error correction model.