SlideShare a Scribd company logo
{
“名前” : “真壁 徹(まかべ とおる)”,
“所属” : “日本マイクロソフト株式会社”,
“役割” : “クラウド ソリューションアーキテクト”,
“経歴” : “大和総研  HP Enterprise”,
“特技” : “クラウド & オープンソース”
}
Azure Regionオンプレミス(ユーザー占有型)
User User
User User
Storage
Cluster
Storage
Cluster
Server
Cluster
Server
Cluster
共用部分が大きい
Azure Regionオンプレミス(ユーザー占有型)
User User
User User
Storage
Cluster
Storage
Cluster
Server
Cluster
Server
Cluster
影響範囲
ストレージクラスターが故障した場合
影響範囲が大きい
Azure Regionオンプレミス(ユーザー占有型)
User User
User User
Storage
Cluster
Storage
Cluster
Server
Cluster
Server
Cluster
データセンター全体で共有している設備の障害影響は、
オンプレもAzureも同様
どれも冗長化、自己回復機能を有するが、不具合や作業ミスの可能性はゼロではない
ユーザーがそれに対処するにはマルチリージョン構成が有効
Azure
Storage
Cluster
Storage
Cluster
Server
Cluster
Server
Cluster
Traditional on-premises Modern cloud
Monolithic, centralized
Design for predictable scalability
Relational database
Strong consistency
Serial and synchronized processing
Design to avoid failures (MTBF)
Occasional big updates
Manual management
Snowflake servers
Decomposed, de-centralized
Design for elastic scale
Polyglot persistence (mix of storage technologies)
Eventual consistency
Parallel and asynchronous processing
Design for failure (MTTR)
Frequent small updates
Automated self-management
Immutable infrastructure
Azure Application Architecture Guide
https://docs.microsoft.com/ja-jp/azure/architecture/guide/
• 2008 Azure 発表
• 2008 – 2014 様々なDevOpsアプローチ
• 2014 SREチームのパイロット運用開始
• 2015 SREチームを正式に組織化
https://azure.microsoft.com/ja-jp/support/legal/sla/
インフラチーム
SRE
(Proactive)
Operation
(Reactive)
仕組みづくりに
集中
認知までの時間を
最小化
エスカレーション、
アサインの自動化
高速なロールバック、
フェイルオーバー、
再構築、増強
SREが仕組みを作る
相互理解
可用性
Error Budget
(年間)
Error Budget
(月間)
99% 3.65 日 7.2 時間
99.9% 8.76 時間 43.2 分
99.95% 4.38 時間 21.6 分
99.99% 52.56 分 4.32 分
99.999% 5.26 分 25.9 秒
可用性
Error Budget
(年間)
Error Budget
(月間)
例
< 99% 3.65 日 7.2 時間
バックアップ & 迅速・確実なリカ
バリ (Infrastructure as Code)
99.9% 8.76 時間 43.2 分
シングルリージョンHA
99.95% 4.38 時間 21.6 分
99.99% 52.56 分 4.32 分 マルチリージョン (Act/Stb)
99.999% 5.26 分 25.9 秒 マルチリージョン (Act/Act)
認知までの時間を
最小化
エスカレーション、
アサインの自動化
高速なロールバック、
フェイルオーバー、
再構築、増強
SREは全体設計、検証、
訓練と最適化を行う
0.9994
(99.94%/月)
-> Error Budget 25.92分/月
https://docs.microsoft.com/ja-jp/azure/architecture/resiliency/
2592000秒)とすると
発生年 発生日 リージョン 復旧までの
時間
概要と原因
2015 (特になし)
2016 9/15 複数 約2時間 • ネットワークの輻輳と名前解決機能不全
• ネットワーク制御ソフトの不具合
2017 3/8 東日本 約2時間 • ストレージクラスター停止
• ストレージクラスター制御ソフトの不具合
3/28 西日本 約3時間 • サービス間通信不全
• 増設時のネットワーク設定プロセスでのミス
3/31 東日本 約9時間 • データセンター収容設備の強制シャットダウン
• 冗長化UPSの障害復旧プロセスでのミス
12.88ミリ秒18.92ミリ秒
9.00ミリ秒
App Service
Cosmos
DB
SQL
Database
Redis
Cache
Storage
(Contents)
Storage
(Log, Config, etc)
CDN
App Service
Cosmos
DB
SQL
Database
Redis
Cache
Storage
(Contents)
Storage
(Log, Config, etc)
Traffic
Manager
Active Region Standby Region
https://docs.microsoft.com/ja-jp/azure/architecture/reference-architectures/managed-web-app/multi-region-web-app
Traffic Manager
マニュアル切り替え可能
(優先度変更)
SQL Database
マニュアル切り替え可能
(Failover Group内でスイッチ)
Storage
マニュアル切り替え不可
Cosmos DB
マニュアル切り替え可能
(Write Region変更)
Azure Storageで同期するのは、対抗リージョンでの即時回復、書き込みが不要な
静的データ(ログや構成ファイル、バックアップデータなど)に限定する。
即時読み取りが必要な場合は、RA-GRSでセカンダリを読めるようにしておく。
App Service
Cosmos
DB
SQL
Database
Redis
Cache
Storage
(Contents)
Storage
(Log, Config, etc)
App Service
Cosmos
DB
SQL
Database
Redis
Cache
Storage
(Contents)
Storage
(Log, Config, etc)
Traffic
Manager
Active Region Standby Region
CDN
(青色)ユーザーが明示的に分離できる要素
Managed Disk
https://docs.microsoft.com/ja-jp/azure/architecture/resiliency/
0.99989
(99.989%/月)
-> Error Budget
4.75分/月
https://docs.microsoft.com/ja-jp/azure/traffic-manager/traffic-manager-monitoring
https://docs.microsoft.com/ja-jp/azure/sql-database/sql-database-business-continuity
Traffic Manager
判定時間(最長のケースで130秒) + DNS TTL(設定下限30秒)
(補足)30秒毎にエンドポイントを監視し、10秒以内に応答がない状態が4回続くと、エンドポイント障害と判断する
SQL Database
判定時間(*) + 時間(30秒以内)
Traffic Managerを使う場合、160秒は見込むべき。 (99.994%/月)
判定/切換時間のさらなる短縮には、他で検知->マニュアル切換、Act/Act化を検討。
+ ユーザー環境要因
(*)Automatic Failoverは
Preview中にて値の公開待ち
Demo
Multi Region Active/Standby Architecture
App Service App Service
Traffic
Manager
Active Region
(Japan East)
Standby Region
(US West 2)
Failover Group
SQL Database SQL Database
ARM
Template
https://github.com/ToruMakabe/decode2017
別の機会で
もっと詳しく!
レベル500でもOK!
合わせて読みたい
“DI13ダウンタイムを最小に!
〜 Azure における障害/災害に耐えうるアーキテクチャ設計のポイント 〜”
© 2017 Microsoft Corporation. All rights reserved.
本情報の内容(添付文書、リンク先などを含む)は、作成日時点でのものであり、予告なく変更される場合があります。
セッションアンケートにご協力ください
 専用アプリからご回答いただけます。
decode 2017
 スケジュールビルダーで受講セッションを
登録後、アンケート画面からご回答ください。
 アンケートの回答時間はたったの 15 秒です!
Ask the Speaker のご案内
本セッションの詳細は『Ask the Speaker Room』各コーナーカウンタにて
ご説明させていただきます。是非、お立ち寄りください。

More Related Content

What's hot

コンテナ&サーバーレス:トレンドの考察と少し先の未来の展望
コンテナ&サーバーレス:トレンドの考察と少し先の未来の展望コンテナ&サーバーレス:トレンドの考察と少し先の未来の展望
コンテナ&サーバーレス:トレンドの考察と少し先の未来の展望
Yoichi Kawasaki
 
情報共有は、なぜGoogle Docsじゃなく、 Confluenceなのか。
情報共有は、なぜGoogle Docsじゃなく、 Confluenceなのか。情報共有は、なぜGoogle Docsじゃなく、 Confluenceなのか。
情報共有は、なぜGoogle Docsじゃなく、 Confluenceなのか。
Narichika Kajihara
 
とにかく分かりづらいTwelve-Factor Appの解説を試みる
とにかく分かりづらいTwelve-Factor Appの解説を試みるとにかく分かりづらいTwelve-Factor Appの解説を試みる
とにかく分かりづらいTwelve-Factor Appの解説を試みる
Masatoshi Tada
 
Java EE から Quarkus による開発への移行について
Java EE から Quarkus による開発への移行についてJava EE から Quarkus による開発への移行について
Java EE から Quarkus による開発への移行について
Shigeru Tatsuta
 
Helidon 概要
Helidon 概要Helidon 概要
マイクロサービス化に向けて
マイクロサービス化に向けてマイクロサービス化に向けて
マイクロサービス化に向けて
HIRA
 
Azure Network Security Group(NSG) はじめてのDeep Dive
Azure Network Security Group(NSG) はじめてのDeep DiveAzure Network Security Group(NSG) はじめてのDeep Dive
Azure Network Security Group(NSG) はじめてのDeep Dive
Yoshimasa Katakura
 
Keycloak拡張入門
Keycloak拡張入門Keycloak拡張入門
Keycloak拡張入門
Hiroyuki Wada
 
Kinesis + Elasticsearchでつくるさいきょうのログ分析基盤
Kinesis + Elasticsearchでつくるさいきょうのログ分析基盤Kinesis + Elasticsearchでつくるさいきょうのログ分析基盤
Kinesis + Elasticsearchでつくるさいきょうのログ分析基盤
Amazon Web Services Japan
 
KafkaとPulsar
KafkaとPulsarKafkaとPulsar
各種データベースの特徴とパフォーマンス比較
各種データベースの特徴とパフォーマンス比較各種データベースの特徴とパフォーマンス比較
各種データベースの特徴とパフォーマンス比較
株式会社オプト 仙台ラボラトリ
 
Amazon EKS によるスマホゲームのバックエンド運用事例
Amazon EKS によるスマホゲームのバックエンド運用事例Amazon EKS によるスマホゲームのバックエンド運用事例
Amazon EKS によるスマホゲームのバックエンド運用事例
gree_tech
 
ポスト・ラムダアーキテクチャの切り札? Apache Hudi(NTTデータ テクノロジーカンファレンス 2020 発表資料)
ポスト・ラムダアーキテクチャの切り札? Apache Hudi(NTTデータ テクノロジーカンファレンス 2020 発表資料)ポスト・ラムダアーキテクチャの切り札? Apache Hudi(NTTデータ テクノロジーカンファレンス 2020 発表資料)
ポスト・ラムダアーキテクチャの切り札? Apache Hudi(NTTデータ テクノロジーカンファレンス 2020 発表資料)
NTT DATA Technology & Innovation
 
マイクロサービスに至る歴史とこれから - XP祭り2021
マイクロサービスに至る歴史とこれから - XP祭り2021マイクロサービスに至る歴史とこれから - XP祭り2021
マイクロサービスに至る歴史とこれから - XP祭り2021
Yusuke Suzuki
 
Spring Cloud Data Flow の紹介 #streamctjp
Spring Cloud Data Flow の紹介  #streamctjpSpring Cloud Data Flow の紹介  #streamctjp
Spring Cloud Data Flow の紹介 #streamctjp
Yahoo!デベロッパーネットワーク
 
システム間連携を担うSpring Integrationのエンタープライズ開発での活用
システム間連携を担うSpring Integrationのエンタープライズ開発での活用システム間連携を担うSpring Integrationのエンタープライズ開発での活用
システム間連携を担うSpring Integrationのエンタープライズ開発での活用
apkiban
 
KeycloakでAPI認可に入門する
KeycloakでAPI認可に入門するKeycloakでAPI認可に入門する
KeycloakでAPI認可に入門する
Hitachi, Ltd. OSS Solution Center.
 
Keycloak & midPoint の紹介
Keycloak & midPoint の紹介Keycloak & midPoint の紹介
Keycloak & midPoint の紹介
Hiroyuki Wada
 
MicroProfileの正しい使い方 (Java Developer Summit 2023)
MicroProfileの正しい使い方 (Java Developer Summit 2023)MicroProfileの正しい使い方 (Java Developer Summit 2023)
MicroProfileの正しい使い方 (Java Developer Summit 2023)
Hirofumi Iwasaki
 
モノリスからマイクロサービスへの移行 ~ストラングラーパターンの検証~(Spring Fest 2020講演資料)
モノリスからマイクロサービスへの移行 ~ストラングラーパターンの検証~(Spring Fest 2020講演資料)モノリスからマイクロサービスへの移行 ~ストラングラーパターンの検証~(Spring Fest 2020講演資料)
モノリスからマイクロサービスへの移行 ~ストラングラーパターンの検証~(Spring Fest 2020講演資料)
NTT DATA Technology & Innovation
 

What's hot (20)

コンテナ&サーバーレス:トレンドの考察と少し先の未来の展望
コンテナ&サーバーレス:トレンドの考察と少し先の未来の展望コンテナ&サーバーレス:トレンドの考察と少し先の未来の展望
コンテナ&サーバーレス:トレンドの考察と少し先の未来の展望
 
情報共有は、なぜGoogle Docsじゃなく、 Confluenceなのか。
情報共有は、なぜGoogle Docsじゃなく、 Confluenceなのか。情報共有は、なぜGoogle Docsじゃなく、 Confluenceなのか。
情報共有は、なぜGoogle Docsじゃなく、 Confluenceなのか。
 
とにかく分かりづらいTwelve-Factor Appの解説を試みる
とにかく分かりづらいTwelve-Factor Appの解説を試みるとにかく分かりづらいTwelve-Factor Appの解説を試みる
とにかく分かりづらいTwelve-Factor Appの解説を試みる
 
Java EE から Quarkus による開発への移行について
Java EE から Quarkus による開発への移行についてJava EE から Quarkus による開発への移行について
Java EE から Quarkus による開発への移行について
 
Helidon 概要
Helidon 概要Helidon 概要
Helidon 概要
 
マイクロサービス化に向けて
マイクロサービス化に向けてマイクロサービス化に向けて
マイクロサービス化に向けて
 
Azure Network Security Group(NSG) はじめてのDeep Dive
Azure Network Security Group(NSG) はじめてのDeep DiveAzure Network Security Group(NSG) はじめてのDeep Dive
Azure Network Security Group(NSG) はじめてのDeep Dive
 
Keycloak拡張入門
Keycloak拡張入門Keycloak拡張入門
Keycloak拡張入門
 
Kinesis + Elasticsearchでつくるさいきょうのログ分析基盤
Kinesis + Elasticsearchでつくるさいきょうのログ分析基盤Kinesis + Elasticsearchでつくるさいきょうのログ分析基盤
Kinesis + Elasticsearchでつくるさいきょうのログ分析基盤
 
KafkaとPulsar
KafkaとPulsarKafkaとPulsar
KafkaとPulsar
 
各種データベースの特徴とパフォーマンス比較
各種データベースの特徴とパフォーマンス比較各種データベースの特徴とパフォーマンス比較
各種データベースの特徴とパフォーマンス比較
 
Amazon EKS によるスマホゲームのバックエンド運用事例
Amazon EKS によるスマホゲームのバックエンド運用事例Amazon EKS によるスマホゲームのバックエンド運用事例
Amazon EKS によるスマホゲームのバックエンド運用事例
 
ポスト・ラムダアーキテクチャの切り札? Apache Hudi(NTTデータ テクノロジーカンファレンス 2020 発表資料)
ポスト・ラムダアーキテクチャの切り札? Apache Hudi(NTTデータ テクノロジーカンファレンス 2020 発表資料)ポスト・ラムダアーキテクチャの切り札? Apache Hudi(NTTデータ テクノロジーカンファレンス 2020 発表資料)
ポスト・ラムダアーキテクチャの切り札? Apache Hudi(NTTデータ テクノロジーカンファレンス 2020 発表資料)
 
マイクロサービスに至る歴史とこれから - XP祭り2021
マイクロサービスに至る歴史とこれから - XP祭り2021マイクロサービスに至る歴史とこれから - XP祭り2021
マイクロサービスに至る歴史とこれから - XP祭り2021
 
Spring Cloud Data Flow の紹介 #streamctjp
Spring Cloud Data Flow の紹介  #streamctjpSpring Cloud Data Flow の紹介  #streamctjp
Spring Cloud Data Flow の紹介 #streamctjp
 
システム間連携を担うSpring Integrationのエンタープライズ開発での活用
システム間連携を担うSpring Integrationのエンタープライズ開発での活用システム間連携を担うSpring Integrationのエンタープライズ開発での活用
システム間連携を担うSpring Integrationのエンタープライズ開発での活用
 
KeycloakでAPI認可に入門する
KeycloakでAPI認可に入門するKeycloakでAPI認可に入門する
KeycloakでAPI認可に入門する
 
Keycloak & midPoint の紹介
Keycloak & midPoint の紹介Keycloak & midPoint の紹介
Keycloak & midPoint の紹介
 
MicroProfileの正しい使い方 (Java Developer Summit 2023)
MicroProfileの正しい使い方 (Java Developer Summit 2023)MicroProfileの正しい使い方 (Java Developer Summit 2023)
MicroProfileの正しい使い方 (Java Developer Summit 2023)
 
モノリスからマイクロサービスへの移行 ~ストラングラーパターンの検証~(Spring Fest 2020講演資料)
モノリスからマイクロサービスへの移行 ~ストラングラーパターンの検証~(Spring Fest 2020講演資料)モノリスからマイクロサービスへの移行 ~ストラングラーパターンの検証~(Spring Fest 2020講演資料)
モノリスからマイクロサービスへの移行 ~ストラングラーパターンの検証~(Spring Fest 2020講演資料)
 

Viewers also liked

クラウド運用のベストプラクティスを考える - OpenStack最新情報セミナー(2016年12月)
クラウド運用のベストプラクティスを考える - OpenStack最新情報セミナー(2016年12月)クラウド運用のベストプラクティスを考える - OpenStack最新情報セミナー(2016年12月)
クラウド運用のベストプラクティスを考える - OpenStack最新情報セミナー(2016年12月)
VirtualTech Japan Inc.
 
第6回 itil講義資料
第6回 itil講義資料第6回 itil講義資料
第6回 itil講義資料
Mugen Fujii
 
実務で活かせる AWSアーキテクチャ設計 〜AWS re:Invent 2016アップデート最新版〜
実務で活かせる AWSアーキテクチャ設計 〜AWS re:Invent 2016アップデート最新版〜実務で活かせる AWSアーキテクチャ設計 〜AWS re:Invent 2016アップデート最新版〜
実務で活かせる AWSアーキテクチャ設計 〜AWS re:Invent 2016アップデート最新版〜
真吾 吉田
 
仕事の成果は「聞き方」で9割決まる
仕事の成果は「聞き方」で9割決まる仕事の成果は「聞き方」で9割決まる
仕事の成果は「聞き方」で9割決まる
Katsuhito Okada
 
手っ取り早くプロジェクトをなんとかしたい人のためのnanapi流ツール活用術~WebSig会議 vol.34「Webディレクター必見!プロジェクトを成功に...
手っ取り早くプロジェクトをなんとかしたい人のためのnanapi流ツール活用術~WebSig会議 vol.34「Webディレクター必見!プロジェクトを成功に...手っ取り早くプロジェクトをなんとかしたい人のためのnanapi流ツール活用術~WebSig会議 vol.34「Webディレクター必見!プロジェクトを成功に...
手っ取り早くプロジェクトをなんとかしたい人のためのnanapi流ツール活用術~WebSig会議 vol.34「Webディレクター必見!プロジェクトを成功に...
WebSig24/7
 
今年のOss業界10大ニュース
今年のOss業界10大ニュース今年のOss業界10大ニュース
今年のOss業界10大ニュース
Yukio Yoshida
 
クックパッドの開発プロセス
クックパッドの開発プロセスクックパッドの開発プロセス
クックパッドの開発プロセス
Hiroyuki Inoue
 
仕事に活きる数学講座(第四回:予測力編)
仕事に活きる数学講座(第四回:予測力編)仕事に活きる数学講座(第四回:予測力編)
仕事に活きる数学講座(第四回:予測力編)
schoowebcampus
 
日々の気づきをふりかえり、 個人とチームの成長につなげる方法
日々の気づきをふりかえり、 個人とチームの成長につなげる方法日々の気づきをふりかえり、 個人とチームの成長につなげる方法
日々の気づきをふりかえり、 個人とチームの成長につなげる方法
株式会社コパイロツト COPILOT Inc.
 
オブジェクト指向を学んで図解力、仕事力アップ
オブジェクト指向を学んで図解力、仕事力アップオブジェクト指向を学んで図解力、仕事力アップ
オブジェクト指向を学んで図解力、仕事力アップ
Haruo Sato
 
AWS クックパッドの運用事例
AWS クックパッドの運用事例AWS クックパッドの運用事例
AWS クックパッドの運用事例Satoshi Takada
 
Cookpad TechConf 2016 - DWHに必要なこと
Cookpad TechConf 2016 - DWHに必要なことCookpad TechConf 2016 - DWHに必要なこと
Cookpad TechConf 2016 - DWHに必要なこと
Minero Aoki
 
全文検索でRedmineをさらに活用!
全文検索でRedmineをさらに活用!全文検索でRedmineをさらに活用!
全文検索でRedmineをさらに活用!
Kouhei Sutou
 
Cookpadの料理画像を分類した話
Cookpadの料理画像を分類した話Cookpadの料理画像を分類した話
Cookpadの料理画像を分類した話
Shunsuke KITADA
 
4時間で学ぶ、効率的な自動テストスクリプトのメンテナンス
4時間で学ぶ、効率的な自動テストスクリプトのメンテナンス4時間で学ぶ、効率的な自動テストスクリプトのメンテナンス
4時間で学ぶ、効率的な自動テストスクリプトのメンテナンス
Nozomi Ito
 
5分で分かるサイボウズのSRE
5分で分かるサイボウズのSRE5分で分かるサイボウズのSRE
5分で分かるサイボウズのSRE
uchan_nos
 
hbstudy 74 Site Reliability Engineering
hbstudy 74 Site Reliability Engineeringhbstudy 74 Site Reliability Engineering
hbstudy 74 Site Reliability Engineering
Ryuji Tamagawa
 
いまの Office 365 ってこんな感じ?
いまの Office 365 ってこんな感じ?いまの Office 365 ってこんな感じ?
いまの Office 365 ってこんな感じ?
Hirofumi Ota
 
ITサービスマネジメントとSRE
ITサービスマネジメントとSREITサービスマネジメントとSRE
ITサービスマネジメントとSRE
真吾 吉田
 
技術者の自分が11年間会社を経営して学んだ7つのこと
技術者の自分が11年間会社を経営して学んだ7つのこと技術者の自分が11年間会社を経営して学んだ7つのこと
技術者の自分が11年間会社を経営して学んだ7つのこと
Haruo Sato
 

Viewers also liked (20)

クラウド運用のベストプラクティスを考える - OpenStack最新情報セミナー(2016年12月)
クラウド運用のベストプラクティスを考える - OpenStack最新情報セミナー(2016年12月)クラウド運用のベストプラクティスを考える - OpenStack最新情報セミナー(2016年12月)
クラウド運用のベストプラクティスを考える - OpenStack最新情報セミナー(2016年12月)
 
第6回 itil講義資料
第6回 itil講義資料第6回 itil講義資料
第6回 itil講義資料
 
実務で活かせる AWSアーキテクチャ設計 〜AWS re:Invent 2016アップデート最新版〜
実務で活かせる AWSアーキテクチャ設計 〜AWS re:Invent 2016アップデート最新版〜実務で活かせる AWSアーキテクチャ設計 〜AWS re:Invent 2016アップデート最新版〜
実務で活かせる AWSアーキテクチャ設計 〜AWS re:Invent 2016アップデート最新版〜
 
仕事の成果は「聞き方」で9割決まる
仕事の成果は「聞き方」で9割決まる仕事の成果は「聞き方」で9割決まる
仕事の成果は「聞き方」で9割決まる
 
手っ取り早くプロジェクトをなんとかしたい人のためのnanapi流ツール活用術~WebSig会議 vol.34「Webディレクター必見!プロジェクトを成功に...
手っ取り早くプロジェクトをなんとかしたい人のためのnanapi流ツール活用術~WebSig会議 vol.34「Webディレクター必見!プロジェクトを成功に...手っ取り早くプロジェクトをなんとかしたい人のためのnanapi流ツール活用術~WebSig会議 vol.34「Webディレクター必見!プロジェクトを成功に...
手っ取り早くプロジェクトをなんとかしたい人のためのnanapi流ツール活用術~WebSig会議 vol.34「Webディレクター必見!プロジェクトを成功に...
 
今年のOss業界10大ニュース
今年のOss業界10大ニュース今年のOss業界10大ニュース
今年のOss業界10大ニュース
 
クックパッドの開発プロセス
クックパッドの開発プロセスクックパッドの開発プロセス
クックパッドの開発プロセス
 
仕事に活きる数学講座(第四回:予測力編)
仕事に活きる数学講座(第四回:予測力編)仕事に活きる数学講座(第四回:予測力編)
仕事に活きる数学講座(第四回:予測力編)
 
日々の気づきをふりかえり、 個人とチームの成長につなげる方法
日々の気づきをふりかえり、 個人とチームの成長につなげる方法日々の気づきをふりかえり、 個人とチームの成長につなげる方法
日々の気づきをふりかえり、 個人とチームの成長につなげる方法
 
オブジェクト指向を学んで図解力、仕事力アップ
オブジェクト指向を学んで図解力、仕事力アップオブジェクト指向を学んで図解力、仕事力アップ
オブジェクト指向を学んで図解力、仕事力アップ
 
AWS クックパッドの運用事例
AWS クックパッドの運用事例AWS クックパッドの運用事例
AWS クックパッドの運用事例
 
Cookpad TechConf 2016 - DWHに必要なこと
Cookpad TechConf 2016 - DWHに必要なことCookpad TechConf 2016 - DWHに必要なこと
Cookpad TechConf 2016 - DWHに必要なこと
 
全文検索でRedmineをさらに活用!
全文検索でRedmineをさらに活用!全文検索でRedmineをさらに活用!
全文検索でRedmineをさらに活用!
 
Cookpadの料理画像を分類した話
Cookpadの料理画像を分類した話Cookpadの料理画像を分類した話
Cookpadの料理画像を分類した話
 
4時間で学ぶ、効率的な自動テストスクリプトのメンテナンス
4時間で学ぶ、効率的な自動テストスクリプトのメンテナンス4時間で学ぶ、効率的な自動テストスクリプトのメンテナンス
4時間で学ぶ、効率的な自動テストスクリプトのメンテナンス
 
5分で分かるサイボウズのSRE
5分で分かるサイボウズのSRE5分で分かるサイボウズのSRE
5分で分かるサイボウズのSRE
 
hbstudy 74 Site Reliability Engineering
hbstudy 74 Site Reliability Engineeringhbstudy 74 Site Reliability Engineering
hbstudy 74 Site Reliability Engineering
 
いまの Office 365 ってこんな感じ?
いまの Office 365 ってこんな感じ?いまの Office 365 ってこんな感じ?
いまの Office 365 ってこんな感じ?
 
ITサービスマネジメントとSRE
ITサービスマネジメントとSREITサービスマネジメントとSRE
ITサービスマネジメントとSRE
 
技術者の自分が11年間会社を経営して学んだ7つのこと
技術者の自分が11年間会社を経営して学んだ7つのこと技術者の自分が11年間会社を経営して学んだ7つのこと
技術者の自分が11年間会社を経営して学んだ7つのこと
 

Similar to [DO05] システムの信頼性を上げるための新しい考え方 SRE ( Site Reliability Engineering ) in Azure, on Azure

OSC 2013.Cloud@Osaka
OSC 2013.Cloud@OsakaOSC 2013.Cloud@Osaka
OSC 2013.Cloud@Osakasamemoon
 
Azure reliability v0.2.21.0630
Azure reliability v0.2.21.0630Azure reliability v0.2.21.0630
Azure reliability v0.2.21.0630
Ayumu Inaba
 
20210709 hccjp ms_hybrid関連の追加情報
20210709 hccjp ms_hybrid関連の追加情報20210709 hccjp ms_hybrid関連の追加情報
20210709 hccjp ms_hybrid関連の追加情報
Osamu Takazoe
 
堅牢性を高めるためのInfrastructure as Code
堅牢性を高めるためのInfrastructure as Code堅牢性を高めるためのInfrastructure as Code
堅牢性を高めるためのInfrastructure as Code
Toru Makabe
 
Azure vm の可用性を見直そう
Azure vm の可用性を見直そうAzure vm の可用性を見直そう
Azure vm の可用性を見直そう
ShuheiUda
 
[Japan Tech summit 2017] CLD 021
[Japan Tech summit 2017]  CLD 021[Japan Tech summit 2017]  CLD 021
[Japan Tech summit 2017] CLD 021
Microsoft Tech Summit 2017
 
Persistence on Azure - Microsoft Azure の永続化
Persistence on Azure - Microsoft Azure の永続化Persistence on Azure - Microsoft Azure の永続化
Persistence on Azure - Microsoft Azure の永続化
Takekazu Omi
 
AWSへのWindows Server 2003の移行 そして今後インフラとどう向き合うべきか
AWSへのWindows Server 2003の移行 そして今後インフラとどう向き合うべきかAWSへのWindows Server 2003の移行 そして今後インフラとどう向き合うべきか
AWSへのWindows Server 2003の移行 そして今後インフラとどう向き合うべきか真吾 吉田
 
Azure IaaS update (2019年1月~2月 発表版)
Azure IaaS update (2019年1月~2月 発表版)Azure IaaS update (2019年1月~2月 発表版)
Azure IaaS update (2019年1月~2月 発表版)
Takamasa Maejima
 
第13回CloudStackユーザ会_CloudStack4.1新機能
第13回CloudStackユーザ会_CloudStack4.1新機能第13回CloudStackユーザ会_CloudStack4.1新機能
第13回CloudStackユーザ会_CloudStack4.1新機能
Midori Oge
 
[Microsoft Ignite 2020] CON130 ハイライト振り返り - Japan Session
[Microsoft Ignite 2020] CON130 ハイライト振り返り - Japan Session[Microsoft Ignite 2020] CON130 ハイライト振り返り - Japan Session
[Microsoft Ignite 2020] CON130 ハイライト振り返り - Japan Session
日本マイクロソフト株式会社
 
AWS を活用して小さなチームで 世界で使われるサービスを運用する方法 - JAWS Days 2013
AWS を活用して小さなチームで 世界で使われるサービスを運用する方法 - JAWS Days 2013AWS を活用して小さなチームで 世界で使われるサービスを運用する方法 - JAWS Days 2013
AWS を活用して小さなチームで 世界で使われるサービスを運用する方法 - JAWS Days 2013
Takashi Someda
 
20140518 JJUG MySQL Clsuter as NoSQL
20140518 JJUG MySQL Clsuter as NoSQL20140518 JJUG MySQL Clsuter as NoSQL
20140518 JJUG MySQL Clsuter as NoSQL
Ryusuke Kajiyama
 
最近Preview公開されたAzure テストサービスを試してみた
最近Preview公開されたAzure テストサービスを試してみた最近Preview公開されたAzure テストサービスを試してみた
最近Preview公開されたAzure テストサービスを試してみた
Hiroyuki Mori
 
今こそ知りたい!Microsoft Azureの基礎
今こそ知りたい!Microsoft Azureの基礎今こそ知りたい!Microsoft Azureの基礎
今こそ知りたい!Microsoft Azureの基礎
Trainocate Japan, Ltd.
 
[ウェビナー] Build 2018 アップデート ~ データ プラットフォーム/IoT編 ~
[ウェビナー] Build 2018 アップデート ~ データ プラットフォーム/IoT編 ~[ウェビナー] Build 2018 アップデート ~ データ プラットフォーム/IoT編 ~
[ウェビナー] Build 2018 アップデート ~ データ プラットフォーム/IoT編 ~
Naoki (Neo) SATO
 
Real World Azure RBAC
Real World Azure RBACReal World Azure RBAC
Real World Azure RBAC
Toru Makabe
 
Introduction to extensions and other useful features for developing apps usin...
Introduction to extensions and other useful features for developing apps usin...Introduction to extensions and other useful features for developing apps usin...
Introduction to extensions and other useful features for developing apps usin...
Shotaro Suzuki
 
開発者なのに運用で手がいっぱい? そんなあなたに贈る、 クラウド時代に最適な OSS の RDBMS ! Azure Database for MySQL...
開発者なのに運用で手がいっぱい? そんなあなたに贈る、 クラウド時代に最適な OSS の RDBMS ! Azure Database for MySQL...開発者なのに運用で手がいっぱい? そんなあなたに贈る、 クラウド時代に最適な OSS の RDBMS ! Azure Database for MySQL...
開発者なのに運用で手がいっぱい? そんなあなたに贈る、 クラウド時代に最適な OSS の RDBMS ! Azure Database for MySQL...
Suguru Ito
 
M20_Azure SQL Database 最新アップデートをまとめてキャッチアップ [Microsoft Japan Digital Days]
M20_Azure SQL Database 最新アップデートをまとめてキャッチアップ [Microsoft Japan Digital Days]M20_Azure SQL Database 最新アップデートをまとめてキャッチアップ [Microsoft Japan Digital Days]
M20_Azure SQL Database 最新アップデートをまとめてキャッチアップ [Microsoft Japan Digital Days]
日本マイクロソフト株式会社
 

Similar to [DO05] システムの信頼性を上げるための新しい考え方 SRE ( Site Reliability Engineering ) in Azure, on Azure (20)

OSC 2013.Cloud@Osaka
OSC 2013.Cloud@OsakaOSC 2013.Cloud@Osaka
OSC 2013.Cloud@Osaka
 
Azure reliability v0.2.21.0630
Azure reliability v0.2.21.0630Azure reliability v0.2.21.0630
Azure reliability v0.2.21.0630
 
20210709 hccjp ms_hybrid関連の追加情報
20210709 hccjp ms_hybrid関連の追加情報20210709 hccjp ms_hybrid関連の追加情報
20210709 hccjp ms_hybrid関連の追加情報
 
堅牢性を高めるためのInfrastructure as Code
堅牢性を高めるためのInfrastructure as Code堅牢性を高めるためのInfrastructure as Code
堅牢性を高めるためのInfrastructure as Code
 
Azure vm の可用性を見直そう
Azure vm の可用性を見直そうAzure vm の可用性を見直そう
Azure vm の可用性を見直そう
 
[Japan Tech summit 2017] CLD 021
[Japan Tech summit 2017]  CLD 021[Japan Tech summit 2017]  CLD 021
[Japan Tech summit 2017] CLD 021
 
Persistence on Azure - Microsoft Azure の永続化
Persistence on Azure - Microsoft Azure の永続化Persistence on Azure - Microsoft Azure の永続化
Persistence on Azure - Microsoft Azure の永続化
 
AWSへのWindows Server 2003の移行 そして今後インフラとどう向き合うべきか
AWSへのWindows Server 2003の移行 そして今後インフラとどう向き合うべきかAWSへのWindows Server 2003の移行 そして今後インフラとどう向き合うべきか
AWSへのWindows Server 2003の移行 そして今後インフラとどう向き合うべきか
 
Azure IaaS update (2019年1月~2月 発表版)
Azure IaaS update (2019年1月~2月 発表版)Azure IaaS update (2019年1月~2月 発表版)
Azure IaaS update (2019年1月~2月 発表版)
 
第13回CloudStackユーザ会_CloudStack4.1新機能
第13回CloudStackユーザ会_CloudStack4.1新機能第13回CloudStackユーザ会_CloudStack4.1新機能
第13回CloudStackユーザ会_CloudStack4.1新機能
 
[Microsoft Ignite 2020] CON130 ハイライト振り返り - Japan Session
[Microsoft Ignite 2020] CON130 ハイライト振り返り - Japan Session[Microsoft Ignite 2020] CON130 ハイライト振り返り - Japan Session
[Microsoft Ignite 2020] CON130 ハイライト振り返り - Japan Session
 
AWS を活用して小さなチームで 世界で使われるサービスを運用する方法 - JAWS Days 2013
AWS を活用して小さなチームで 世界で使われるサービスを運用する方法 - JAWS Days 2013AWS を活用して小さなチームで 世界で使われるサービスを運用する方法 - JAWS Days 2013
AWS を活用して小さなチームで 世界で使われるサービスを運用する方法 - JAWS Days 2013
 
20140518 JJUG MySQL Clsuter as NoSQL
20140518 JJUG MySQL Clsuter as NoSQL20140518 JJUG MySQL Clsuter as NoSQL
20140518 JJUG MySQL Clsuter as NoSQL
 
最近Preview公開されたAzure テストサービスを試してみた
最近Preview公開されたAzure テストサービスを試してみた最近Preview公開されたAzure テストサービスを試してみた
最近Preview公開されたAzure テストサービスを試してみた
 
今こそ知りたい!Microsoft Azureの基礎
今こそ知りたい!Microsoft Azureの基礎今こそ知りたい!Microsoft Azureの基礎
今こそ知りたい!Microsoft Azureの基礎
 
[ウェビナー] Build 2018 アップデート ~ データ プラットフォーム/IoT編 ~
[ウェビナー] Build 2018 アップデート ~ データ プラットフォーム/IoT編 ~[ウェビナー] Build 2018 アップデート ~ データ プラットフォーム/IoT編 ~
[ウェビナー] Build 2018 アップデート ~ データ プラットフォーム/IoT編 ~
 
Real World Azure RBAC
Real World Azure RBACReal World Azure RBAC
Real World Azure RBAC
 
Introduction to extensions and other useful features for developing apps usin...
Introduction to extensions and other useful features for developing apps usin...Introduction to extensions and other useful features for developing apps usin...
Introduction to extensions and other useful features for developing apps usin...
 
開発者なのに運用で手がいっぱい? そんなあなたに贈る、 クラウド時代に最適な OSS の RDBMS ! Azure Database for MySQL...
開発者なのに運用で手がいっぱい? そんなあなたに贈る、 クラウド時代に最適な OSS の RDBMS ! Azure Database for MySQL...開発者なのに運用で手がいっぱい? そんなあなたに贈る、 クラウド時代に最適な OSS の RDBMS ! Azure Database for MySQL...
開発者なのに運用で手がいっぱい? そんなあなたに贈る、 クラウド時代に最適な OSS の RDBMS ! Azure Database for MySQL...
 
M20_Azure SQL Database 最新アップデートをまとめてキャッチアップ [Microsoft Japan Digital Days]
M20_Azure SQL Database 最新アップデートをまとめてキャッチアップ [Microsoft Japan Digital Days]M20_Azure SQL Database 最新アップデートをまとめてキャッチアップ [Microsoft Japan Digital Days]
M20_Azure SQL Database 最新アップデートをまとめてキャッチアップ [Microsoft Japan Digital Days]
 

More from de:code 2017

[AI08] 深層学習フレームワーク Chainer × Microsoft で広がる応用
[AI08] 深層学習フレームワーク Chainer × Microsoft で広がる応用[AI08] 深層学習フレームワーク Chainer × Microsoft で広がる応用
[AI08] 深層学習フレームワーク Chainer × Microsoft で広がる応用
de:code 2017
 
[AI10] ゲームキャラクターのための人工知能と社会への応用 ~ FINAL FANTASY XV を事例として ~
[AI10] ゲームキャラクターのための人工知能と社会への応用 ~ FINAL FANTASY XV を事例として ~[AI10] ゲームキャラクターのための人工知能と社会への応用 ~ FINAL FANTASY XV を事例として ~
[AI10] ゲームキャラクターのための人工知能と社会への応用 ~ FINAL FANTASY XV を事例として ~
de:code 2017
 
[DO07] マイクロサービスに必要な技術要素はすべて Spring Cloud にある
[DO07] マイクロサービスに必要な技術要素はすべて Spring Cloud にある[DO07] マイクロサービスに必要な技術要素はすべて Spring Cloud にある
[DO07] マイクロサービスに必要な技術要素はすべて Spring Cloud にある
de:code 2017
 
[SC09] パッチ待ちはもう古い!Windows 10 最新セキュリティ技術とゼロデイ攻撃攻防の実例
[SC09] パッチ待ちはもう古い!Windows 10 最新セキュリティ技術とゼロデイ攻撃攻防の実例[SC09] パッチ待ちはもう古い!Windows 10 最新セキュリティ技術とゼロデイ攻撃攻防の実例
[SC09] パッチ待ちはもう古い!Windows 10 最新セキュリティ技術とゼロデイ攻撃攻防の実例
de:code 2017
 
[SC10] 自社開発モバイルアプリの DLP 対応化を Microsoft Intune で可能に
[SC10] 自社開発モバイルアプリの DLP 対応化を Microsoft Intune で可能に[SC10] 自社開発モバイルアプリの DLP 対応化を Microsoft Intune で可能に
[SC10] 自社開発モバイルアプリの DLP 対応化を Microsoft Intune で可能に
de:code 2017
 
[DI12] あらゆるデータをビジネスに活用! Azure Data Lake を中心としたビックデータ処理基盤のアーキテクチャと実装
[DI12] あらゆるデータをビジネスに活用! Azure Data Lake を中心としたビックデータ処理基盤のアーキテクチャと実装[DI12] あらゆるデータをビジネスに活用! Azure Data Lake を中心としたビックデータ処理基盤のアーキテクチャと実装
[DI12] あらゆるデータをビジネスに活用! Azure Data Lake を中心としたビックデータ処理基盤のアーキテクチャと実装
de:code 2017
 
[DI10] IoT を実践する最新のプラクティス ~ Azure IoT Hub 、SDK 、Azure IoT Suite ~
[DI10] IoT を実践する最新のプラクティス ~ Azure IoT Hub 、SDK 、Azure IoT Suite ~[DI10] IoT を実践する最新のプラクティス ~ Azure IoT Hub 、SDK 、Azure IoT Suite ~
[DI10] IoT を実践する最新のプラクティス ~ Azure IoT Hub 、SDK 、Azure IoT Suite ~
de:code 2017
 
[AI03] AI × 導入の速さを武器に。 ” 人工知能パーツ ” Cognitive Services の使いどころ
[AI03] AI × 導入の速さを武器に。 ” 人工知能パーツ ” Cognitive Services の使いどころ[AI03] AI × 導入の速さを武器に。 ” 人工知能パーツ ” Cognitive Services の使いどころ
[AI03] AI × 導入の速さを武器に。 ” 人工知能パーツ ” Cognitive Services の使いどころ
de:code 2017
 
[SP04] これからのエンジニアに必要な「マネジメント」の考え方
[SP04] これからのエンジニアに必要な「マネジメント」の考え方[SP04] これからのエンジニアに必要な「マネジメント」の考え方
[SP04] これからのエンジニアに必要な「マネジメント」の考え方
de:code 2017
 
[DO17] セゾン情報システムズの CTO 小野氏による、伝統的 Sier におけるモダン開発への挑戦
[DO17] セゾン情報システムズの CTO 小野氏による、伝統的 Sier におけるモダン開発への挑戦[DO17] セゾン情報システムズの CTO 小野氏による、伝統的 Sier におけるモダン開発への挑戦
[DO17] セゾン情報システムズの CTO 小野氏による、伝統的 Sier におけるモダン開発への挑戦
de:code 2017
 
[DO13] 楽天のクラウドストレージ使いこなし術 Azure と OSS で少しずつ進めるレガシー脱却
[DO13] 楽天のクラウドストレージ使いこなし術 Azure と OSS で少しずつ進めるレガシー脱却[DO13] 楽天のクラウドストレージ使いこなし術 Azure と OSS で少しずつ進めるレガシー脱却
[DO13] 楽天のクラウドストレージ使いこなし術 Azure と OSS で少しずつ進めるレガシー脱却
de:code 2017
 
[DO11] JOY, Inc. : あなたの仕事場での喜びは何ですか?
[DO11] JOY, Inc. : あなたの仕事場での喜びは何ですか?[DO11] JOY, Inc. : あなたの仕事場での喜びは何ですか?
[DO11] JOY, Inc. : あなたの仕事場での喜びは何ですか?
de:code 2017
 
[DO08] 『変わらない開発現場』を変えていくために ~エンプラ系レガシー SIer のための DevOps 再入門~
[DO08] 『変わらない開発現場』を変えていくために ~エンプラ系レガシー SIer のための DevOps 再入門~[DO08] 『変わらない開発現場』を変えていくために ~エンプラ系レガシー SIer のための DevOps 再入門~
[DO08] 『変わらない開発現場』を変えていくために ~エンプラ系レガシー SIer のための DevOps 再入門~
de:code 2017
 
[DO06] Infrastructure as Code でサービスを迅速にローンチし、継続的にインフラを変更しよう
[DO06] Infrastructure as Code でサービスを迅速にローンチし、継続的にインフラを変更しよう[DO06] Infrastructure as Code でサービスを迅速にローンチし、継続的にインフラを変更しよう
[DO06] Infrastructure as Code でサービスを迅速にローンチし、継続的にインフラを変更しよう
de:code 2017
 
[DO04] アジャイル開発サバイバルガイド 〜キミが必ず直面する課題と乗り越え方を伝えよう!〜
[DO04] アジャイル開発サバイバルガイド 〜キミが必ず直面する課題と乗り越え方を伝えよう!〜[DO04] アジャイル開発サバイバルガイド 〜キミが必ず直面する課題と乗り越え方を伝えよう!〜
[DO04] アジャイル開発サバイバルガイド 〜キミが必ず直面する課題と乗り越え方を伝えよう!〜
de:code 2017
 
[DO02] Jenkins PipelineとBlue Oceanによる、フルスクラッチからの継続的デリバリ
[DO02] Jenkins PipelineとBlue Oceanによる、フルスクラッチからの継続的デリバリ[DO02] Jenkins PipelineとBlue Oceanによる、フルスクラッチからの継続的デリバリ
[DO02] Jenkins PipelineとBlue Oceanによる、フルスクラッチからの継続的デリバリ
de:code 2017
 
[SP03] 「怠惰の美徳~言語デザイナーの視点から」
[SP03] 「怠惰の美徳~言語デザイナーの視点から」[SP03] 「怠惰の美徳~言語デザイナーの視点から」
[SP03] 「怠惰の美徳~言語デザイナーの視点から」
de:code 2017
 
[SP02] Developing autonomous vehicles with AirSim
[SP02] Developing autonomous vehicles with AirSim[SP02] Developing autonomous vehicles with AirSim
[SP02] Developing autonomous vehicles with AirSim
de:code 2017
 
[SP01] CTO が語る! 今注目すべきテクノロジー
[SP01] CTO が語る! 今注目すべきテクノロジー[SP01] CTO が語る! 今注目すべきテクノロジー
[SP01] CTO が語る! 今注目すべきテクノロジー
de:code 2017
 
[DO16] Mesosphere : Microservices meet Fast Data on Azure
[DO16] Mesosphere : Microservices meet Fast Data on Azure [DO16] Mesosphere : Microservices meet Fast Data on Azure
[DO16] Mesosphere : Microservices meet Fast Data on Azure
de:code 2017
 

More from de:code 2017 (20)

[AI08] 深層学習フレームワーク Chainer × Microsoft で広がる応用
[AI08] 深層学習フレームワーク Chainer × Microsoft で広がる応用[AI08] 深層学習フレームワーク Chainer × Microsoft で広がる応用
[AI08] 深層学習フレームワーク Chainer × Microsoft で広がる応用
 
[AI10] ゲームキャラクターのための人工知能と社会への応用 ~ FINAL FANTASY XV を事例として ~
[AI10] ゲームキャラクターのための人工知能と社会への応用 ~ FINAL FANTASY XV を事例として ~[AI10] ゲームキャラクターのための人工知能と社会への応用 ~ FINAL FANTASY XV を事例として ~
[AI10] ゲームキャラクターのための人工知能と社会への応用 ~ FINAL FANTASY XV を事例として ~
 
[DO07] マイクロサービスに必要な技術要素はすべて Spring Cloud にある
[DO07] マイクロサービスに必要な技術要素はすべて Spring Cloud にある[DO07] マイクロサービスに必要な技術要素はすべて Spring Cloud にある
[DO07] マイクロサービスに必要な技術要素はすべて Spring Cloud にある
 
[SC09] パッチ待ちはもう古い!Windows 10 最新セキュリティ技術とゼロデイ攻撃攻防の実例
[SC09] パッチ待ちはもう古い!Windows 10 最新セキュリティ技術とゼロデイ攻撃攻防の実例[SC09] パッチ待ちはもう古い!Windows 10 最新セキュリティ技術とゼロデイ攻撃攻防の実例
[SC09] パッチ待ちはもう古い!Windows 10 最新セキュリティ技術とゼロデイ攻撃攻防の実例
 
[SC10] 自社開発モバイルアプリの DLP 対応化を Microsoft Intune で可能に
[SC10] 自社開発モバイルアプリの DLP 対応化を Microsoft Intune で可能に[SC10] 自社開発モバイルアプリの DLP 対応化を Microsoft Intune で可能に
[SC10] 自社開発モバイルアプリの DLP 対応化を Microsoft Intune で可能に
 
[DI12] あらゆるデータをビジネスに活用! Azure Data Lake を中心としたビックデータ処理基盤のアーキテクチャと実装
[DI12] あらゆるデータをビジネスに活用! Azure Data Lake を中心としたビックデータ処理基盤のアーキテクチャと実装[DI12] あらゆるデータをビジネスに活用! Azure Data Lake を中心としたビックデータ処理基盤のアーキテクチャと実装
[DI12] あらゆるデータをビジネスに活用! Azure Data Lake を中心としたビックデータ処理基盤のアーキテクチャと実装
 
[DI10] IoT を実践する最新のプラクティス ~ Azure IoT Hub 、SDK 、Azure IoT Suite ~
[DI10] IoT を実践する最新のプラクティス ~ Azure IoT Hub 、SDK 、Azure IoT Suite ~[DI10] IoT を実践する最新のプラクティス ~ Azure IoT Hub 、SDK 、Azure IoT Suite ~
[DI10] IoT を実践する最新のプラクティス ~ Azure IoT Hub 、SDK 、Azure IoT Suite ~
 
[AI03] AI × 導入の速さを武器に。 ” 人工知能パーツ ” Cognitive Services の使いどころ
[AI03] AI × 導入の速さを武器に。 ” 人工知能パーツ ” Cognitive Services の使いどころ[AI03] AI × 導入の速さを武器に。 ” 人工知能パーツ ” Cognitive Services の使いどころ
[AI03] AI × 導入の速さを武器に。 ” 人工知能パーツ ” Cognitive Services の使いどころ
 
[SP04] これからのエンジニアに必要な「マネジメント」の考え方
[SP04] これからのエンジニアに必要な「マネジメント」の考え方[SP04] これからのエンジニアに必要な「マネジメント」の考え方
[SP04] これからのエンジニアに必要な「マネジメント」の考え方
 
[DO17] セゾン情報システムズの CTO 小野氏による、伝統的 Sier におけるモダン開発への挑戦
[DO17] セゾン情報システムズの CTO 小野氏による、伝統的 Sier におけるモダン開発への挑戦[DO17] セゾン情報システムズの CTO 小野氏による、伝統的 Sier におけるモダン開発への挑戦
[DO17] セゾン情報システムズの CTO 小野氏による、伝統的 Sier におけるモダン開発への挑戦
 
[DO13] 楽天のクラウドストレージ使いこなし術 Azure と OSS で少しずつ進めるレガシー脱却
[DO13] 楽天のクラウドストレージ使いこなし術 Azure と OSS で少しずつ進めるレガシー脱却[DO13] 楽天のクラウドストレージ使いこなし術 Azure と OSS で少しずつ進めるレガシー脱却
[DO13] 楽天のクラウドストレージ使いこなし術 Azure と OSS で少しずつ進めるレガシー脱却
 
[DO11] JOY, Inc. : あなたの仕事場での喜びは何ですか?
[DO11] JOY, Inc. : あなたの仕事場での喜びは何ですか?[DO11] JOY, Inc. : あなたの仕事場での喜びは何ですか?
[DO11] JOY, Inc. : あなたの仕事場での喜びは何ですか?
 
[DO08] 『変わらない開発現場』を変えていくために ~エンプラ系レガシー SIer のための DevOps 再入門~
[DO08] 『変わらない開発現場』を変えていくために ~エンプラ系レガシー SIer のための DevOps 再入門~[DO08] 『変わらない開発現場』を変えていくために ~エンプラ系レガシー SIer のための DevOps 再入門~
[DO08] 『変わらない開発現場』を変えていくために ~エンプラ系レガシー SIer のための DevOps 再入門~
 
[DO06] Infrastructure as Code でサービスを迅速にローンチし、継続的にインフラを変更しよう
[DO06] Infrastructure as Code でサービスを迅速にローンチし、継続的にインフラを変更しよう[DO06] Infrastructure as Code でサービスを迅速にローンチし、継続的にインフラを変更しよう
[DO06] Infrastructure as Code でサービスを迅速にローンチし、継続的にインフラを変更しよう
 
[DO04] アジャイル開発サバイバルガイド 〜キミが必ず直面する課題と乗り越え方を伝えよう!〜
[DO04] アジャイル開発サバイバルガイド 〜キミが必ず直面する課題と乗り越え方を伝えよう!〜[DO04] アジャイル開発サバイバルガイド 〜キミが必ず直面する課題と乗り越え方を伝えよう!〜
[DO04] アジャイル開発サバイバルガイド 〜キミが必ず直面する課題と乗り越え方を伝えよう!〜
 
[DO02] Jenkins PipelineとBlue Oceanによる、フルスクラッチからの継続的デリバリ
[DO02] Jenkins PipelineとBlue Oceanによる、フルスクラッチからの継続的デリバリ[DO02] Jenkins PipelineとBlue Oceanによる、フルスクラッチからの継続的デリバリ
[DO02] Jenkins PipelineとBlue Oceanによる、フルスクラッチからの継続的デリバリ
 
[SP03] 「怠惰の美徳~言語デザイナーの視点から」
[SP03] 「怠惰の美徳~言語デザイナーの視点から」[SP03] 「怠惰の美徳~言語デザイナーの視点から」
[SP03] 「怠惰の美徳~言語デザイナーの視点から」
 
[SP02] Developing autonomous vehicles with AirSim
[SP02] Developing autonomous vehicles with AirSim[SP02] Developing autonomous vehicles with AirSim
[SP02] Developing autonomous vehicles with AirSim
 
[SP01] CTO が語る! 今注目すべきテクノロジー
[SP01] CTO が語る! 今注目すべきテクノロジー[SP01] CTO が語る! 今注目すべきテクノロジー
[SP01] CTO が語る! 今注目すべきテクノロジー
 
[DO16] Mesosphere : Microservices meet Fast Data on Azure
[DO16] Mesosphere : Microservices meet Fast Data on Azure [DO16] Mesosphere : Microservices meet Fast Data on Azure
[DO16] Mesosphere : Microservices meet Fast Data on Azure
 

Recently uploaded

遺伝的アルゴリズムと知識蒸留による大規模言語モデル(LLM)の学習とハイパーパラメータ最適化
遺伝的アルゴリズムと知識蒸留による大規模言語モデル(LLM)の学習とハイパーパラメータ最適化遺伝的アルゴリズムと知識蒸留による大規模言語モデル(LLM)の学習とハイパーパラメータ最適化
遺伝的アルゴリズムと知識蒸留による大規模言語モデル(LLM)の学習とハイパーパラメータ最適化
t m
 
キンドリル ネットワークアセスメントサービスご紹介 今のネットワーク環境は大丈夫? 調査〜対策までご支援します
キンドリル ネットワークアセスメントサービスご紹介 今のネットワーク環境は大丈夫? 調査〜対策までご支援しますキンドリル ネットワークアセスメントサービスご紹介 今のネットワーク環境は大丈夫? 調査〜対策までご支援します
キンドリル ネットワークアセスメントサービスご紹介 今のネットワーク環境は大丈夫? 調査〜対策までご支援します
Takayuki Nakayama
 
Generating Automatic Feedback on UI Mockups with Large Language Models
Generating Automatic Feedback on UI Mockups with Large Language ModelsGenerating Automatic Feedback on UI Mockups with Large Language Models
Generating Automatic Feedback on UI Mockups with Large Language Models
harmonylab
 
ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---
ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---
ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---
Matsushita Laboratory
 
論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...
論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...
論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...
Toru Tamaki
 
論文紹介:Deep Learning-Based Human Pose Estimation: A Survey
論文紹介:Deep Learning-Based Human Pose Estimation: A Survey論文紹介:Deep Learning-Based Human Pose Estimation: A Survey
論文紹介:Deep Learning-Based Human Pose Estimation: A Survey
Toru Tamaki
 
LoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアル
LoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアルLoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアル
LoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアル
CRI Japan, Inc.
 
JSAI_類似画像マッチングによる器への印象付与手法の妥当性検証_ver.3_高橋りさ
JSAI_類似画像マッチングによる器への印象付与手法の妥当性検証_ver.3_高橋りさJSAI_類似画像マッチングによる器への印象付与手法の妥当性検証_ver.3_高橋りさ
JSAI_類似画像マッチングによる器への印象付与手法の妥当性検証_ver.3_高橋りさ
0207sukipio
 
This is the company presentation material of RIZAP Technologies, Inc.
This is the company presentation material of RIZAP Technologies, Inc.This is the company presentation material of RIZAP Technologies, Inc.
This is the company presentation material of RIZAP Technologies, Inc.
chiefujita1
 

Recently uploaded (9)

遺伝的アルゴリズムと知識蒸留による大規模言語モデル(LLM)の学習とハイパーパラメータ最適化
遺伝的アルゴリズムと知識蒸留による大規模言語モデル(LLM)の学習とハイパーパラメータ最適化遺伝的アルゴリズムと知識蒸留による大規模言語モデル(LLM)の学習とハイパーパラメータ最適化
遺伝的アルゴリズムと知識蒸留による大規模言語モデル(LLM)の学習とハイパーパラメータ最適化
 
キンドリル ネットワークアセスメントサービスご紹介 今のネットワーク環境は大丈夫? 調査〜対策までご支援します
キンドリル ネットワークアセスメントサービスご紹介 今のネットワーク環境は大丈夫? 調査〜対策までご支援しますキンドリル ネットワークアセスメントサービスご紹介 今のネットワーク環境は大丈夫? 調査〜対策までご支援します
キンドリル ネットワークアセスメントサービスご紹介 今のネットワーク環境は大丈夫? 調査〜対策までご支援します
 
Generating Automatic Feedback on UI Mockups with Large Language Models
Generating Automatic Feedback on UI Mockups with Large Language ModelsGenerating Automatic Feedback on UI Mockups with Large Language Models
Generating Automatic Feedback on UI Mockups with Large Language Models
 
ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---
ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---
ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---
 
論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...
論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...
論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...
 
論文紹介:Deep Learning-Based Human Pose Estimation: A Survey
論文紹介:Deep Learning-Based Human Pose Estimation: A Survey論文紹介:Deep Learning-Based Human Pose Estimation: A Survey
論文紹介:Deep Learning-Based Human Pose Estimation: A Survey
 
LoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアル
LoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアルLoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアル
LoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアル
 
JSAI_類似画像マッチングによる器への印象付与手法の妥当性検証_ver.3_高橋りさ
JSAI_類似画像マッチングによる器への印象付与手法の妥当性検証_ver.3_高橋りさJSAI_類似画像マッチングによる器への印象付与手法の妥当性検証_ver.3_高橋りさ
JSAI_類似画像マッチングによる器への印象付与手法の妥当性検証_ver.3_高橋りさ
 
This is the company presentation material of RIZAP Technologies, Inc.
This is the company presentation material of RIZAP Technologies, Inc.This is the company presentation material of RIZAP Technologies, Inc.
This is the company presentation material of RIZAP Technologies, Inc.
 

[DO05] システムの信頼性を上げるための新しい考え方 SRE ( Site Reliability Engineering ) in Azure, on Azure