Conversion problem: PART-B
1. NFA- DFA
2. NFA - ε to NFA
3. NFA-ε to DFA
4. RE to NFA- ε
5. DFA to RE
6. Minimization of DFA
Convert the given NFA to DFA.
Initial State of given NFA is {q0 }
Since NFA is equivalent to DFA,
Let Initial State of DFA be [q0] ----- A
Now we will obtain δ' transition for state A.
δ’(A, 0)= δ’({q0}, 0) = {q0} =[q0] -------- A Transition table
δ’(A, 1)= δ’({q0}, 1) = {q1}=[q1] -------- B (new state generated)
The δ' transition for state B is obtained as:
δ’(B, 0)= δ’({q1}, 0) = {q1, q2} =[q1,q2] -------- C
δ’(B,1) = δ’({q1}, 1) = {q1}=[q1] -------- B
Now we will obtain δ' transition on C.
δ’(C, 0) =δ’({q1, q2}, 0)
= δ(q1, 0) ∪ δ(q2, 0)
= {q1, q2} ∪ {q2}
= [q1, q2] -------- C
δ’(C, 1) =δ’({q1, q2}, 1)
= δ(q1, 1) ∪ δ(q2, 1)
= {q1} ∪ {q1, q2}
= {q1, q2}
= [q1, q2] -------- C
0
1
→A A B
B C B
*C C C
DFA - Transition diagram
DFA - Transition table
Resultant DFA
Can also be denoted the states as it is,
without renaming as A,B,C
0
1
→[q0] [q0] [q1]
[q1] [q1, q2] [q1]
*[q1, q2] [q1, q2] [q1, q2]
Example 2: NFA to DFA
Note : use [ ] in DFA instead { }
Example 3: NFA to DFA
Resultant:
State / Alphabet 0 1
→q0 q0 {q1, q2}
State / Alphabet 0 1
→q0 q0 {q1, q2}
{q1, q2} {q0, q1, q2} {q1, q2}
State / Alphabet 0 1
→q0 q0 {q1, q2}
{q1, q2} {q0, q1, q2} {q1, q2}
{q0, q1, q2}
{q0, q1, q2}
{q1, q2}
State / Alphabet 0 1
→q0 [q0] [q1, q2]
*[q1, q2] [q0, q1, q2] [q1, q2]
*[q0, q1, q2]
[q0, q1, q2]
[q1, q2]

Automata theory - NFA to DFA Conversion

  • 1.
    Conversion problem: PART-B 1.NFA- DFA 2. NFA - ε to NFA 3. NFA-ε to DFA 4. RE to NFA- ε 5. DFA to RE 6. Minimization of DFA
  • 2.
    Convert the givenNFA to DFA. Initial State of given NFA is {q0 } Since NFA is equivalent to DFA, Let Initial State of DFA be [q0] ----- A
  • 3.
    Now we willobtain δ' transition for state A. δ’(A, 0)= δ’({q0}, 0) = {q0} =[q0] -------- A Transition table δ’(A, 1)= δ’({q0}, 1) = {q1}=[q1] -------- B (new state generated) The δ' transition for state B is obtained as: δ’(B, 0)= δ’({q1}, 0) = {q1, q2} =[q1,q2] -------- C δ’(B,1) = δ’({q1}, 1) = {q1}=[q1] -------- B Now we will obtain δ' transition on C. δ’(C, 0) =δ’({q1, q2}, 0) = δ(q1, 0) ∪ δ(q2, 0) = {q1, q2} ∪ {q2} = [q1, q2] -------- C δ’(C, 1) =δ’({q1, q2}, 1) = δ(q1, 1) ∪ δ(q2, 1) = {q1} ∪ {q1, q2} = {q1, q2} = [q1, q2] -------- C 0 1 →A A B B C B *C C C DFA - Transition diagram DFA - Transition table Resultant DFA
  • 4.
    Can also bedenoted the states as it is, without renaming as A,B,C 0 1 →[q0] [q0] [q1] [q1] [q1, q2] [q1] *[q1, q2] [q1, q2] [q1, q2]
  • 5.
    Example 2: NFAto DFA Note : use [ ] in DFA instead { }
  • 6.
    Example 3: NFAto DFA Resultant: State / Alphabet 0 1 →q0 q0 {q1, q2} State / Alphabet 0 1 →q0 q0 {q1, q2} {q1, q2} {q0, q1, q2} {q1, q2} State / Alphabet 0 1 →q0 q0 {q1, q2} {q1, q2} {q0, q1, q2} {q1, q2} {q0, q1, q2} {q0, q1, q2} {q1, q2} State / Alphabet 0 1 →q0 [q0] [q1, q2] *[q1, q2] [q0, q1, q2] [q1, q2] *[q0, q1, q2] [q0, q1, q2] [q1, q2]