DATABRICKS FOR
RECOMMENDATION
SYSTEMS
ACCELERATING INTELLIGENT RECOMMENDATIONS WITH UNIFIED
ANALYTICS
contact@accentfuture.com​ +91-96400 01789​
INTRODUCTION TO
RECOMMENDATION
SYSTEMS
What are
recommendation
systems?
Common types:
Collaborative
Filtering,
Content-Based,
Hybrid
Real-world
examples:
Netflix, Amazon,
Spotify
contact@accentfuture.com​
​
+91-96400 01789​
WHY DATABRICKS FOR
RECOMMENDATION
SYSTEMS?
• Unified platform for big data, ML,
and collaborative development
• Built-in support for Apache Spark,
MLflow
• Scalable for large-scale
recommendation workloads
contact@accentfuture.com​
​ +91-96400 01789​
DATA PREPROCESSING
IN DATABRICKS
• Ingest raw user/item data (e.g.,
ratings, clicks, purchases)
• Clean, transform, and engineer
features with PySpark
• Use Delta Lake for ACID-compliant
pipelines
contact@accentfuture.com​
​ +91-96400 01789​
COLLABORATIVE FILTERING WITH ALS
• Matrix Factorization using Alternating Least Squares (ALS)
• ALS in PySpark MLlib
• Example: Movie recommendation model
contact@accentfuture.com​
​ +91-96400 01789​
​
CONTENT-BASED
FILTERING IN
DATABRICKS
• Use item metadata (genres, tags,
descriptions)
• TF-IDF, word embeddings with NLP
pipelines
• Combine with cosine similarity
contact@accentfuture.com​
​ +91-96400 01789​
​
BUILDING A HYBRID RECOMMENDATION SYSTEM
COMBINE COLLABORATIVE
AND CONTENT-BASED SCORES
WEIGHTED HYBRID OR
MODEL-BASED HYBRID
USE MLFLOW FOR
EXPERIMENT TRACKING
contact@accentfuture.com​
​ +91-96400 01789​
​
MODEL EVALUATION
AND TUNING
• Use metrics: RMSE, Precision@K,
Recall@K
• Cross-validation using Spark ML
pipelines
• Hyperparameter tuning with
MLflow
contact@accentfuture.com​
​ +91-96400 01789​
​
LEARN DATABRICKS WITH ACCENTFUTURE
• Join our Databricks Online Training Program
• Hands-on projects including recommendation engines
• Master PySpark, MLlib, Delta Lake, MLflow
• 📧 contact@accentfuture.com
• 🌐 AccentFuture
• 📞 +91-96400 01789

Databricks for Recommendation Systems.pptx

  • 1.
    DATABRICKS FOR RECOMMENDATION SYSTEMS ACCELERATING INTELLIGENTRECOMMENDATIONS WITH UNIFIED ANALYTICS contact@accentfuture.com​ +91-96400 01789​
  • 2.
    INTRODUCTION TO RECOMMENDATION SYSTEMS What are recommendation systems? Commontypes: Collaborative Filtering, Content-Based, Hybrid Real-world examples: Netflix, Amazon, Spotify contact@accentfuture.com​ ​ +91-96400 01789​
  • 3.
    WHY DATABRICKS FOR RECOMMENDATION SYSTEMS? •Unified platform for big data, ML, and collaborative development • Built-in support for Apache Spark, MLflow • Scalable for large-scale recommendation workloads contact@accentfuture.com​ ​ +91-96400 01789​
  • 4.
    DATA PREPROCESSING IN DATABRICKS •Ingest raw user/item data (e.g., ratings, clicks, purchases) • Clean, transform, and engineer features with PySpark • Use Delta Lake for ACID-compliant pipelines contact@accentfuture.com​ ​ +91-96400 01789​
  • 5.
    COLLABORATIVE FILTERING WITHALS • Matrix Factorization using Alternating Least Squares (ALS) • ALS in PySpark MLlib • Example: Movie recommendation model contact@accentfuture.com​ ​ +91-96400 01789​ ​
  • 6.
    CONTENT-BASED FILTERING IN DATABRICKS • Useitem metadata (genres, tags, descriptions) • TF-IDF, word embeddings with NLP pipelines • Combine with cosine similarity contact@accentfuture.com​ ​ +91-96400 01789​ ​
  • 7.
    BUILDING A HYBRIDRECOMMENDATION SYSTEM COMBINE COLLABORATIVE AND CONTENT-BASED SCORES WEIGHTED HYBRID OR MODEL-BASED HYBRID USE MLFLOW FOR EXPERIMENT TRACKING contact@accentfuture.com​ ​ +91-96400 01789​ ​
  • 8.
    MODEL EVALUATION AND TUNING •Use metrics: RMSE, Precision@K, Recall@K • Cross-validation using Spark ML pipelines • Hyperparameter tuning with MLflow contact@accentfuture.com​ ​ +91-96400 01789​ ​
  • 9.
    LEARN DATABRICKS WITHACCENTFUTURE • Join our Databricks Online Training Program • Hands-on projects including recommendation engines • Master PySpark, MLlib, Delta Lake, MLflow • 📧 contact@accentfuture.com • 🌐 AccentFuture • 📞 +91-96400 01789