Embed presentation
Download to read offline

![Convert the given NFA to DFA.
Initial State of given NFA is {q0 }
Since NFA is equivalent to DFA,
Let Initial State of DFA be [q0] ----- A](https://image.slidesharecdn.com/nfatodfa-220110090059/75/Automata-theory-NFA-to-DFA-Conversion-2-2048.jpg)
![Now we will obtain δ' transition for state A.
δ’(A, 0)= δ’({q0}, 0) = {q0} =[q0] -------- A Transition table
δ’(A, 1)= δ’({q0}, 1) = {q1}=[q1] -------- B (new state generated)
The δ' transition for state B is obtained as:
δ’(B, 0)= δ’({q1}, 0) = {q1, q2} =[q1,q2] -------- C
δ’(B,1) = δ’({q1}, 1) = {q1}=[q1] -------- B
Now we will obtain δ' transition on C.
δ’(C, 0) =δ’({q1, q2}, 0)
= δ(q1, 0) ∪ δ(q2, 0)
= {q1, q2} ∪ {q2}
= [q1, q2] -------- C
δ’(C, 1) =δ’({q1, q2}, 1)
= δ(q1, 1) ∪ δ(q2, 1)
= {q1} ∪ {q1, q2}
= {q1, q2}
= [q1, q2] -------- C
0
1
→A A B
B C B
*C C C
DFA - Transition diagram
DFA - Transition table
Resultant DFA](https://image.slidesharecdn.com/nfatodfa-220110090059/75/Automata-theory-NFA-to-DFA-Conversion-3-2048.jpg)
![Can also be denoted the states as it is,
without renaming as A,B,C
0
1
→[q0] [q0] [q1]
[q1] [q1, q2] [q1]
*[q1, q2] [q1, q2] [q1, q2]](https://image.slidesharecdn.com/nfatodfa-220110090059/75/Automata-theory-NFA-to-DFA-Conversion-4-2048.jpg)
![Example 2: NFA to DFA
Note : use [ ] in DFA instead { }](https://image.slidesharecdn.com/nfatodfa-220110090059/75/Automata-theory-NFA-to-DFA-Conversion-5-2048.jpg)
![Example 3: NFA to DFA
Resultant:
State / Alphabet 0 1
→q0 q0 {q1, q2}
State / Alphabet 0 1
→q0 q0 {q1, q2}
{q1, q2} {q0, q1, q2} {q1, q2}
State / Alphabet 0 1
→q0 q0 {q1, q2}
{q1, q2} {q0, q1, q2} {q1, q2}
{q0, q1, q2}
{q0, q1, q2}
{q1, q2}
State / Alphabet 0 1
→q0 [q0] [q1, q2]
*[q1, q2] [q0, q1, q2] [q1, q2]
*[q0, q1, q2]
[q0, q1, q2]
[q1, q2]](https://image.slidesharecdn.com/nfatodfa-220110090059/75/Automata-theory-NFA-to-DFA-Conversion-6-2048.jpg)
The document describes the process of converting a non-deterministic finite automaton (NFA) to a deterministic finite automaton (DFA). It provides an example of an NFA with initial state q0 and shows the steps to obtain the transition function δ' and states of the equivalent DFA. The resulting DFA has states A, B, and C, with transitions between them labeled 0 or 1. It also provides the transition table for the equivalent DFA.

![Convert the given NFA to DFA.
Initial State of given NFA is {q0 }
Since NFA is equivalent to DFA,
Let Initial State of DFA be [q0] ----- A](https://image.slidesharecdn.com/nfatodfa-220110090059/75/Automata-theory-NFA-to-DFA-Conversion-2-2048.jpg)
![Now we will obtain δ' transition for state A.
δ’(A, 0)= δ’({q0}, 0) = {q0} =[q0] -------- A Transition table
δ’(A, 1)= δ’({q0}, 1) = {q1}=[q1] -------- B (new state generated)
The δ' transition for state B is obtained as:
δ’(B, 0)= δ’({q1}, 0) = {q1, q2} =[q1,q2] -------- C
δ’(B,1) = δ’({q1}, 1) = {q1}=[q1] -------- B
Now we will obtain δ' transition on C.
δ’(C, 0) =δ’({q1, q2}, 0)
= δ(q1, 0) ∪ δ(q2, 0)
= {q1, q2} ∪ {q2}
= [q1, q2] -------- C
δ’(C, 1) =δ’({q1, q2}, 1)
= δ(q1, 1) ∪ δ(q2, 1)
= {q1} ∪ {q1, q2}
= {q1, q2}
= [q1, q2] -------- C
0
1
→A A B
B C B
*C C C
DFA - Transition diagram
DFA - Transition table
Resultant DFA](https://image.slidesharecdn.com/nfatodfa-220110090059/75/Automata-theory-NFA-to-DFA-Conversion-3-2048.jpg)
![Can also be denoted the states as it is,
without renaming as A,B,C
0
1
→[q0] [q0] [q1]
[q1] [q1, q2] [q1]
*[q1, q2] [q1, q2] [q1, q2]](https://image.slidesharecdn.com/nfatodfa-220110090059/75/Automata-theory-NFA-to-DFA-Conversion-4-2048.jpg)
![Example 2: NFA to DFA
Note : use [ ] in DFA instead { }](https://image.slidesharecdn.com/nfatodfa-220110090059/75/Automata-theory-NFA-to-DFA-Conversion-5-2048.jpg)
![Example 3: NFA to DFA
Resultant:
State / Alphabet 0 1
→q0 q0 {q1, q2}
State / Alphabet 0 1
→q0 q0 {q1, q2}
{q1, q2} {q0, q1, q2} {q1, q2}
State / Alphabet 0 1
→q0 q0 {q1, q2}
{q1, q2} {q0, q1, q2} {q1, q2}
{q0, q1, q2}
{q0, q1, q2}
{q1, q2}
State / Alphabet 0 1
→q0 [q0] [q1, q2]
*[q1, q2] [q0, q1, q2] [q1, q2]
*[q0, q1, q2]
[q0, q1, q2]
[q1, q2]](https://image.slidesharecdn.com/nfatodfa-220110090059/75/Automata-theory-NFA-to-DFA-Conversion-6-2048.jpg)
Overview of conversion processes from NFA to DFA, including steps like NFA to DFA, ε transitions, and minimization.
Identifying the initial state for DFA conversion from the given NFA, specifically indicating the state {q0}.
Detailed transitions for states A, B, and C in the DFA, outlining δ' transitions and generating a transition table.
Representation of DFA states without renaming, showcasing transitions in a clear table format.
Providing an additional example of NFA to DFA conversion emphasizing the notation difference - using brackets.
Continuation of NFA to DFA example, detailing state transitions and their corresponding outputs across inputs.