SlideShare a Scribd company logo
1 of 15
モータ・ドライブICの
デバイスモデリング
2020年4月15日
ビー・テクノロジー
1
モータ・ドライバICのアプリケーション回路シミュレーション
RSB 7.5ohm
L2
1.562mH
IC = -0.5A
1
2
V5
0s
10ns
0V
5V
0
V_REFB
DC = 1.25
Cv ref B
1uF
0
0
0
V_REFA
DC = 1.25
Cv ref a
1uF
L1
1.562mH
IC = 0A
12
RSA
7.5ohm
0
RRSA0.5
RRSB0.5
0
VM
24Vdc CVM
100uF
00
0 0
VD
5Vdc
C1
10uF
0 0
Rosc 3.6k
Cosc 560pF
0
0
U1
TB62206FG
CCP1 = 0.22UF
CCP2 = 0.022UF
COSC = 560PF
VM = 24
RNFA = 100mV
RNFB = 100mV
ROSC = 3.6K
FIN
CR
VDD
VREF_A
VREF_B
RS_B
RS_A
VM
CCP_C
CCP_B
CCP_A STANDBY
OUT_A1
PHASE_A
PHASE_B
OUT_A
OUT_B
ENABLE_A
ENABLE_B
OUT_B1
TORQUE
Cccp_1
0.22uF
Cccp_2
0.022uF
V
I
V_PHASE_A
TD = 0
TF = {tf phase}
PW = {pwphase}
PER = {tphase}
V1 = 0
TR = {trphase}
V2 = 5V
V_PHASE_B
TD = {tphase/4}
TF = {tf phase}
PW = {pwphase}
PER = {tphase}
V1 = 5V
TR = {trphase}
V2 = 0
TB62206FG(東芝セミコンダクター社)
Phase current is simulated at fchop=100kHz to predict motor current ripple.
ステッピングモータ
キー・デバイス(IC)
TB62206FG
2
モータ・ドライバICのアプリケーション回路シミュレーション
TB62206F/FG BiCD PWM 2-Phase Bipolar Stepping Motor Driver
3
Device Feature:
• Input logic to drive
Bipolar Step Motor
• Internal OSC
• Current Level Set
• Mixed Decay Control
• Charge Pump Unit
• H-Bridge Output
• Protection Unit
モータ・ドライバICのアプリケーション回路シミュレーション
4
Model is include:
 Input logic to drive
Bipolar Step Motor
 Internal OSC
 Current Level Set
 Mixed Decay Control
 Charge Pump Unit
 H-Bridge Output
 Protection Unit (Over
Current Protection
ERNFA
IF( V(PHASE_A)>0.75, V(IMX_A)-100m, -V(IMX_A))
EVALUE
OUT+
OUT-
IN+
IN-
RRNFA10
RNFAILVA4
CRFA
100p
IC = 0
0
Output Control (Mixed Decay Control)
MDA1
RMDA1
1MEG
0
U19
XOR
1
2
3
PHASE_A
U20
INV
1 2NMDC
OSC
MDA
U17
XOR
1
2
3
MDA
PHASE_A
U18
INV
1 2
Q
B
Q
A
U11
JKFFR
J
1
CLK
2
K
3
R
4
Q
5
Q
6
+
-
+
-
S_UA1
S
VOFF = 2.5V
VON = 10V
U12
JKFFR
J
1
CLK
2
K
3
R
4
Q
5
Q
6
V2
AC =
TRAN =
DC = 5
+
-
+
-
S_LA1
S
VOFF = 2.5V
VON = 10V
0
NMDC3
0
U16
TFFR
CLK
2
R
3
T
1
Q
4
Q
5
RGA1 10k
OA1
NMDC4
OA2
NMDC1
RGA3 10k
EMDA2
IF( V(PHASE_A)>0.75 & V(RST_A)<0.75, 3.5, V(MDA1) )
EVALUE
OUT+
OUT-
IN+
IN-
U13
INV
1 2
MDCA2
NMDC6
0
EGUA1
IF( V(CTRLA1)<0.75 & V(MDA4)<0.75 ,V(Ccp_A),0 )
EVALUE
OUT+
OUT-
IN+
IN-
GU1_A
NMDC2
RMDA2 10
MDA2
0
NMDC5
0
RMDA
1k
EGLA1
IF( V(CTRLA1)<0.75 & V(MDA4)<0.75 ,0,V(Ccp_A) )
EVALUE
OUT+
OUT-
IN+
IN-
CMDA2
100p
IC = 0
GL1_A
0
CTRLA
HI
RSTCA
0
VLA
EMDA3
IF( V(PHASE_A)<0.75 & V(RST_A)<0.75, 0, V(MDA1) )
EVALUE
OUT+
OUT-
IN+
IN-
OUT_A
VM
MDCA3
0
GND
RMDA3 10
MDA3
+
-
+
-
S_UA2
S
VOFF = 2.5V
VON = 10V
CMDA3
100p
IC = 0
+
-
+
-
S_LA2
S
VOFF = 2.5V
VON = 10V
EMDA4
IF( V(PHASE_A)>0.75, V(MDA2), V(MDA3) )
EVALUE
OUT+
OUT-
IN+
IN-
OA3
MDCA4
0
0
OA4
RGA2 10k
RMDA4 10
MDA4
RGA4 10k
CMDA4
100p
IC = 0
EGUA2
IF( V(CTRLA1)>0.75 & V(MDA4)>0.75 ,V(Ccp_A),0 )
EVALUE
OUT+
OUT-
IN+
IN-
GU2_A
0
0
EGLA2
IF( V(CTRLA1)>0.75 & V(MDA4)>0.75 ,0,V(Ccp_A) )
EVALUE
OUT+
OUT-
IN+
IN-
GL2_A
0 GND
OA5
OUT_A1
VM
CR
VOSC
TD = 1.25ns
TF = 10n
PW = {3*tosc/4}
PER = {tosc}
V1 = 0
TR = 10n
V2 = 5
0 0
OSC
R8
1MEG
V1
TD = 0
TF = {tosc/4}
PW = 10n
PER = {tosc}
V1 = 1.9V
TR = {3*tosc/4}
V2 = 3.1V
PARAMETERS:
tosc = {0.523*(Cosc*Rosc+600*Cosc)}
GND
Vchop
TD = 1.25ns
TF = 10n
PW = {5*tosc}
PER = {tosc*8}
V1 = 0.5
TR = 10n
V2 = 5
0
f chop
0
R_chop
1MEG
+
-
+
-
S_UB1
S
VOFF = 2.5V
VON = 10V
+
-
+
-
S_LB1
S
VOFF = 2.5V
VON = 10V
0
RGB110k
OB1
OB2
RGB310k
EGUB1
IF( V(CTRLB1)<0.75 & V(MDB4)<0.75 ,V(Ccp_A),0 )
EVALUE
OUT+
OUT-
IN+
IN-
0
GU1_B
0
EGLB1
IF( V(CTRLB1)<0.75 & V(MDB4)<0.75 ,0,V(Ccp_A) )
EVALUE
OUT+
OUT-
IN+
IN-
GL1_B
ECcp_A1
V(Cp_ON)+V(VM)-2
EVALUE
OUT+
OUT-
IN+
IN-
0
VLB
ENFA
IF( V(PHASE_A)>0.75, V(IMX_A), -V(IMX_A)+100m)
EVALUE
OUT+
OUT-
IN+
IN-
VM
GND
+
-
+
-
S_UB2
S
VOFF = 2.5V
VON = 10V
ECcp_A
IF( V(STANDBY)>0.75, V(Q_Ccp_A), 0)
EVALUE
OUT+
OUT-
IN+
IN-
0
ILVA3
RNFA10
QP2
R6125
NFA
CNFA
100p
IC = 0
+
-
+
-
S_LB2
S
VOFF = 2.5V
VON = 10V
QP3
0
Ccp_A
OB3
0
ERST_A
IF( V(ENABLE_A)<0.75 | V(STANDBY)<0.75 | V(ISDA)>0.75, 0, 5 )
EVALUE
OUT+
OUT-
IN+
IN-
PARAMETERS:
VM = 24V
0
OB4
QP1
RGB210k
Chopper OSC
Rcp_on
100
ILVA1
RGB410k
RRST_A10
Cp_ON
RST_A
Ccp_on
0.22uF
IC = 0
EGUB2
IF( V(CTRLB1)>0.75 & V(MDB4)>0.75 ,V(Ccp_A),0 )
EVALUE
OUT+
OUT-
IN+
IN-
ECcp_B
IF( V(STANDBY)>0.75 ,V(VM)-2+V(VCcp_C)/2.5 ,V(VM)-0.7)
EVALUE
OUT+
OUT-
IN+
IN-
CRST_A
100p
IC = 0
G_RsA
I(VLA)
GVALUE
OUT+
OUT-
IN+
IN-
0
0
GU2_B
0
ECcp_C
IF( V(STANDBY)>0.75 ,V(VCcp_C), V(VM)-0.7 )
EVALUE
OUT+
OUT-
IN+
IN-
EGLB2
IF( V(CTRLB1)>0.75 & V(MDB4)>0.75 ,0,V(Ccp_A) )
EVALUE
OUT+
OUT-
IN+
IN-
RS_A
GND 0
GL2_B
QP4
RCcp_C 50
E_VL1_A
I(VLA)
EVALUE
OUT+
OUT-
IN+
IN-
0
0
0
IFBA1 ILA
R_VLA10
V_Q4
GND
OB5
R5
100k
VM
0
C_VLA
100p
VDD
RDD1
2.5k
EChrg
IF(I(V_Q4)>10m, 3.5, 0)
EVALUE
OUT+
OUT-
IN+
IN-
E_EA_A
LIMIT(1E5*V(ILA,TRGA),5,0)
EVALUE
OUT+
OUT-
IN+
IN-
GND
Q_Ccp_A
0
CTRLAIFBA4
PARAMETERS:
CP_PW = {800*Ccp2}
CP_PER = {18.5u+1800*Ccp2}
CP_V2 = {250E6*Ccp2}
Protection Unit (ISD)
0
CTRLA1
REAA10
Ecp_on
IF(V(STANDBY)>0.75, 6.5, 0)
EVALUE
OUT+
OUT-
IN+
IN-
E_ABILA
IF(I(VLA)>0,I(VLA),-I(VLA))
EVALUE
OUT+
OUT-
IN+
IN-
CEAA
100p
IC = 0
0
ISDA1
R_ABILA 10
ETRGA
IF(V(CTRLA1)>1,V(RNFA1),V(NFA1))
EVALUE
OUT+
OUT-
IN+
IN-
Ccp_C
Ccp_B
OUT_B
VcpTD = 0
TF = 10N
PW = {CP_PW}
PER = {CP_PER}
V1 = {VM-1.4}
TR = 10N
V2 = {CP_V2}
0
IFBA3
RTRGA10
C_ABILA
100p
VCcp_C
TRGA
E_ISDA
IF( V(AB_ILA)>V(ISDA_REF) , 5, 0)
EVALUE
OUT+
OUT-
IN+
IN-
0
RV_C
100k
CTRGA
100p
IC = 0
00
ISDA3 ISDA
ERS_A
((V(VM)-V(RS_A))/V(ILA))
EVALUE
OUT+
OUT-
IN+
IN-
RISDA 10
IFBA2
CISDA
100p
IC = 0
0
RRS_A10
EISDA_REF
IF(V(ISDA)<1 | V(STANDBY)<0.75,1.8,-0.1)
EVALUE
OUT+
OUT-
IN+
IN-
RS_A1
CRS_A
100P
ISDA2
0
RISDA_REF10
VM
Current Feedback ( A )
ISDA_REF
CISDA_REF
100p
IC = 0
0
AB_ILA
OUT_B1
CTRLA
PHASE_A
f chop
U27
AND2
1
2
3
U28
AND2
1
2
3
U29
AND2
1
2
3
U30
OR3
1
24
3
CEAA1
30p
IC = 0
U31
INV
1 2
0
R10
100
U32
INV
12
Charge Pump Unit
Input Logic
PHASE_A
ENABLE_A
PHASE_B
ENABLE_B
RPD_EA
RPD_EB
RPD_PA
RPD_PB
GND
RPU_EA
VM
VM
RPU_EB
VM
RPU_PA
RPU_PB
VM
RPD_STB
VM
RPU_STB
STANDBY
R_PIN1
1MEG
GND
TORQUE
0
ETQ
IF( V(TORQUE)>0.75, 1, 0.71)
EVALUE
OUT+
OUT-
IN+
IN-
RTQ
100
CTQ
100P
TQILVA7
R_REFA
1MEG
Vref _A
GND
EIMX_A
0.2*V(Vref _A)*V(TQ)/V(RS_A1)
EVALUE
OUT+
OUT-
IN+
IN-
0
ILVA2
RIMX_A10
IMX_A
CIMX_A
100P
Current Level Set ENFA1
IF( V(RST_A)<0.75 , 0, V(NFA) )
EVALUE
OUT+
OUT-
IN+
IN-
0
ILVA5
RNFA110
NFA1
CNFA1
100p
IC = 0
ERNFA1
IF( V(RST_A)<0.75, 0, V(RNFA) )
EVALUE
OUT+
OUT-
IN+
IN-
RRNFA110
RNFA1ILVA6
CRFA1
100p
IC = 0
0
Behavioral Logic Model
モータ・ドライバICのアプリケーション回路シミュレーション
5
Model is include:
 Diode Snap Curren
 MOSFET Shoot-
through Current
V1
0Vdc
MUA1
MU
MLA1
ML
RGA1
DLA1
DLA1
RGA3
2k
GL1_A
EGLA1
IF( V(OA1)<2, 29,1 )
EVALUE
OUT+
OUT-
IN+
IN-
0
VS_MUA1 VA_DUA1
VD_MLA1 VK_DLA1
DUA1
DFWU
OUT_A
OA2
OA1
OA1
VM
EGUA1
IF( V(CTRLA1)<0.75 & V(MDA4)<0.75 ,V(Ccp_A),0 )
EVALUE
OUT+
OUT-
IN+
IN-
OUT_A1 OUT_A
0
OA1
GND
MUA2
MU
MLA2
ML
RGA2
DLA2
DFWL
RGA4
2k
GL1_A
EGLA2
IF( V(OA1)<2, 29,1 )
EVALUE
OUT+
OUT-
IN+
IN-
0
VS_MUA2 VA_DUA2
VD_MLA2 VK_DLA2
DUA2
DFWU
OUT_A
OA2
VM
EGUA2
IF( V(CTRLA1)<0.75 & V(MDA4)<0.75 ,V(Ccp_A),0 )
EVALUE
OUT+
OUT-
IN+
IN-
0
GND
OA1
V2
0Vdc
MUB1
MU
MLB1
ML
RGB1
DLB1
DLA1
RGB3
2k
GL1_A
EGLB1
IF( V(OA1)<2, 29,1 )
EVALUE
OUT+
OUT-
IN+
IN-
0
VS_MUB1VA_DUB1
VD_MLB1VK_DLB1
DUB3
DFWU OA1
OUT_A
VM
OA2
EGUB1
IF( V(CTRLB1)<0.75 & V(MDB4)<0.75 ,V(Ccp_A),0 )
EVALUE
OUT+
OUT-
IN+
IN-
OUT_A OUT_A1
0
GND
MUB2
MU
MLB2
ML
RGB2
DLB2
DFWL
RGB4
2k
GL1_A
EGLB2
IF( V(OA1)<2, 29,1 )
EVALUE
OUT+
OUT-
IN+
IN-
0
VS_MUB2VA_DUB2
VD_MLB2VK_DLB2
DUB2
DFWU
OUT_A
OA1
VM
OA2
EGUB2
IF( V(CTRLA1)<0.75 & V(MDA4)<0.75 ,V(Ccp_A),0 )
EVALUE
OUT+
OUT-
IN+
IN-
0
GND
モータ・ドライバICのアプリケーション回路シミュレーション
H-Bridge Outputをビヘイビアモデルから素子モデル化
6
Datasheet Diagram
Simulation Result
Time
400us 402us 404us 406us 408us 410us 412us 414us 416us 418us 420us
I(VLA)
450mA
500mA
550mA
V(OSC)
SEL>>
MIXED DECAY MODE Waveform (current waveform)
モータ・ドライバICのアプリケーション回路シミュレーション
7
Time
2.0ms 4.0ms0.1ms
1 I(U1:OUT_A1) 2 V(U1:PHASE_A) 3 V(V_PHASE_B:+)
-1.0A
-0.5A
0A
0.5A
1.0A
1.5A
2.0A
2.5A
3.0A
1 2
-20V
0V
20V
3
>>
Input Control Signal
Phase (A)
Input Control Signal
Phase (B)
Motor Phase Current
Current Ripple
Phase Input vs. Phase Output Current
( 250Hz Phase Frequency )
モータ・ドライバICのアプリケーション回路シミュレーション
8
Motor Phase Current
(Ripple)
Output V(A)
Output V(A)
Time
210us 211us 212us 213us 214us 215us 216us 217us 218us 219us
1 V(X_U1.IOUT_A1) 2 V(U1:OUT_A1) V(U1:OUT_A)
-100mV
0V
100mV
200mV
300mV
400mV
500mV
600mV
700mV
1
>>
-10V
0V
10V
20V
30V
40V
50V
60V
70V
2
MIXED DECAY MODE Current Waveform
モータ・ドライバICのアプリケーション回路シミュレーション
9
Ccp1 Pin Voltage
STANDBY Input Signal
Time
0s 0.1ms 0.2ms 0.3ms 0.4ms 0.5ms 0.6ms 0.7ms 0.8ms 0.9ms
V(Ccp_A) V(STANDBY)
0V
5V
10V
15V
20V
25V
30V
35V
40V
Charge Pump Rise Time
モータ・ドライバICのアプリケーション回路シミュレーション
10
Time
1 I(U1:OUT_A1) 2 I(U1:OUT_B1)
-2.00A
-1.00A
0A
0.75A
1
SEL>>
0A
1.00A
2.00A
-0.75A
2
SEL>>
1 V(U1:ENABLE_A) 2 V(U1:ENABLE_B)
-10V
-5V
0V
5V
1
>>
0V
5V
10V
15V
2
1 V(U1:PHASE_A) 2 V(U1:PHASE_B)
-10V
-5V
0V
5V
1
>>
0V
5V
10V
15V
2
Simulation Explore Rate
of Current Change
Simulation Result
Half Step Control Signal
モータ・ドライバICのアプリケーション回路シミュレーション
11
0
0.002
0.004
0.006
0.008
0.01
0.012
1.E+02 1.E+03 1.E+04 1.E+05
Frequency(Hz)
Ls(H)
Ls
Phase Inductance (Ls) is selected at phase frequency 100kHz
Ls = 2.315mH
Phase Inductnace (Ls) vs. Frequency (ステッピング・モーター)
モータ・ドライバICのアプリケーション回路シミュレーション
12
Motor coil is modeled from an inductor series with resistor.
Model parameters are extracted to fit characteristics around chopping
frequency (100kHz).Ls=2.315mH, Rs=8.7ohm
Phase Inductor model (100k-1MHz)
モータ・ドライバICのアプリケーション回路シミュレーション
Agilent 4294A
13
Measured result show the ripple current
Ripple Current Magnitude
Output V(A)
Motor Phase
Current
Output V(A)
Snap Current
Measured result: Mixed Decay Mode ripple current
モータ・ドライバICのアプリケーション回路シミュレーション
14
The result show how model simulate Ripple Current Magnitude at fchop is approximately 100kHz.
Ripple Current Magnitude
Time
210us 211us 212us 213us 214us 215us 216us 217us 218us 219us
1 V(X_U1.IOUT_A1) 2 V(U1:OUT_A1) V(U1:OUT_A)
-100mV
0V
100mV
200mV
300mV
400mV
500mV
600mV
700mV
1
>>
-10V
0V
10V
20V
30V
40V
50V
60V
70V
2
Motor Phase
Current:
V(X_U1.IOUT_A1)
Output V(A):
V(U1:OUT_A1)
Output V(A):
V(U1:OUT_A)
Snap Current
Simulated result: (the chopping frequency is approximately 100kHz)
モータ・ドライバICのアプリケーション回路シミュレーション
15

More Related Content

More from Tsuyoshi Horigome

SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )Tsuyoshi Horigome
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Tsuyoshi Horigome
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Tsuyoshi Horigome
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspiceTsuyoshi Horigome
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is ErrorTsuyoshi Horigome
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintTsuyoshi Horigome
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsTsuyoshi Horigome
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hiresTsuyoshi Horigome
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Tsuyoshi Horigome
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Tsuyoshi Horigome
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)Tsuyoshi Horigome
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモTsuyoshi Horigome
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?Tsuyoshi Horigome
 
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)Tsuyoshi Horigome
 
SPICE PARK JAN2024 (6,665 SPICE Models)
SPICE PARK JAN2024 (6,665 SPICE Models)SPICE PARK JAN2024 (6,665 SPICE Models)
SPICE PARK JAN2024 (6,665 SPICE Models)Tsuyoshi Horigome
 
社会現象及び社会記号と関連付けたマーケティング
社会現象及び社会記号と関連付けたマーケティング社会現象及び社会記号と関連付けたマーケティング
社会現象及び社会記号と関連付けたマーケティングTsuyoshi Horigome
 
Update 42 models(Diode/General ) in SPICE PARK(DEC2023)
Update 42 models(Diode/General ) in SPICE PARK(DEC2023)Update 42 models(Diode/General ) in SPICE PARK(DEC2023)
Update 42 models(Diode/General ) in SPICE PARK(DEC2023)Tsuyoshi Horigome
 
SPICE PARK DEC2023 (6,625 SPICE Models)
SPICE PARK DEC2023 (6,625 SPICE Models) SPICE PARK DEC2023 (6,625 SPICE Models)
SPICE PARK DEC2023 (6,625 SPICE Models) Tsuyoshi Horigome
 
電子部品調達者の動向
電子部品調達者の動向電子部品調達者の動向
電子部品調達者の動向Tsuyoshi Horigome
 

More from Tsuyoshi Horigome (20)

SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモ
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?
 
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)
 
SPICE PARK JAN2024 (6,665 SPICE Models)
SPICE PARK JAN2024 (6,665 SPICE Models)SPICE PARK JAN2024 (6,665 SPICE Models)
SPICE PARK JAN2024 (6,665 SPICE Models)
 
社会現象及び社会記号と関連付けたマーケティング
社会現象及び社会記号と関連付けたマーケティング社会現象及び社会記号と関連付けたマーケティング
社会現象及び社会記号と関連付けたマーケティング
 
Update 42 models(Diode/General ) in SPICE PARK(DEC2023)
Update 42 models(Diode/General ) in SPICE PARK(DEC2023)Update 42 models(Diode/General ) in SPICE PARK(DEC2023)
Update 42 models(Diode/General ) in SPICE PARK(DEC2023)
 
SPICE PARK DEC2023 (6,625 SPICE Models)
SPICE PARK DEC2023 (6,625 SPICE Models) SPICE PARK DEC2023 (6,625 SPICE Models)
SPICE PARK DEC2023 (6,625 SPICE Models)
 
電子部品調達者の動向
電子部品調達者の動向電子部品調達者の動向
電子部品調達者の動向
 
電流制御資料
電流制御資料電流制御資料
電流制御資料
 

Recently uploaded

Fuzzy logic method-based stress detector with blood pressure and body tempera...
Fuzzy logic method-based stress detector with blood pressure and body tempera...Fuzzy logic method-based stress detector with blood pressure and body tempera...
Fuzzy logic method-based stress detector with blood pressure and body tempera...IJECEIAES
 
Databricks Generative AI Fundamentals .pdf
Databricks Generative AI Fundamentals  .pdfDatabricks Generative AI Fundamentals  .pdf
Databricks Generative AI Fundamentals .pdfVinayVadlagattu
 
Adsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) pptAdsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) pptjigup7320
 
SLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptxSLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptxCHAIRMAN M
 
History of Indian Railways - the story of Growth & Modernization
History of Indian Railways - the story of Growth & ModernizationHistory of Indian Railways - the story of Growth & Modernization
History of Indian Railways - the story of Growth & ModernizationEmaan Sharma
 
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas SachpazisSeismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas SachpazisDr.Costas Sachpazis
 
Introduction-to- Metrology and Quality.pptx
Introduction-to- Metrology and Quality.pptxIntroduction-to- Metrology and Quality.pptx
Introduction-to- Metrology and Quality.pptxProfASKolap
 
Dynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxDynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxMustafa Ahmed
 
Circuit Breakers for Engineering Students
Circuit Breakers for Engineering StudentsCircuit Breakers for Engineering Students
Circuit Breakers for Engineering Studentskannan348865
 
Maximizing Incident Investigation Efficacy in Oil & Gas: Techniques and Tools
Maximizing Incident Investigation Efficacy in Oil & Gas: Techniques and ToolsMaximizing Incident Investigation Efficacy in Oil & Gas: Techniques and Tools
Maximizing Incident Investigation Efficacy in Oil & Gas: Techniques and Toolssoginsider
 
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书c3384a92eb32
 
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024EMMANUELLEFRANCEHELI
 
Autodesk Construction Cloud (Autodesk Build).pptx
Autodesk Construction Cloud (Autodesk Build).pptxAutodesk Construction Cloud (Autodesk Build).pptx
Autodesk Construction Cloud (Autodesk Build).pptxMustafa Ahmed
 
What is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, FunctionsWhat is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, FunctionsVIEW
 
Geometric constructions Engineering Drawing.pdf
Geometric constructions Engineering Drawing.pdfGeometric constructions Engineering Drawing.pdf
Geometric constructions Engineering Drawing.pdfJNTUA
 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelDrAjayKumarYadav4
 
analog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptxanalog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptxKarpagam Institute of Teechnology
 
engineering chemistry power point presentation
engineering chemistry  power point presentationengineering chemistry  power point presentation
engineering chemistry power point presentationsj9399037128
 
Filters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility ApplicationsFilters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility ApplicationsMathias Magdowski
 

Recently uploaded (20)

Fuzzy logic method-based stress detector with blood pressure and body tempera...
Fuzzy logic method-based stress detector with blood pressure and body tempera...Fuzzy logic method-based stress detector with blood pressure and body tempera...
Fuzzy logic method-based stress detector with blood pressure and body tempera...
 
Databricks Generative AI Fundamentals .pdf
Databricks Generative AI Fundamentals  .pdfDatabricks Generative AI Fundamentals  .pdf
Databricks Generative AI Fundamentals .pdf
 
Adsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) pptAdsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) ppt
 
SLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptxSLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptx
 
History of Indian Railways - the story of Growth & Modernization
History of Indian Railways - the story of Growth & ModernizationHistory of Indian Railways - the story of Growth & Modernization
History of Indian Railways - the story of Growth & Modernization
 
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas SachpazisSeismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
 
Introduction-to- Metrology and Quality.pptx
Introduction-to- Metrology and Quality.pptxIntroduction-to- Metrology and Quality.pptx
Introduction-to- Metrology and Quality.pptx
 
Dynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxDynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptx
 
Circuit Breakers for Engineering Students
Circuit Breakers for Engineering StudentsCircuit Breakers for Engineering Students
Circuit Breakers for Engineering Students
 
Maximizing Incident Investigation Efficacy in Oil & Gas: Techniques and Tools
Maximizing Incident Investigation Efficacy in Oil & Gas: Techniques and ToolsMaximizing Incident Investigation Efficacy in Oil & Gas: Techniques and Tools
Maximizing Incident Investigation Efficacy in Oil & Gas: Techniques and Tools
 
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书
 
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
 
Autodesk Construction Cloud (Autodesk Build).pptx
Autodesk Construction Cloud (Autodesk Build).pptxAutodesk Construction Cloud (Autodesk Build).pptx
Autodesk Construction Cloud (Autodesk Build).pptx
 
What is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, FunctionsWhat is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, Functions
 
Geometric constructions Engineering Drawing.pdf
Geometric constructions Engineering Drawing.pdfGeometric constructions Engineering Drawing.pdf
Geometric constructions Engineering Drawing.pdf
 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata Model
 
Signal Processing and Linear System Analysis
Signal Processing and Linear System AnalysisSignal Processing and Linear System Analysis
Signal Processing and Linear System Analysis
 
analog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptxanalog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptx
 
engineering chemistry power point presentation
engineering chemistry  power point presentationengineering chemistry  power point presentation
engineering chemistry power point presentation
 
Filters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility ApplicationsFilters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility Applications
 

Device Modeling of Motor Drive IC using SPICE

  • 2. モータ・ドライバICのアプリケーション回路シミュレーション RSB 7.5ohm L2 1.562mH IC = -0.5A 1 2 V5 0s 10ns 0V 5V 0 V_REFB DC = 1.25 Cv ref B 1uF 0 0 0 V_REFA DC = 1.25 Cv ref a 1uF L1 1.562mH IC = 0A 12 RSA 7.5ohm 0 RRSA0.5 RRSB0.5 0 VM 24Vdc CVM 100uF 00 0 0 VD 5Vdc C1 10uF 0 0 Rosc 3.6k Cosc 560pF 0 0 U1 TB62206FG CCP1 = 0.22UF CCP2 = 0.022UF COSC = 560PF VM = 24 RNFA = 100mV RNFB = 100mV ROSC = 3.6K FIN CR VDD VREF_A VREF_B RS_B RS_A VM CCP_C CCP_B CCP_A STANDBY OUT_A1 PHASE_A PHASE_B OUT_A OUT_B ENABLE_A ENABLE_B OUT_B1 TORQUE Cccp_1 0.22uF Cccp_2 0.022uF V I V_PHASE_A TD = 0 TF = {tf phase} PW = {pwphase} PER = {tphase} V1 = 0 TR = {trphase} V2 = 5V V_PHASE_B TD = {tphase/4} TF = {tf phase} PW = {pwphase} PER = {tphase} V1 = 5V TR = {trphase} V2 = 0 TB62206FG(東芝セミコンダクター社) Phase current is simulated at fchop=100kHz to predict motor current ripple. ステッピングモータ キー・デバイス(IC) TB62206FG 2
  • 4. Device Feature: • Input logic to drive Bipolar Step Motor • Internal OSC • Current Level Set • Mixed Decay Control • Charge Pump Unit • H-Bridge Output • Protection Unit モータ・ドライバICのアプリケーション回路シミュレーション 4
  • 5. Model is include:  Input logic to drive Bipolar Step Motor  Internal OSC  Current Level Set  Mixed Decay Control  Charge Pump Unit  H-Bridge Output  Protection Unit (Over Current Protection ERNFA IF( V(PHASE_A)>0.75, V(IMX_A)-100m, -V(IMX_A)) EVALUE OUT+ OUT- IN+ IN- RRNFA10 RNFAILVA4 CRFA 100p IC = 0 0 Output Control (Mixed Decay Control) MDA1 RMDA1 1MEG 0 U19 XOR 1 2 3 PHASE_A U20 INV 1 2NMDC OSC MDA U17 XOR 1 2 3 MDA PHASE_A U18 INV 1 2 Q B Q A U11 JKFFR J 1 CLK 2 K 3 R 4 Q 5 Q 6 + - + - S_UA1 S VOFF = 2.5V VON = 10V U12 JKFFR J 1 CLK 2 K 3 R 4 Q 5 Q 6 V2 AC = TRAN = DC = 5 + - + - S_LA1 S VOFF = 2.5V VON = 10V 0 NMDC3 0 U16 TFFR CLK 2 R 3 T 1 Q 4 Q 5 RGA1 10k OA1 NMDC4 OA2 NMDC1 RGA3 10k EMDA2 IF( V(PHASE_A)>0.75 & V(RST_A)<0.75, 3.5, V(MDA1) ) EVALUE OUT+ OUT- IN+ IN- U13 INV 1 2 MDCA2 NMDC6 0 EGUA1 IF( V(CTRLA1)<0.75 & V(MDA4)<0.75 ,V(Ccp_A),0 ) EVALUE OUT+ OUT- IN+ IN- GU1_A NMDC2 RMDA2 10 MDA2 0 NMDC5 0 RMDA 1k EGLA1 IF( V(CTRLA1)<0.75 & V(MDA4)<0.75 ,0,V(Ccp_A) ) EVALUE OUT+ OUT- IN+ IN- CMDA2 100p IC = 0 GL1_A 0 CTRLA HI RSTCA 0 VLA EMDA3 IF( V(PHASE_A)<0.75 & V(RST_A)<0.75, 0, V(MDA1) ) EVALUE OUT+ OUT- IN+ IN- OUT_A VM MDCA3 0 GND RMDA3 10 MDA3 + - + - S_UA2 S VOFF = 2.5V VON = 10V CMDA3 100p IC = 0 + - + - S_LA2 S VOFF = 2.5V VON = 10V EMDA4 IF( V(PHASE_A)>0.75, V(MDA2), V(MDA3) ) EVALUE OUT+ OUT- IN+ IN- OA3 MDCA4 0 0 OA4 RGA2 10k RMDA4 10 MDA4 RGA4 10k CMDA4 100p IC = 0 EGUA2 IF( V(CTRLA1)>0.75 & V(MDA4)>0.75 ,V(Ccp_A),0 ) EVALUE OUT+ OUT- IN+ IN- GU2_A 0 0 EGLA2 IF( V(CTRLA1)>0.75 & V(MDA4)>0.75 ,0,V(Ccp_A) ) EVALUE OUT+ OUT- IN+ IN- GL2_A 0 GND OA5 OUT_A1 VM CR VOSC TD = 1.25ns TF = 10n PW = {3*tosc/4} PER = {tosc} V1 = 0 TR = 10n V2 = 5 0 0 OSC R8 1MEG V1 TD = 0 TF = {tosc/4} PW = 10n PER = {tosc} V1 = 1.9V TR = {3*tosc/4} V2 = 3.1V PARAMETERS: tosc = {0.523*(Cosc*Rosc+600*Cosc)} GND Vchop TD = 1.25ns TF = 10n PW = {5*tosc} PER = {tosc*8} V1 = 0.5 TR = 10n V2 = 5 0 f chop 0 R_chop 1MEG + - + - S_UB1 S VOFF = 2.5V VON = 10V + - + - S_LB1 S VOFF = 2.5V VON = 10V 0 RGB110k OB1 OB2 RGB310k EGUB1 IF( V(CTRLB1)<0.75 & V(MDB4)<0.75 ,V(Ccp_A),0 ) EVALUE OUT+ OUT- IN+ IN- 0 GU1_B 0 EGLB1 IF( V(CTRLB1)<0.75 & V(MDB4)<0.75 ,0,V(Ccp_A) ) EVALUE OUT+ OUT- IN+ IN- GL1_B ECcp_A1 V(Cp_ON)+V(VM)-2 EVALUE OUT+ OUT- IN+ IN- 0 VLB ENFA IF( V(PHASE_A)>0.75, V(IMX_A), -V(IMX_A)+100m) EVALUE OUT+ OUT- IN+ IN- VM GND + - + - S_UB2 S VOFF = 2.5V VON = 10V ECcp_A IF( V(STANDBY)>0.75, V(Q_Ccp_A), 0) EVALUE OUT+ OUT- IN+ IN- 0 ILVA3 RNFA10 QP2 R6125 NFA CNFA 100p IC = 0 + - + - S_LB2 S VOFF = 2.5V VON = 10V QP3 0 Ccp_A OB3 0 ERST_A IF( V(ENABLE_A)<0.75 | V(STANDBY)<0.75 | V(ISDA)>0.75, 0, 5 ) EVALUE OUT+ OUT- IN+ IN- PARAMETERS: VM = 24V 0 OB4 QP1 RGB210k Chopper OSC Rcp_on 100 ILVA1 RGB410k RRST_A10 Cp_ON RST_A Ccp_on 0.22uF IC = 0 EGUB2 IF( V(CTRLB1)>0.75 & V(MDB4)>0.75 ,V(Ccp_A),0 ) EVALUE OUT+ OUT- IN+ IN- ECcp_B IF( V(STANDBY)>0.75 ,V(VM)-2+V(VCcp_C)/2.5 ,V(VM)-0.7) EVALUE OUT+ OUT- IN+ IN- CRST_A 100p IC = 0 G_RsA I(VLA) GVALUE OUT+ OUT- IN+ IN- 0 0 GU2_B 0 ECcp_C IF( V(STANDBY)>0.75 ,V(VCcp_C), V(VM)-0.7 ) EVALUE OUT+ OUT- IN+ IN- EGLB2 IF( V(CTRLB1)>0.75 & V(MDB4)>0.75 ,0,V(Ccp_A) ) EVALUE OUT+ OUT- IN+ IN- RS_A GND 0 GL2_B QP4 RCcp_C 50 E_VL1_A I(VLA) EVALUE OUT+ OUT- IN+ IN- 0 0 0 IFBA1 ILA R_VLA10 V_Q4 GND OB5 R5 100k VM 0 C_VLA 100p VDD RDD1 2.5k EChrg IF(I(V_Q4)>10m, 3.5, 0) EVALUE OUT+ OUT- IN+ IN- E_EA_A LIMIT(1E5*V(ILA,TRGA),5,0) EVALUE OUT+ OUT- IN+ IN- GND Q_Ccp_A 0 CTRLAIFBA4 PARAMETERS: CP_PW = {800*Ccp2} CP_PER = {18.5u+1800*Ccp2} CP_V2 = {250E6*Ccp2} Protection Unit (ISD) 0 CTRLA1 REAA10 Ecp_on IF(V(STANDBY)>0.75, 6.5, 0) EVALUE OUT+ OUT- IN+ IN- E_ABILA IF(I(VLA)>0,I(VLA),-I(VLA)) EVALUE OUT+ OUT- IN+ IN- CEAA 100p IC = 0 0 ISDA1 R_ABILA 10 ETRGA IF(V(CTRLA1)>1,V(RNFA1),V(NFA1)) EVALUE OUT+ OUT- IN+ IN- Ccp_C Ccp_B OUT_B VcpTD = 0 TF = 10N PW = {CP_PW} PER = {CP_PER} V1 = {VM-1.4} TR = 10N V2 = {CP_V2} 0 IFBA3 RTRGA10 C_ABILA 100p VCcp_C TRGA E_ISDA IF( V(AB_ILA)>V(ISDA_REF) , 5, 0) EVALUE OUT+ OUT- IN+ IN- 0 RV_C 100k CTRGA 100p IC = 0 00 ISDA3 ISDA ERS_A ((V(VM)-V(RS_A))/V(ILA)) EVALUE OUT+ OUT- IN+ IN- RISDA 10 IFBA2 CISDA 100p IC = 0 0 RRS_A10 EISDA_REF IF(V(ISDA)<1 | V(STANDBY)<0.75,1.8,-0.1) EVALUE OUT+ OUT- IN+ IN- RS_A1 CRS_A 100P ISDA2 0 RISDA_REF10 VM Current Feedback ( A ) ISDA_REF CISDA_REF 100p IC = 0 0 AB_ILA OUT_B1 CTRLA PHASE_A f chop U27 AND2 1 2 3 U28 AND2 1 2 3 U29 AND2 1 2 3 U30 OR3 1 24 3 CEAA1 30p IC = 0 U31 INV 1 2 0 R10 100 U32 INV 12 Charge Pump Unit Input Logic PHASE_A ENABLE_A PHASE_B ENABLE_B RPD_EA RPD_EB RPD_PA RPD_PB GND RPU_EA VM VM RPU_EB VM RPU_PA RPU_PB VM RPD_STB VM RPU_STB STANDBY R_PIN1 1MEG GND TORQUE 0 ETQ IF( V(TORQUE)>0.75, 1, 0.71) EVALUE OUT+ OUT- IN+ IN- RTQ 100 CTQ 100P TQILVA7 R_REFA 1MEG Vref _A GND EIMX_A 0.2*V(Vref _A)*V(TQ)/V(RS_A1) EVALUE OUT+ OUT- IN+ IN- 0 ILVA2 RIMX_A10 IMX_A CIMX_A 100P Current Level Set ENFA1 IF( V(RST_A)<0.75 , 0, V(NFA) ) EVALUE OUT+ OUT- IN+ IN- 0 ILVA5 RNFA110 NFA1 CNFA1 100p IC = 0 ERNFA1 IF( V(RST_A)<0.75, 0, V(RNFA) ) EVALUE OUT+ OUT- IN+ IN- RRNFA110 RNFA1ILVA6 CRFA1 100p IC = 0 0 Behavioral Logic Model モータ・ドライバICのアプリケーション回路シミュレーション 5
  • 6. Model is include:  Diode Snap Curren  MOSFET Shoot- through Current V1 0Vdc MUA1 MU MLA1 ML RGA1 DLA1 DLA1 RGA3 2k GL1_A EGLA1 IF( V(OA1)<2, 29,1 ) EVALUE OUT+ OUT- IN+ IN- 0 VS_MUA1 VA_DUA1 VD_MLA1 VK_DLA1 DUA1 DFWU OUT_A OA2 OA1 OA1 VM EGUA1 IF( V(CTRLA1)<0.75 & V(MDA4)<0.75 ,V(Ccp_A),0 ) EVALUE OUT+ OUT- IN+ IN- OUT_A1 OUT_A 0 OA1 GND MUA2 MU MLA2 ML RGA2 DLA2 DFWL RGA4 2k GL1_A EGLA2 IF( V(OA1)<2, 29,1 ) EVALUE OUT+ OUT- IN+ IN- 0 VS_MUA2 VA_DUA2 VD_MLA2 VK_DLA2 DUA2 DFWU OUT_A OA2 VM EGUA2 IF( V(CTRLA1)<0.75 & V(MDA4)<0.75 ,V(Ccp_A),0 ) EVALUE OUT+ OUT- IN+ IN- 0 GND OA1 V2 0Vdc MUB1 MU MLB1 ML RGB1 DLB1 DLA1 RGB3 2k GL1_A EGLB1 IF( V(OA1)<2, 29,1 ) EVALUE OUT+ OUT- IN+ IN- 0 VS_MUB1VA_DUB1 VD_MLB1VK_DLB1 DUB3 DFWU OA1 OUT_A VM OA2 EGUB1 IF( V(CTRLB1)<0.75 & V(MDB4)<0.75 ,V(Ccp_A),0 ) EVALUE OUT+ OUT- IN+ IN- OUT_A OUT_A1 0 GND MUB2 MU MLB2 ML RGB2 DLB2 DFWL RGB4 2k GL1_A EGLB2 IF( V(OA1)<2, 29,1 ) EVALUE OUT+ OUT- IN+ IN- 0 VS_MUB2VA_DUB2 VD_MLB2VK_DLB2 DUB2 DFWU OUT_A OA1 VM OA2 EGUB2 IF( V(CTRLA1)<0.75 & V(MDA4)<0.75 ,V(Ccp_A),0 ) EVALUE OUT+ OUT- IN+ IN- 0 GND モータ・ドライバICのアプリケーション回路シミュレーション H-Bridge Outputをビヘイビアモデルから素子モデル化 6
  • 7. Datasheet Diagram Simulation Result Time 400us 402us 404us 406us 408us 410us 412us 414us 416us 418us 420us I(VLA) 450mA 500mA 550mA V(OSC) SEL>> MIXED DECAY MODE Waveform (current waveform) モータ・ドライバICのアプリケーション回路シミュレーション 7
  • 8. Time 2.0ms 4.0ms0.1ms 1 I(U1:OUT_A1) 2 V(U1:PHASE_A) 3 V(V_PHASE_B:+) -1.0A -0.5A 0A 0.5A 1.0A 1.5A 2.0A 2.5A 3.0A 1 2 -20V 0V 20V 3 >> Input Control Signal Phase (A) Input Control Signal Phase (B) Motor Phase Current Current Ripple Phase Input vs. Phase Output Current ( 250Hz Phase Frequency ) モータ・ドライバICのアプリケーション回路シミュレーション 8
  • 9. Motor Phase Current (Ripple) Output V(A) Output V(A) Time 210us 211us 212us 213us 214us 215us 216us 217us 218us 219us 1 V(X_U1.IOUT_A1) 2 V(U1:OUT_A1) V(U1:OUT_A) -100mV 0V 100mV 200mV 300mV 400mV 500mV 600mV 700mV 1 >> -10V 0V 10V 20V 30V 40V 50V 60V 70V 2 MIXED DECAY MODE Current Waveform モータ・ドライバICのアプリケーション回路シミュレーション 9
  • 10. Ccp1 Pin Voltage STANDBY Input Signal Time 0s 0.1ms 0.2ms 0.3ms 0.4ms 0.5ms 0.6ms 0.7ms 0.8ms 0.9ms V(Ccp_A) V(STANDBY) 0V 5V 10V 15V 20V 25V 30V 35V 40V Charge Pump Rise Time モータ・ドライバICのアプリケーション回路シミュレーション 10
  • 11. Time 1 I(U1:OUT_A1) 2 I(U1:OUT_B1) -2.00A -1.00A 0A 0.75A 1 SEL>> 0A 1.00A 2.00A -0.75A 2 SEL>> 1 V(U1:ENABLE_A) 2 V(U1:ENABLE_B) -10V -5V 0V 5V 1 >> 0V 5V 10V 15V 2 1 V(U1:PHASE_A) 2 V(U1:PHASE_B) -10V -5V 0V 5V 1 >> 0V 5V 10V 15V 2 Simulation Explore Rate of Current Change Simulation Result Half Step Control Signal モータ・ドライバICのアプリケーション回路シミュレーション 11
  • 12. 0 0.002 0.004 0.006 0.008 0.01 0.012 1.E+02 1.E+03 1.E+04 1.E+05 Frequency(Hz) Ls(H) Ls Phase Inductance (Ls) is selected at phase frequency 100kHz Ls = 2.315mH Phase Inductnace (Ls) vs. Frequency (ステッピング・モーター) モータ・ドライバICのアプリケーション回路シミュレーション 12
  • 13. Motor coil is modeled from an inductor series with resistor. Model parameters are extracted to fit characteristics around chopping frequency (100kHz).Ls=2.315mH, Rs=8.7ohm Phase Inductor model (100k-1MHz) モータ・ドライバICのアプリケーション回路シミュレーション Agilent 4294A 13
  • 14. Measured result show the ripple current Ripple Current Magnitude Output V(A) Motor Phase Current Output V(A) Snap Current Measured result: Mixed Decay Mode ripple current モータ・ドライバICのアプリケーション回路シミュレーション 14
  • 15. The result show how model simulate Ripple Current Magnitude at fchop is approximately 100kHz. Ripple Current Magnitude Time 210us 211us 212us 213us 214us 215us 216us 217us 218us 219us 1 V(X_U1.IOUT_A1) 2 V(U1:OUT_A1) V(U1:OUT_A) -100mV 0V 100mV 200mV 300mV 400mV 500mV 600mV 700mV 1 >> -10V 0V 10V 20V 30V 40V 50V 60V 70V 2 Motor Phase Current: V(X_U1.IOUT_A1) Output V(A): V(U1:OUT_A1) Output V(A): V(U1:OUT_A) Snap Current Simulated result: (the chopping frequency is approximately 100kHz) モータ・ドライバICのアプリケーション回路シミュレーション 15