SlideShare a Scribd company logo
Domain-Aware Sentiment Classification
with GRUs and CNNs
(1st place in the Semantic Sentiment Classification Challenge at ESWC2018)
Guangyuan Piao, John G. Breslin
Insight Centre for Data Analytics @NUI Galway
03/06/2018	–	07/06/2018	Semantic	Sentiment	Analysis	&	Embedding	Challenge	@ESWC2018
2
Tasks
2
embedding evaluation
●  9 provided embeddings
●  2 baseline embeddings (glove, amazonwe)
sentiment classification
●  1 million reviews
●  20 domains
●  50% positive & 50% negative
our design dimension
●  domain-aware
●  combining RNNs & CNNs
●  runnable under our limited resources
3
3
....
x1 x2 xm....
review text
dr
review 
domain
....
GRU
CNN
....
look up
S1 S2 Sn....
dense
y'
review summary
prediction
dr
....
GRU
CNN
concatenation layer
Proposed Model
4
Results on Validation Set
4
training: the rest of provided dataset / validation: 10,000 of 20 domains
ensemble approach: voting with 11 models using different emb. & epochs
embedding (emb.) accuracy
glove 0.9525
amazonwe 0.9122
emb_128_15 0.9578
emb_128_30 0.9560
emb_128_50 0.9544
emb_256_15 0.9576
emb_256_30 0.9576
emb_256_50 0.9578
emb_512_15 0.9568
emb_512_30 0.9598
emb_512_50 0.9605
ensemble approach 0.9657
5
Results on Test Set
5
test: 10,000 equally distributed over 20 domains
team accuracy
our approach 0.9643
Team#2 0.9561
Team#3 0.9356
Team#4 0.9228
Team#5 0.8823
Team#6 0.8743
… …
… …
funded by
thank you for your attention!
Guangyuan Piao, John G. Breslin, Domain-Aware Sentiment
Classification with GRUs and CNNs, Semantic Sentiment
Classification Challenge at ESWC2018, Crete, Greece
Guangyuan Piao
homepage: http://parklize.github.io
e-mail: guangyuan.piao@insight-centre.org
scholar: https://goo.gl/tgK9bk
slideshare: http://www.slideshare.net/parklize

More Related Content

Similar to Domain-Aware Sentiment Classification with GRUs and CNNs

Types of Machine Learnig Algorithms(CART, ID3)
Types of Machine Learnig Algorithms(CART, ID3)Types of Machine Learnig Algorithms(CART, ID3)
Types of Machine Learnig Algorithms(CART, ID3)
Fatimakhan325
 
Performance analysis of KNN & K-Means using internet advertisements data
Performance analysis of KNN & K-Means using internet advertisements dataPerformance analysis of KNN & K-Means using internet advertisements data
Performance analysis of KNN & K-Means using internet advertisements data
Muhammad GulRaj
 
IMAGE CLASSIFICATION USING DIFFERENT CLASSICAL APPROACHES
IMAGE CLASSIFICATION USING DIFFERENT CLASSICAL APPROACHESIMAGE CLASSIFICATION USING DIFFERENT CLASSICAL APPROACHES
IMAGE CLASSIFICATION USING DIFFERENT CLASSICAL APPROACHES
Vikash Kumar
 
20170402 Crop Innovation and Business - Amsterdam
20170402 Crop Innovation and Business - Amsterdam20170402 Crop Innovation and Business - Amsterdam
20170402 Crop Innovation and Business - Amsterdam
Allen Day, PhD
 
Automatic Detection of Window Regions in Indoor Point Clouds Using R-CNN
Automatic Detection of Window Regions in Indoor Point Clouds Using R-CNNAutomatic Detection of Window Regions in Indoor Point Clouds Using R-CNN
Automatic Detection of Window Regions in Indoor Point Clouds Using R-CNN
Zihao(Gerald) Zhang
 
A Double Lexicase Selection Operator for Bloat Control in Evolutionary Featur...
A Double Lexicase Selection Operator for Bloat Control in Evolutionary Featur...A Double Lexicase Selection Operator for Bloat Control in Evolutionary Featur...
A Double Lexicase Selection Operator for Bloat Control in Evolutionary Featur...
Hengzhe Zhang
 
240311_Thuy_Labseminar[Contrastive Multi-View Representation Learning on Grap...
240311_Thuy_Labseminar[Contrastive Multi-View Representation Learning on Grap...240311_Thuy_Labseminar[Contrastive Multi-View Representation Learning on Grap...
240311_Thuy_Labseminar[Contrastive Multi-View Representation Learning on Grap...
thanhdowork
 
IRJET- Study of SVM and CNN in Semantic Concept Detection
IRJET- Study of SVM and CNN in Semantic Concept DetectionIRJET- Study of SVM and CNN in Semantic Concept Detection
IRJET- Study of SVM and CNN in Semantic Concept Detection
IRJET Journal
 
Deep Semi-supervised Learning methods
Deep Semi-supervised Learning methodsDeep Semi-supervised Learning methods
Deep Semi-supervised Learning methods
Princy Joy
 
Medical Imaging at DCU - Kevin McGuinness - UPC Barcelona 2018
Medical Imaging at DCU - Kevin McGuinness - UPC Barcelona 2018Medical Imaging at DCU - Kevin McGuinness - UPC Barcelona 2018
Medical Imaging at DCU - Kevin McGuinness - UPC Barcelona 2018
Universitat Politècnica de Catalunya
 
Towards Deep Attention in Graph Neural Networks: Problems and Remedies.pptx
Towards Deep Attention in Graph Neural Networks: Problems and Remedies.pptxTowards Deep Attention in Graph Neural Networks: Problems and Remedies.pptx
Towards Deep Attention in Graph Neural Networks: Problems and Remedies.pptx
ssuser2624f71
 
Dive into Machine Learning Event MUGDSC.pptx
Dive into Machine Learning Event MUGDSC.pptxDive into Machine Learning Event MUGDSC.pptx
Dive into Machine Learning Event MUGDSC.pptx
RakshaAgrawal21
 
Dive into Machine Learning Event--MUGDSC
Dive into Machine Learning Event--MUGDSCDive into Machine Learning Event--MUGDSC
Dive into Machine Learning Event--MUGDSC
RakshaAgrawal21
 
Parallel k nn on gpu architecture using opencl
Parallel k nn on gpu architecture using openclParallel k nn on gpu architecture using opencl
Parallel k nn on gpu architecture using opencl
eSAT Publishing House
 
Parallel knn on gpu architecture using opencl
Parallel knn on gpu architecture using openclParallel knn on gpu architecture using opencl
Parallel knn on gpu architecture using opencl
eSAT Journals
 
Machine learning in science and industry — day 1
Machine learning in science and industry — day 1Machine learning in science and industry — day 1
Machine learning in science and industry — day 1
arogozhnikov
 
D3L4-objects.pdf
D3L4-objects.pdfD3L4-objects.pdf
D3L4-objects.pdf
ssusere945ae
 
Comparison of Segmentation Algorithms and Estimation of Optimal Segmentation ...
Comparison of Segmentation Algorithms and Estimation of Optimal Segmentation ...Comparison of Segmentation Algorithms and Estimation of Optimal Segmentation ...
Comparison of Segmentation Algorithms and Estimation of Optimal Segmentation ...
Pinaki Ranjan Sarkar
 
Automated_attendance_system_project.pptx
Automated_attendance_system_project.pptxAutomated_attendance_system_project.pptx
Automated_attendance_system_project.pptx
Naveensai51
 
TWCC22_PPT_v3_KL.pdf quantum computer, quantum computer , quantum computer ,...
TWCC22_PPT_v3_KL.pdf  quantum computer, quantum computer , quantum computer ,...TWCC22_PPT_v3_KL.pdf  quantum computer, quantum computer , quantum computer ,...
TWCC22_PPT_v3_KL.pdf quantum computer, quantum computer , quantum computer ,...
Kuan-Tsae Huang
 

Similar to Domain-Aware Sentiment Classification with GRUs and CNNs (20)

Types of Machine Learnig Algorithms(CART, ID3)
Types of Machine Learnig Algorithms(CART, ID3)Types of Machine Learnig Algorithms(CART, ID3)
Types of Machine Learnig Algorithms(CART, ID3)
 
Performance analysis of KNN & K-Means using internet advertisements data
Performance analysis of KNN & K-Means using internet advertisements dataPerformance analysis of KNN & K-Means using internet advertisements data
Performance analysis of KNN & K-Means using internet advertisements data
 
IMAGE CLASSIFICATION USING DIFFERENT CLASSICAL APPROACHES
IMAGE CLASSIFICATION USING DIFFERENT CLASSICAL APPROACHESIMAGE CLASSIFICATION USING DIFFERENT CLASSICAL APPROACHES
IMAGE CLASSIFICATION USING DIFFERENT CLASSICAL APPROACHES
 
20170402 Crop Innovation and Business - Amsterdam
20170402 Crop Innovation and Business - Amsterdam20170402 Crop Innovation and Business - Amsterdam
20170402 Crop Innovation and Business - Amsterdam
 
Automatic Detection of Window Regions in Indoor Point Clouds Using R-CNN
Automatic Detection of Window Regions in Indoor Point Clouds Using R-CNNAutomatic Detection of Window Regions in Indoor Point Clouds Using R-CNN
Automatic Detection of Window Regions in Indoor Point Clouds Using R-CNN
 
A Double Lexicase Selection Operator for Bloat Control in Evolutionary Featur...
A Double Lexicase Selection Operator for Bloat Control in Evolutionary Featur...A Double Lexicase Selection Operator for Bloat Control in Evolutionary Featur...
A Double Lexicase Selection Operator for Bloat Control in Evolutionary Featur...
 
240311_Thuy_Labseminar[Contrastive Multi-View Representation Learning on Grap...
240311_Thuy_Labseminar[Contrastive Multi-View Representation Learning on Grap...240311_Thuy_Labseminar[Contrastive Multi-View Representation Learning on Grap...
240311_Thuy_Labseminar[Contrastive Multi-View Representation Learning on Grap...
 
IRJET- Study of SVM and CNN in Semantic Concept Detection
IRJET- Study of SVM and CNN in Semantic Concept DetectionIRJET- Study of SVM and CNN in Semantic Concept Detection
IRJET- Study of SVM and CNN in Semantic Concept Detection
 
Deep Semi-supervised Learning methods
Deep Semi-supervised Learning methodsDeep Semi-supervised Learning methods
Deep Semi-supervised Learning methods
 
Medical Imaging at DCU - Kevin McGuinness - UPC Barcelona 2018
Medical Imaging at DCU - Kevin McGuinness - UPC Barcelona 2018Medical Imaging at DCU - Kevin McGuinness - UPC Barcelona 2018
Medical Imaging at DCU - Kevin McGuinness - UPC Barcelona 2018
 
Towards Deep Attention in Graph Neural Networks: Problems and Remedies.pptx
Towards Deep Attention in Graph Neural Networks: Problems and Remedies.pptxTowards Deep Attention in Graph Neural Networks: Problems and Remedies.pptx
Towards Deep Attention in Graph Neural Networks: Problems and Remedies.pptx
 
Dive into Machine Learning Event MUGDSC.pptx
Dive into Machine Learning Event MUGDSC.pptxDive into Machine Learning Event MUGDSC.pptx
Dive into Machine Learning Event MUGDSC.pptx
 
Dive into Machine Learning Event--MUGDSC
Dive into Machine Learning Event--MUGDSCDive into Machine Learning Event--MUGDSC
Dive into Machine Learning Event--MUGDSC
 
Parallel k nn on gpu architecture using opencl
Parallel k nn on gpu architecture using openclParallel k nn on gpu architecture using opencl
Parallel k nn on gpu architecture using opencl
 
Parallel knn on gpu architecture using opencl
Parallel knn on gpu architecture using openclParallel knn on gpu architecture using opencl
Parallel knn on gpu architecture using opencl
 
Machine learning in science and industry — day 1
Machine learning in science and industry — day 1Machine learning in science and industry — day 1
Machine learning in science and industry — day 1
 
D3L4-objects.pdf
D3L4-objects.pdfD3L4-objects.pdf
D3L4-objects.pdf
 
Comparison of Segmentation Algorithms and Estimation of Optimal Segmentation ...
Comparison of Segmentation Algorithms and Estimation of Optimal Segmentation ...Comparison of Segmentation Algorithms and Estimation of Optimal Segmentation ...
Comparison of Segmentation Algorithms and Estimation of Optimal Segmentation ...
 
Automated_attendance_system_project.pptx
Automated_attendance_system_project.pptxAutomated_attendance_system_project.pptx
Automated_attendance_system_project.pptx
 
TWCC22_PPT_v3_KL.pdf quantum computer, quantum computer , quantum computer ,...
TWCC22_PPT_v3_KL.pdf  quantum computer, quantum computer , quantum computer ,...TWCC22_PPT_v3_KL.pdf  quantum computer, quantum computer , quantum computer ,...
TWCC22_PPT_v3_KL.pdf quantum computer, quantum computer , quantum computer ,...
 

More from GUANGYUAN PIAO

Env2Vec: Accelerating VNF Testing with Deep Learning
Env2Vec: Accelerating VNF Testing with Deep LearningEnv2Vec: Accelerating VNF Testing with Deep Learning
Env2Vec: Accelerating VNF Testing with Deep Learning
GUANGYUAN PIAO
 
A Study of the Similarities of Entity Embeddings Learned from Different Aspec...
A Study of the Similarities of Entity Embeddings Learned from Different Aspec...A Study of the Similarities of Entity Embeddings Learned from Different Aspec...
A Study of the Similarities of Entity Embeddings Learned from Different Aspec...
GUANGYUAN PIAO
 
Retweet Prediction with Attention-based Deep Neural Network
Retweet Prediction with Attention-based Deep Neural NetworkRetweet Prediction with Attention-based Deep Neural Network
Retweet Prediction with Attention-based Deep Neural Network
GUANGYUAN PIAO
 
WISE2017 - Factorization Machines Leveraging Lightweight Linked Open Data-ena...
WISE2017 - Factorization Machines Leveraging Lightweight Linked Open Data-ena...WISE2017 - Factorization Machines Leveraging Lightweight Linked Open Data-ena...
WISE2017 - Factorization Machines Leveraging Lightweight Linked Open Data-ena...
GUANGYUAN PIAO
 
Hypertext2017-Leveraging Followee List Memberships for Inferring User Interes...
Hypertext2017-Leveraging Followee List Memberships for Inferring User Interes...Hypertext2017-Leveraging Followee List Memberships for Inferring User Interes...
Hypertext2017-Leveraging Followee List Memberships for Inferring User Interes...
GUANGYUAN PIAO
 
ECIR2017-Inferring User Interests for Passive Users on Twitter by Leveraging ...
ECIR2017-Inferring User Interests for Passive Users on Twitter by Leveraging ...ECIR2017-Inferring User Interests for Passive Users on Twitter by Leveraging ...
ECIR2017-Inferring User Interests for Passive Users on Twitter by Leveraging ...
GUANGYUAN PIAO
 
EKAW2016 - Interest Representation, Enrichment, Dynamics, and Propagation: A ...
EKAW2016 - Interest Representation, Enrichment, Dynamics, and Propagation: A ...EKAW2016 - Interest Representation, Enrichment, Dynamics, and Propagation: A ...
EKAW2016 - Interest Representation, Enrichment, Dynamics, and Propagation: A ...
GUANGYUAN PIAO
 
SEMANTiCS2016 - Exploring Dynamics and Semantics of User Interests for User ...
SEMANTiCS2016 - Exploring Dynamics and Semantics of User Interests for User ...SEMANTiCS2016 - Exploring Dynamics and Semantics of User Interests for User ...
SEMANTiCS2016 - Exploring Dynamics and Semantics of User Interests for User ...
GUANGYUAN PIAO
 
UMAP2016EA - Analyzing MOOC Entries of Professionals on LinkedIn for User Mod...
UMAP2016EA - Analyzing MOOC Entries of Professionals on LinkedIn for User Mod...UMAP2016EA - Analyzing MOOC Entries of Professionals on LinkedIn for User Mod...
UMAP2016EA - Analyzing MOOC Entries of Professionals on LinkedIn for User Mod...
GUANGYUAN PIAO
 
UMAP2016 - Analyzing Aggregated Semantics-enabled User Modeling on Google+ an...
UMAP2016 - Analyzing Aggregated Semantics-enabled User Modeling on Google+ an...UMAP2016 - Analyzing Aggregated Semantics-enabled User Modeling on Google+ an...
UMAP2016 - Analyzing Aggregated Semantics-enabled User Modeling on Google+ an...
GUANGYUAN PIAO
 
SAC2016-Measuring Semantic Distance for Linked Open Data-enabled Recommender ...
SAC2016-Measuring Semantic Distance for Linked Open Data-enabled Recommender ...SAC2016-Measuring Semantic Distance for Linked Open Data-enabled Recommender ...
SAC2016-Measuring Semantic Distance for Linked Open Data-enabled Recommender ...
GUANGYUAN PIAO
 
JIST2015-Computing the Semantic Similarity of Resources in DBpedia for Recomm...
JIST2015-Computing the Semantic Similarity of Resources in DBpedia for Recomm...JIST2015-Computing the Semantic Similarity of Resources in DBpedia for Recomm...
JIST2015-Computing the Semantic Similarity of Resources in DBpedia for Recomm...
GUANGYUAN PIAO
 
JIST2015-data challenge
JIST2015-data challengeJIST2015-data challenge
JIST2015-data challenge
GUANGYUAN PIAO
 
Analyzing User Modeling on Twitter for Personalized News Recommendations
Analyzing User Modeling on Twitter for Personalized News RecommendationsAnalyzing User Modeling on Twitter for Personalized News Recommendations
Analyzing User Modeling on Twitter for Personalized News Recommendations
GUANGYUAN PIAO
 
RDFa Basics
RDFa BasicsRDFa Basics
RDFa Basics
GUANGYUAN PIAO
 
Owl 2.0 Overview
Owl 2.0 OverviewOwl 2.0 Overview
Owl 2.0 Overview
GUANGYUAN PIAO
 
OWL 2.0 Primer Part01
OWL 2.0 Primer Part01OWL 2.0 Primer Part01
OWL 2.0 Primer Part01
GUANGYUAN PIAO
 
OWL2.0 Primer Part02
OWL2.0 Primer Part02OWL2.0 Primer Part02
OWL2.0 Primer Part02
GUANGYUAN PIAO
 
Hdd industry
Hdd industryHdd industry
Hdd industry
GUANGYUAN PIAO
 

More from GUANGYUAN PIAO (19)

Env2Vec: Accelerating VNF Testing with Deep Learning
Env2Vec: Accelerating VNF Testing with Deep LearningEnv2Vec: Accelerating VNF Testing with Deep Learning
Env2Vec: Accelerating VNF Testing with Deep Learning
 
A Study of the Similarities of Entity Embeddings Learned from Different Aspec...
A Study of the Similarities of Entity Embeddings Learned from Different Aspec...A Study of the Similarities of Entity Embeddings Learned from Different Aspec...
A Study of the Similarities of Entity Embeddings Learned from Different Aspec...
 
Retweet Prediction with Attention-based Deep Neural Network
Retweet Prediction with Attention-based Deep Neural NetworkRetweet Prediction with Attention-based Deep Neural Network
Retweet Prediction with Attention-based Deep Neural Network
 
WISE2017 - Factorization Machines Leveraging Lightweight Linked Open Data-ena...
WISE2017 - Factorization Machines Leveraging Lightweight Linked Open Data-ena...WISE2017 - Factorization Machines Leveraging Lightweight Linked Open Data-ena...
WISE2017 - Factorization Machines Leveraging Lightweight Linked Open Data-ena...
 
Hypertext2017-Leveraging Followee List Memberships for Inferring User Interes...
Hypertext2017-Leveraging Followee List Memberships for Inferring User Interes...Hypertext2017-Leveraging Followee List Memberships for Inferring User Interes...
Hypertext2017-Leveraging Followee List Memberships for Inferring User Interes...
 
ECIR2017-Inferring User Interests for Passive Users on Twitter by Leveraging ...
ECIR2017-Inferring User Interests for Passive Users on Twitter by Leveraging ...ECIR2017-Inferring User Interests for Passive Users on Twitter by Leveraging ...
ECIR2017-Inferring User Interests for Passive Users on Twitter by Leveraging ...
 
EKAW2016 - Interest Representation, Enrichment, Dynamics, and Propagation: A ...
EKAW2016 - Interest Representation, Enrichment, Dynamics, and Propagation: A ...EKAW2016 - Interest Representation, Enrichment, Dynamics, and Propagation: A ...
EKAW2016 - Interest Representation, Enrichment, Dynamics, and Propagation: A ...
 
SEMANTiCS2016 - Exploring Dynamics and Semantics of User Interests for User ...
SEMANTiCS2016 - Exploring Dynamics and Semantics of User Interests for User ...SEMANTiCS2016 - Exploring Dynamics and Semantics of User Interests for User ...
SEMANTiCS2016 - Exploring Dynamics and Semantics of User Interests for User ...
 
UMAP2016EA - Analyzing MOOC Entries of Professionals on LinkedIn for User Mod...
UMAP2016EA - Analyzing MOOC Entries of Professionals on LinkedIn for User Mod...UMAP2016EA - Analyzing MOOC Entries of Professionals on LinkedIn for User Mod...
UMAP2016EA - Analyzing MOOC Entries of Professionals on LinkedIn for User Mod...
 
UMAP2016 - Analyzing Aggregated Semantics-enabled User Modeling on Google+ an...
UMAP2016 - Analyzing Aggregated Semantics-enabled User Modeling on Google+ an...UMAP2016 - Analyzing Aggregated Semantics-enabled User Modeling on Google+ an...
UMAP2016 - Analyzing Aggregated Semantics-enabled User Modeling on Google+ an...
 
SAC2016-Measuring Semantic Distance for Linked Open Data-enabled Recommender ...
SAC2016-Measuring Semantic Distance for Linked Open Data-enabled Recommender ...SAC2016-Measuring Semantic Distance for Linked Open Data-enabled Recommender ...
SAC2016-Measuring Semantic Distance for Linked Open Data-enabled Recommender ...
 
JIST2015-Computing the Semantic Similarity of Resources in DBpedia for Recomm...
JIST2015-Computing the Semantic Similarity of Resources in DBpedia for Recomm...JIST2015-Computing the Semantic Similarity of Resources in DBpedia for Recomm...
JIST2015-Computing the Semantic Similarity of Resources in DBpedia for Recomm...
 
JIST2015-data challenge
JIST2015-data challengeJIST2015-data challenge
JIST2015-data challenge
 
Analyzing User Modeling on Twitter for Personalized News Recommendations
Analyzing User Modeling on Twitter for Personalized News RecommendationsAnalyzing User Modeling on Twitter for Personalized News Recommendations
Analyzing User Modeling on Twitter for Personalized News Recommendations
 
RDFa Basics
RDFa BasicsRDFa Basics
RDFa Basics
 
Owl 2.0 Overview
Owl 2.0 OverviewOwl 2.0 Overview
Owl 2.0 Overview
 
OWL 2.0 Primer Part01
OWL 2.0 Primer Part01OWL 2.0 Primer Part01
OWL 2.0 Primer Part01
 
OWL2.0 Primer Part02
OWL2.0 Primer Part02OWL2.0 Primer Part02
OWL2.0 Primer Part02
 
Hdd industry
Hdd industryHdd industry
Hdd industry
 

Recently uploaded

[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024
[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024
[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024
Vietnam Cotton & Spinning Association
 
一比一原版南昆士兰大学毕业证如何办理
一比一原版南昆士兰大学毕业证如何办理一比一原版南昆士兰大学毕业证如何办理
一比一原版南昆士兰大学毕业证如何办理
ugydym
 
原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理
原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理 原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理
原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理
tzu5xla
 
一比一原版澳洲西澳大学毕业证(uwa毕业证书)如何办理
一比一原版澳洲西澳大学毕业证(uwa毕业证书)如何办理一比一原版澳洲西澳大学毕业证(uwa毕业证书)如何办理
一比一原版澳洲西澳大学毕业证(uwa毕业证书)如何办理
aguty
 
Econ3060_Screen Time and Success_ final_GroupProject.pdf
Econ3060_Screen Time and Success_ final_GroupProject.pdfEcon3060_Screen Time and Success_ final_GroupProject.pdf
Econ3060_Screen Time and Success_ final_GroupProject.pdf
blueshagoo1
 
A gentle exploration of Retrieval Augmented Generation
A gentle exploration of Retrieval Augmented GenerationA gentle exploration of Retrieval Augmented Generation
A gentle exploration of Retrieval Augmented Generation
dataschool1
 
一比一原版(UofT毕业证)多伦多大学毕业证如何办理
一比一原版(UofT毕业证)多伦多大学毕业证如何办理一比一原版(UofT毕业证)多伦多大学毕业证如何办理
一比一原版(UofT毕业证)多伦多大学毕业证如何办理
exukyp
 
一比一原版(lbs毕业证书)伦敦商学院毕业证如何办理
一比一原版(lbs毕业证书)伦敦商学院毕业证如何办理一比一原版(lbs毕业证书)伦敦商学院毕业证如何办理
一比一原版(lbs毕业证书)伦敦商学院毕业证如何办理
ywqeos
 
Drownings spike from May to August in children
Drownings spike from May to August in childrenDrownings spike from May to August in children
Drownings spike from May to August in children
Bisnar Chase Personal Injury Attorneys
 
一比一原版斯威本理工大学毕业证(swinburne毕业证)如何办理
一比一原版斯威本理工大学毕业证(swinburne毕业证)如何办理一比一原版斯威本理工大学毕业证(swinburne毕业证)如何办理
一比一原版斯威本理工大学毕业证(swinburne毕业证)如何办理
actyx
 
一比一原版(uob毕业证书)伯明翰大学毕业证如何办理
一比一原版(uob毕业证书)伯明翰大学毕业证如何办理一比一原版(uob毕业证书)伯明翰大学毕业证如何办理
一比一原版(uob毕业证书)伯明翰大学毕业证如何办理
9gr6pty
 
REUSE-SCHOOL-DATA-INTEGRATED-SYSTEMS.pptx
REUSE-SCHOOL-DATA-INTEGRATED-SYSTEMS.pptxREUSE-SCHOOL-DATA-INTEGRATED-SYSTEMS.pptx
REUSE-SCHOOL-DATA-INTEGRATED-SYSTEMS.pptx
KiriakiENikolaidou
 
Digital Marketing Performance Marketing Sample .pdf
Digital Marketing Performance Marketing  Sample .pdfDigital Marketing Performance Marketing  Sample .pdf
Digital Marketing Performance Marketing Sample .pdf
Vineet
 
Experts live - Improving user adoption with AI
Experts live - Improving user adoption with AIExperts live - Improving user adoption with AI
Experts live - Improving user adoption with AI
jitskeb
 
一比一原版南十字星大学毕业证(SCU毕业证书)学历如何办理
一比一原版南十字星大学毕业证(SCU毕业证书)学历如何办理一比一原版南十字星大学毕业证(SCU毕业证书)学历如何办理
一比一原版南十字星大学毕业证(SCU毕业证书)学历如何办理
slg6lamcq
 
Data Scientist Machine Learning Profiles .pdf
Data Scientist Machine Learning  Profiles .pdfData Scientist Machine Learning  Profiles .pdf
Data Scientist Machine Learning Profiles .pdf
Vineet
 
一比一原版悉尼大学毕业证如何办理
一比一原版悉尼大学毕业证如何办理一比一原版悉尼大学毕业证如何办理
一比一原版悉尼大学毕业证如何办理
keesa2
 
一比一原版(曼大毕业证书)曼尼托巴大学毕业证如何办理
一比一原版(曼大毕业证书)曼尼托巴大学毕业证如何办理一比一原版(曼大毕业证书)曼尼托巴大学毕业证如何办理
一比一原版(曼大毕业证书)曼尼托巴大学毕业证如何办理
ytypuem
 
一比一原版(Sheffield毕业证书)谢菲尔德大学毕业证如何办理
一比一原版(Sheffield毕业证书)谢菲尔德大学毕业证如何办理一比一原版(Sheffield毕业证书)谢菲尔德大学毕业证如何办理
一比一原版(Sheffield毕业证书)谢菲尔德大学毕业证如何办理
1tyxnjpia
 
ML-PPT-UNIT-2 Generative Classifiers Discriminative Classifiers
ML-PPT-UNIT-2 Generative Classifiers Discriminative ClassifiersML-PPT-UNIT-2 Generative Classifiers Discriminative Classifiers
ML-PPT-UNIT-2 Generative Classifiers Discriminative Classifiers
MastanaihnaiduYasam
 

Recently uploaded (20)

[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024
[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024
[VCOSA] Monthly Report - Cotton & Yarn Statistics March 2024
 
一比一原版南昆士兰大学毕业证如何办理
一比一原版南昆士兰大学毕业证如何办理一比一原版南昆士兰大学毕业证如何办理
一比一原版南昆士兰大学毕业证如何办理
 
原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理
原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理 原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理
原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理
 
一比一原版澳洲西澳大学毕业证(uwa毕业证书)如何办理
一比一原版澳洲西澳大学毕业证(uwa毕业证书)如何办理一比一原版澳洲西澳大学毕业证(uwa毕业证书)如何办理
一比一原版澳洲西澳大学毕业证(uwa毕业证书)如何办理
 
Econ3060_Screen Time and Success_ final_GroupProject.pdf
Econ3060_Screen Time and Success_ final_GroupProject.pdfEcon3060_Screen Time and Success_ final_GroupProject.pdf
Econ3060_Screen Time and Success_ final_GroupProject.pdf
 
A gentle exploration of Retrieval Augmented Generation
A gentle exploration of Retrieval Augmented GenerationA gentle exploration of Retrieval Augmented Generation
A gentle exploration of Retrieval Augmented Generation
 
一比一原版(UofT毕业证)多伦多大学毕业证如何办理
一比一原版(UofT毕业证)多伦多大学毕业证如何办理一比一原版(UofT毕业证)多伦多大学毕业证如何办理
一比一原版(UofT毕业证)多伦多大学毕业证如何办理
 
一比一原版(lbs毕业证书)伦敦商学院毕业证如何办理
一比一原版(lbs毕业证书)伦敦商学院毕业证如何办理一比一原版(lbs毕业证书)伦敦商学院毕业证如何办理
一比一原版(lbs毕业证书)伦敦商学院毕业证如何办理
 
Drownings spike from May to August in children
Drownings spike from May to August in childrenDrownings spike from May to August in children
Drownings spike from May to August in children
 
一比一原版斯威本理工大学毕业证(swinburne毕业证)如何办理
一比一原版斯威本理工大学毕业证(swinburne毕业证)如何办理一比一原版斯威本理工大学毕业证(swinburne毕业证)如何办理
一比一原版斯威本理工大学毕业证(swinburne毕业证)如何办理
 
一比一原版(uob毕业证书)伯明翰大学毕业证如何办理
一比一原版(uob毕业证书)伯明翰大学毕业证如何办理一比一原版(uob毕业证书)伯明翰大学毕业证如何办理
一比一原版(uob毕业证书)伯明翰大学毕业证如何办理
 
REUSE-SCHOOL-DATA-INTEGRATED-SYSTEMS.pptx
REUSE-SCHOOL-DATA-INTEGRATED-SYSTEMS.pptxREUSE-SCHOOL-DATA-INTEGRATED-SYSTEMS.pptx
REUSE-SCHOOL-DATA-INTEGRATED-SYSTEMS.pptx
 
Digital Marketing Performance Marketing Sample .pdf
Digital Marketing Performance Marketing  Sample .pdfDigital Marketing Performance Marketing  Sample .pdf
Digital Marketing Performance Marketing Sample .pdf
 
Experts live - Improving user adoption with AI
Experts live - Improving user adoption with AIExperts live - Improving user adoption with AI
Experts live - Improving user adoption with AI
 
一比一原版南十字星大学毕业证(SCU毕业证书)学历如何办理
一比一原版南十字星大学毕业证(SCU毕业证书)学历如何办理一比一原版南十字星大学毕业证(SCU毕业证书)学历如何办理
一比一原版南十字星大学毕业证(SCU毕业证书)学历如何办理
 
Data Scientist Machine Learning Profiles .pdf
Data Scientist Machine Learning  Profiles .pdfData Scientist Machine Learning  Profiles .pdf
Data Scientist Machine Learning Profiles .pdf
 
一比一原版悉尼大学毕业证如何办理
一比一原版悉尼大学毕业证如何办理一比一原版悉尼大学毕业证如何办理
一比一原版悉尼大学毕业证如何办理
 
一比一原版(曼大毕业证书)曼尼托巴大学毕业证如何办理
一比一原版(曼大毕业证书)曼尼托巴大学毕业证如何办理一比一原版(曼大毕业证书)曼尼托巴大学毕业证如何办理
一比一原版(曼大毕业证书)曼尼托巴大学毕业证如何办理
 
一比一原版(Sheffield毕业证书)谢菲尔德大学毕业证如何办理
一比一原版(Sheffield毕业证书)谢菲尔德大学毕业证如何办理一比一原版(Sheffield毕业证书)谢菲尔德大学毕业证如何办理
一比一原版(Sheffield毕业证书)谢菲尔德大学毕业证如何办理
 
ML-PPT-UNIT-2 Generative Classifiers Discriminative Classifiers
ML-PPT-UNIT-2 Generative Classifiers Discriminative ClassifiersML-PPT-UNIT-2 Generative Classifiers Discriminative Classifiers
ML-PPT-UNIT-2 Generative Classifiers Discriminative Classifiers
 

Domain-Aware Sentiment Classification with GRUs and CNNs

  • 1. Domain-Aware Sentiment Classification with GRUs and CNNs (1st place in the Semantic Sentiment Classification Challenge at ESWC2018) Guangyuan Piao, John G. Breslin Insight Centre for Data Analytics @NUI Galway 03/06/2018 – 07/06/2018 Semantic Sentiment Analysis & Embedding Challenge @ESWC2018
  • 2. 2 Tasks 2 embedding evaluation ●  9 provided embeddings ●  2 baseline embeddings (glove, amazonwe) sentiment classification ●  1 million reviews ●  20 domains ●  50% positive & 50% negative our design dimension ●  domain-aware ●  combining RNNs & CNNs ●  runnable under our limited resources
  • 3. 3 3 .... x1 x2 xm.... review text dr review  domain .... GRU CNN .... look up S1 S2 Sn.... dense y' review summary prediction dr .... GRU CNN concatenation layer Proposed Model
  • 4. 4 Results on Validation Set 4 training: the rest of provided dataset / validation: 10,000 of 20 domains ensemble approach: voting with 11 models using different emb. & epochs embedding (emb.) accuracy glove 0.9525 amazonwe 0.9122 emb_128_15 0.9578 emb_128_30 0.9560 emb_128_50 0.9544 emb_256_15 0.9576 emb_256_30 0.9576 emb_256_50 0.9578 emb_512_15 0.9568 emb_512_30 0.9598 emb_512_50 0.9605 ensemble approach 0.9657
  • 5. 5 Results on Test Set 5 test: 10,000 equally distributed over 20 domains team accuracy our approach 0.9643 Team#2 0.9561 Team#3 0.9356 Team#4 0.9228 Team#5 0.8823 Team#6 0.8743 … … … …
  • 6. funded by thank you for your attention! Guangyuan Piao, John G. Breslin, Domain-Aware Sentiment Classification with GRUs and CNNs, Semantic Sentiment Classification Challenge at ESWC2018, Crete, Greece Guangyuan Piao homepage: http://parklize.github.io e-mail: guangyuan.piao@insight-centre.org scholar: https://goo.gl/tgK9bk slideshare: http://www.slideshare.net/parklize