SlideShare a Scribd company logo
Ziyad Mohammed | 150407
2018/2019
Artificial Intelligence
Definition, Ethics and
Standards
Electronics and Communications: Law, Standards and Practice | 18ELEC07I
1
CONTENTS
Abstract........................................................................................................................................... 2
Introduction..................................................................................................................................... 3
Artifical Intelligence vs Robotics................................................................................................ 3
Defining Artificial Intelligence....................................................................................................... 4
Traits of an AI ............................................................................................................................. 4
Types of Ai.................................................................................................................................. 4
Type 1...................................................................................................................................... 4
Type 2 (based on functionalities) ............................................................................................ 5
Achieving AI................................................................................................................................... 6
Natural Language Processing (NLP)........................................................................................... 7
Vision .......................................................................................................................................... 7
Autonomous Vehicles ................................................................................................................. 7
Machine learning......................................................................................................................... 7
Ethical AI........................................................................................................................................ 8
Standards......................................................................................................................................... 8
key areas...................................................................................................................................... 8
Foundational standards (Working Group 1)............................................................................ 8
Trustworthiness (Study Group 2) ............................................................................................ 9
Use cases and applications (Study Group 3) ........................................................................... 9
Conclusion .................................................................................................................................... 10
References..................................................................................................................................... 10
Figure 1: Future of AI..................................................................................................................... 5
Figure 2: AI Branches..................................................................................................................... 6
Figure 3: AI Perception Action Cycle in Autonomous Cars .......................................................... 7
2
ABSTRACT
Artificial Intelligence or sometimes called machine intelligence, is intelligence demonstrated
by machines, in contrast to the natural intelligence displayed by humans and other animals. Some
of the activities that it is designed to do is speech recognition, learning, planning and problem
solving. Since Robotics is the field concerned with the connection of perception to action,
Artificial Intelligence must have a central role in Robotics if the connection is to be intelligent.
Artificial Intelligence addresses the crucial questions of: what knowledge is required in any
aspect of thinking; how should that knowledge be represented; and how should that knowledge
be used. Robotics challenges Artificial Intelligence by forcing it to deal with real objects in the
real world.
3
INTRODUCTION
Is robotics part of AI? Is AI part of robotics? What is the
difference between the two terms? Robotics and artificial
intelligence serve different purposes. However, people often get
them mixed up. A lot of people wonder if robotics is a subset of
artificial intelligence or if they are the same thing.
ARTIFICAL INTELLIGENCE VS ROBOTICS
Artificial intelligence (AI) is a branch of computer science. It involves developing computer
programs to complete tasks which would otherwise require human intelligence. AI algorithms
can tackle learning, perception, problem-solving, language-understanding and/or logical
reasoning.
AI is used in many ways within the modern world, from personal assistants to self-driving car.
Artificial intelligence (AI) is evolving rapidly. While science fiction every so often portraits AI
as robots closely as possible to humans.
However, Robotics is a branch of technology which deals with robots. Robots are programmable
machines which are usually able to carry out a series of actions autonomously, or semi-
autonomously.
There are three main important factors which constitute a robot:
1. Robots interact with the physical world via sensors and actuators.
2. Robots are programmable.
3. Robots are usually autonomous or semi-autonomous.
Robots are "usually" autonomous because some robots aren't. Telerobots, for example, are
entirely controlled by a human operator but telerobotics is still classed as a branch of robotics.
Eventually, artificially intelligent robots are the bridge between robotics and AI. These are robots
which are controlled by AI programs.
Many robots are not artificially intelligent. Up until quite recently, all industrial robots could
only be programmed to carry out a repetitive series of movements. As we have discussed,
repetitive movements do not require artificial intelligence. Non-intelligent robots are quite
limited in their functionality. AI algorithms are often necessary to allow the robot to perform
more complex tasks.
4
DEFINING ARTIFICIAL INTELLIGENCE
TRAITS OF AN AI
Capable of predicting and adapting, AI uses algorithms that discover patterns from huge
amounts of information.
Makes decisions on its own, AI is capable to augment human intelligence, deliver insights and
improve productivity.
Continuous learning, AI uses algorithms to construct analytical models. From those algorithms,
AI technology will find out how to perform tasks through innumerable rounds of trial and error.
AI is forward-looking, AI is a tool that allows people to reconsider how we analyze data and
integrate information, and then use these insights to make better decisions.
AI is capable of motion and perception.
TYPES OF AI
Type 1
Artificial intelligence today is accurately known as narrow AI (or weak AI), it is non-sentient
machine intelligence, typically designed to perform a narrow task (e.g. only facial recognition or
only internet searches or only driving a car).
However, the long-term goal of many researchers is to create an artificial general
intelligence (AGI or strong AI) which is a machine with the ability to apply intelligence to any
problem, rather than just one specific problem, typically meaning "at least as smart as a typical
human".
While narrow AI may outperform humans at whatever its specific task is, like playing chess or
solving equations, AGI would outperform humans at nearly every cognitive task.
5
The ultimate hypothetical goal is achieving superintelligence (ASI) which is far surpassing that
of the brightest and most gifted human minds. Due to recursive self-improvement,
superintelligence is expected to be a rapid outcome of creating artificial general intelligence. [1]
[1]
Type 2 (based on functionalities)
Purely Reactive
Reactive machines are basic in that they do not store ‘memories’ or use past experiences to
determine future actions. They simply perceive the world and react to it. IBM’s Deep Blue,
which defeated chess grandmaster Kasporov, is a reactive machine that sees the pieces on a chess
board and reacts to them. It cannot refer to any of its prior experiences, and cannot improve with
practice.
Limited Memory
Limited Memory machines can retain data for a short period of time. While they can use this data
for a specific period of time, they cannot add it to a library of their experiences. Many self-
driving cars use Limited Memory technology: they store data such as the recent speed of nearby
cars, the distance of such cars, the speed limit, and other information that can help them navigate
roads.
Theory of Mind
Psychology tells us that people have thoughts, emotions, memories, and mental models that drive
their behaviour. Theory of Mind researchers hope to build computers that imitate our mental
models, by forming representations about the world, and about other agents and entities in it.
Figure 1: Future of AI
6
One goal of these researchers is to build computers that relate to humans and perceive human
intelligence and how people’s emotions are impacted by events and the environment. While
plenty of computers use models, a computer with a ‘mind’ does not yet exist. Examples like C-
3PO R2-D2 from Star Wars Universe and Sonny in the 2004 film I, Robot
Self-Awareness
Self-aware machines are the stuff of science fiction, though many AI enthusiasts believe them to
be the ultimate goal of AI development. Even if a machine can operate as a person does, for
example by preserving itself, predicting its own needs and demands, and relating to others as an
equal, the question of whether a machine can become truly self-aware, or ‘conscious’, is best left
for philosophers. Examples like Eva in the 2015 movie Ex Machina and Synths in the 2015 TV
series Humans.
ACHIEVING AI
There are many ways of achieving AI some of them are as follows:
[5]
But we will be discussing the most important among them.
Figure 2: AI Branches
7
NATURAL LANGUAGE PROCESSING (NLP)
Natural language processing helps computers communicate with people in their very own
language and scales other language-related tasks. For example, NLP makes it possible
for computers to read text, hear speech, interpret it, measure thoughts and emotions, and
determine which parts are important. Today's machines can analyze more language-based
information than humans without exhaustion and in a continuous, unbiased way.
VISION
In recent years, the cost of acquiring and identifying large data sets has gone down due to
advances in IIoT, making machine learning more accessible for inspection applications then ever
before. The other main way AI is used in vision systems is to improve recognition applications
continuously.
AUTONOMOUS VEHICLES
Autonomous cars generate data from their surroundings and feeds it into the intelligent agent,
which in turn takes decisions and allow an autonomous vehicle to conduct specific activities in
almost the same environment, a repetitive loop is established called a perception activity cycle.
The figure below shows the autonomous vehicle data flow:
[2]
MACHINE LEARNING
Machine Learning (ML) is an algorithm category that enables software applications to predict
responses more accurately and specifically without explicitly programming them. Machine
learning is primarily focused on the development of algorithms which are capable of receiving
input data as well as using statistical analysis to predict an output while updating outputs with
new data.
Figure 3: AI Perception Action Cycle in Autonomous Cars
8
ETHICAL AI
[3]
Trustworthy AI should comply with all applicable legislation and regulations and a set of
requirements; specific lists of evaluations are intended to help verify the application of each of
the main requirements.
Robust and Safety: Dependable AI requires safe, reliable and robust algorithms that address
mistakes or inconsistencies throughout all the life cycle phases of the AI systems.
Privacy and data governance: Citizens should have full control over their own personal data,
whereas their data should not be used for harm or discrimination against them.
Transparency: Tractability should be guaranteed for AI systems.
Diversity, non - discrimination and fairness: AI systems should consider and guarantee
accessibility and the full range of human capabilities, skills and requirements.
Societal and environmental well-being: AI systems should be used to promote positive social
change and improve environmental sustainability.
Accountability: Mechanisms should be placed to ensure accountability and responsibility for AI
systems and their products.
STANDARDS
[4]
In 2017, International Electrotechnical Commission (IEC) and International Organization for
Standardization (ISO) became the first international standards development organizations
(SDOs) to set up a joint committee (ISO/IEC JTC 1/SC 42) which will carry out standardization
activities for artificial intelligence.
Following the opening meeting in Beijing this April, Wael William Diab, Chairman of SC 42. In
the area of information and communication technologies (ICT), Diab is a business and
technology strategist with 875 patents. At present he is Huawei's senior director.
KEY AREAS
Foundational standards (Working Group 1)
 Framework for artificial intelligence systems using machine learning ISO/IEC AWI
23053.
 Consider the diverse technologies used by the AI systems, including their properties and
characteristics (ML algorithms, reasoning, etc.).
9
 Consider current specialized AI (NLP or computer vision) systems to understand,
characterize and comprehend their underlying computational approaches, architectures
and features.
 Investigate industries, processes and methods for AI systems application.
 Develop proposals for new work items and recommend placement where appropriate.
Trustworthiness (Study Group 2)
 Investigate approaches to building confidence in AI systems through transparency,
authentication, expandability and controllability.
 Look at engineering faults and evaluate with mitigation techniques and strategies
typically associated threats and risks for AI systems.
 Take account of approaches to the strength, adaptability, reliability, accuracy, safety and
privacy of AI systems.
 Consider the types of bias sources in AI systems to be minimized, such as statistical
biases in AI systems and the decision-making process supported by AI.
 Develop proposals for new items of work and recommend placement where appropriate.
Use cases and applications (Study Group 3)
 Identify different areas of AI applications and their various context (fin-tech, health,
smart home, autonomous car, social networks and embedded systems).
 Collect representative use cases.
 To describe and use applications using the ISO / IEC AWI22989 and ISO / IEC AWI
23053 terminology and concepts, extending the terms as required.
 Develop suggestions and recommend placement as appropriate for new items of work.
10
CONCLUSION
There is a difference between AI and Robotics and there is also a common area which is
artificially intelligent robots. There is are a lot of ways of achieving AI which is why some
guidelines should be put. Ethical constraints to comply with all the regulations. Standards are
also put to govern the future of AI.
REFERENCES
[1] R. Saracco, "Computers keep getting better … than us," IEEE Future Directions, 2018.
[2] S. Gadam, "Artificial Intelligence and Autonomous Vehicles," 19 April 2018. [Online].
Available: https://medium.com/datadriveninvestor/artificial-intelligence-and-autonomous-
vehicles-ae877feb6cd2.
[3] European Commission, "Ethics guidelines for trustworthy AI," European Commission,
2019.
[4] A. Price, "First International Standards committee for entire AI ecosystem," e-tech, no.
03/2018, 2018.
[5] C. Kumar, "Artificial Intelligence: Definition, Types, Examples, Technologies," 31 August
2018. [Online]. Available: https://medium.com/@chethankumargn/artificial-intelligence-
definition-types-examples-technologies-962ea75c7b9b.

More Related Content

Similar to ArtificialIntelligenceDefinitionEthicsandStandards.docx

Artificial Intelligence.pptx
Artificial Intelligence.pptxArtificial Intelligence.pptx
Artificial Intelligence.pptx
Muhammadwaseem236996
 
Addis abeb university ..Artificial intelligence .pptx
Addis abeb university ..Artificial intelligence .pptxAddis abeb university ..Artificial intelligence .pptx
Addis abeb university ..Artificial intelligence .pptx
ethiouniverse
 
Artificial Intelligence
Artificial IntelligenceArtificial Intelligence
Artificial Intelligence
u053675
 
Artificial intelligent
Artificial intelligent Artificial intelligent
Artificial intelligent
Omer Shaikh
 
Artificial intelligence agency's website
Artificial intelligence agency's websiteArtificial intelligence agency's website
Artificial intelligence agency's website
wwwasifkhanrajana544
 
AI-PPT-wecompress.com_.pptx
AI-PPT-wecompress.com_.pptxAI-PPT-wecompress.com_.pptx
AI-PPT-wecompress.com_.pptx
MohdSuhail201381
 
UNIT I - AI.pptx
UNIT I - AI.pptxUNIT I - AI.pptx
UNIT I - AI.pptx
DeepaK577816
 
Author Francesca Rossi EN Policy Department C Citizens.docx
Author Francesca Rossi  EN Policy Department C Citizens.docxAuthor Francesca Rossi  EN Policy Department C Citizens.docx
Author Francesca Rossi EN Policy Department C Citizens.docx
rock73
 
RMV Artificial Intelligence
RMV Artificial IntelligenceRMV Artificial Intelligence
RMV Artificial Intelligence
anand hd
 
AI-PPt.pptx
AI-PPt.pptxAI-PPt.pptx
AI-PPt.pptx
varunbamba
 
MAHESH PRESENTATION on Artificial intelligence
MAHESH PRESENTATION on Artificial intelligenceMAHESH PRESENTATION on Artificial intelligence
MAHESH PRESENTATION on Artificial intelligence
redranger737
 
Action Transformer The next frontier in AI development.pdf
Action Transformer The next frontier in AI development.pdfAction Transformer The next frontier in AI development.pdf
Action Transformer The next frontier in AI development.pdf
StephenAmell4
 
Action Transformer - The next frontier in AI development.pdf
Action Transformer - The next frontier in AI development.pdfAction Transformer - The next frontier in AI development.pdf
Action Transformer - The next frontier in AI development.pdf
AnastasiaSteele10
 
Unit-II-Introduction of Artifiial Intelligence.pptx
Unit-II-Introduction of Artifiial Intelligence.pptxUnit-II-Introduction of Artifiial Intelligence.pptx
Unit-II-Introduction of Artifiial Intelligence.pptx
Harsha Patel
 
Artificial Intelligence
Artificial IntelligenceArtificial Intelligence
Artificial Intelligence
Arber Here
 
2016 promise-of-ai
2016 promise-of-ai2016 promise-of-ai
2016 promise-of-ai
Maxim Zhdanov
 
Artificial Intelligence
Artificial IntelligenceArtificial Intelligence
Artificial Intelligence
VishalLoungani
 
Artificial intelligence (AI)
Artificial intelligence (AI)Artificial intelligence (AI)
Artificial intelligence (AI)
edutainer2
 
Artificial Intelligence
Artificial IntelligenceArtificial Intelligence
Artificial Intelligence
komal jain
 
Artificial Intelligence.pdf
Artificial Intelligence.pdfArtificial Intelligence.pdf
Artificial Intelligence.pdf
TauqeerIqbal6
 

Similar to ArtificialIntelligenceDefinitionEthicsandStandards.docx (20)

Artificial Intelligence.pptx
Artificial Intelligence.pptxArtificial Intelligence.pptx
Artificial Intelligence.pptx
 
Addis abeb university ..Artificial intelligence .pptx
Addis abeb university ..Artificial intelligence .pptxAddis abeb university ..Artificial intelligence .pptx
Addis abeb university ..Artificial intelligence .pptx
 
Artificial Intelligence
Artificial IntelligenceArtificial Intelligence
Artificial Intelligence
 
Artificial intelligent
Artificial intelligent Artificial intelligent
Artificial intelligent
 
Artificial intelligence agency's website
Artificial intelligence agency's websiteArtificial intelligence agency's website
Artificial intelligence agency's website
 
AI-PPT-wecompress.com_.pptx
AI-PPT-wecompress.com_.pptxAI-PPT-wecompress.com_.pptx
AI-PPT-wecompress.com_.pptx
 
UNIT I - AI.pptx
UNIT I - AI.pptxUNIT I - AI.pptx
UNIT I - AI.pptx
 
Author Francesca Rossi EN Policy Department C Citizens.docx
Author Francesca Rossi  EN Policy Department C Citizens.docxAuthor Francesca Rossi  EN Policy Department C Citizens.docx
Author Francesca Rossi EN Policy Department C Citizens.docx
 
RMV Artificial Intelligence
RMV Artificial IntelligenceRMV Artificial Intelligence
RMV Artificial Intelligence
 
AI-PPt.pptx
AI-PPt.pptxAI-PPt.pptx
AI-PPt.pptx
 
MAHESH PRESENTATION on Artificial intelligence
MAHESH PRESENTATION on Artificial intelligenceMAHESH PRESENTATION on Artificial intelligence
MAHESH PRESENTATION on Artificial intelligence
 
Action Transformer The next frontier in AI development.pdf
Action Transformer The next frontier in AI development.pdfAction Transformer The next frontier in AI development.pdf
Action Transformer The next frontier in AI development.pdf
 
Action Transformer - The next frontier in AI development.pdf
Action Transformer - The next frontier in AI development.pdfAction Transformer - The next frontier in AI development.pdf
Action Transformer - The next frontier in AI development.pdf
 
Unit-II-Introduction of Artifiial Intelligence.pptx
Unit-II-Introduction of Artifiial Intelligence.pptxUnit-II-Introduction of Artifiial Intelligence.pptx
Unit-II-Introduction of Artifiial Intelligence.pptx
 
Artificial Intelligence
Artificial IntelligenceArtificial Intelligence
Artificial Intelligence
 
2016 promise-of-ai
2016 promise-of-ai2016 promise-of-ai
2016 promise-of-ai
 
Artificial Intelligence
Artificial IntelligenceArtificial Intelligence
Artificial Intelligence
 
Artificial intelligence (AI)
Artificial intelligence (AI)Artificial intelligence (AI)
Artificial intelligence (AI)
 
Artificial Intelligence
Artificial IntelligenceArtificial Intelligence
Artificial Intelligence
 
Artificial Intelligence.pdf
Artificial Intelligence.pdfArtificial Intelligence.pdf
Artificial Intelligence.pdf
 

Recently uploaded

printing of ic circuits.pdf
printing       of        ic     circuits.pdfprinting       of        ic     circuits.pdf
printing of ic circuits.pdf
chidambaramnatarajar
 
21EC63_Module1B.pptx VLSI design 21ec63 MOS TRANSISTOR THEORY
21EC63_Module1B.pptx VLSI design 21ec63 MOS TRANSISTOR THEORY21EC63_Module1B.pptx VLSI design 21ec63 MOS TRANSISTOR THEORY
21EC63_Module1B.pptx VLSI design 21ec63 MOS TRANSISTOR THEORY
PradeepKumarSK3
 
Tutorial on MySQl and its basic concepts
Tutorial on MySQl and its basic conceptsTutorial on MySQl and its basic concepts
Tutorial on MySQl and its basic concepts
anishacotta2
 
RECENT DEVELOPMENTS IN RING SPINNING.pptx
RECENT DEVELOPMENTS IN RING SPINNING.pptxRECENT DEVELOPMENTS IN RING SPINNING.pptx
RECENT DEVELOPMENTS IN RING SPINNING.pptx
peacesoul123
 
OSHA LOTO training, LOTO, lock out tag out
OSHA LOTO training, LOTO, lock out tag outOSHA LOTO training, LOTO, lock out tag out
OSHA LOTO training, LOTO, lock out tag out
Ateeb19
 
Metrology Book, Bachelors in Mechanical Engineering
Metrology Book, Bachelors in Mechanical EngineeringMetrology Book, Bachelors in Mechanical Engineering
Metrology Book, Bachelors in Mechanical Engineering
leakingvideo
 
Stiffness Method for structure analysis - Truss
Stiffness Method  for structure analysis - TrussStiffness Method  for structure analysis - Truss
Stiffness Method for structure analysis - Truss
adninhaerul
 
Ludo system project report management .pdf
Ludo  system project report management .pdfLudo  system project report management .pdf
Ludo system project report management .pdf
Kamal Acharya
 
Generative-AI-a-boost-for-operations-Presentation.pdf
Generative-AI-a-boost-for-operations-Presentation.pdfGenerative-AI-a-boost-for-operations-Presentation.pdf
Generative-AI-a-boost-for-operations-Presentation.pdf
Aries716858
 
Response & Safe AI at Summer School of AI at IIITH
Response & Safe AI at Summer School of AI at IIITHResponse & Safe AI at Summer School of AI at IIITH
Response & Safe AI at Summer School of AI at IIITH
IIIT Hyderabad
 
Evento anual Splunk .conf24 Highlights recap
Evento anual Splunk .conf24 Highlights recapEvento anual Splunk .conf24 Highlights recap
Evento anual Splunk .conf24 Highlights recap
Rafael Santos
 
The world of Technology Management MEM 814.pptx
The world of Technology Management MEM 814.pptxThe world of Technology Management MEM 814.pptx
The world of Technology Management MEM 814.pptx
engrasjadshahzad
 
Concepts Basic/ Technical Electronic Material.pdf
Concepts Basic/ Technical Electronic Material.pdfConcepts Basic/ Technical Electronic Material.pdf
Concepts Basic/ Technical Electronic Material.pdf
OBD II
 
Rockets and missiles notes engineering ppt
Rockets and missiles notes engineering pptRockets and missiles notes engineering ppt
Rockets and missiles notes engineering ppt
archithaero
 
杨洋李一桐做爱视频流出【网芷:ht28.co】国产国产午夜精华>>>[网趾:ht28.co】]<<<
杨洋李一桐做爱视频流出【网芷:ht28.co】国产国产午夜精华>>>[网趾:ht28.co】]<<<杨洋李一桐做爱视频流出【网芷:ht28.co】国产国产午夜精华>>>[网趾:ht28.co】]<<<
杨洋李一桐做爱视频流出【网芷:ht28.co】国产国产午夜精华>>>[网趾:ht28.co】]<<<
amzhoxvzidbke
 
Online toll plaza booking system project report.doc.pdf
Online toll plaza booking system project report.doc.pdfOnline toll plaza booking system project report.doc.pdf
Online toll plaza booking system project report.doc.pdf
Kamal Acharya
 
libro de modelado de diseño-part-1[160-250].pdf
libro de modelado de diseño-part-1[160-250].pdflibro de modelado de diseño-part-1[160-250].pdf
libro de modelado de diseño-part-1[160-250].pdf
celiosilva66
 
EAAP2023 : Durabilité et services écosystémiques de l'élevage ovin de montagne
EAAP2023 : Durabilité et services écosystémiques de l'élevage ovin de montagneEAAP2023 : Durabilité et services écosystémiques de l'élevage ovin de montagne
EAAP2023 : Durabilité et services écosystémiques de l'élevage ovin de montagne
idelewebmestre
 
Red Hat Enterprise Linux Administration 9.0 RH124 pdf
Red Hat Enterprise Linux Administration 9.0 RH124 pdfRed Hat Enterprise Linux Administration 9.0 RH124 pdf
Red Hat Enterprise Linux Administration 9.0 RH124 pdf
mdfkobir
 
Disaster Management and Mitigation presentation
Disaster Management and Mitigation presentationDisaster Management and Mitigation presentation
Disaster Management and Mitigation presentation
RajaRamannaTarigoppu
 

Recently uploaded (20)

printing of ic circuits.pdf
printing       of        ic     circuits.pdfprinting       of        ic     circuits.pdf
printing of ic circuits.pdf
 
21EC63_Module1B.pptx VLSI design 21ec63 MOS TRANSISTOR THEORY
21EC63_Module1B.pptx VLSI design 21ec63 MOS TRANSISTOR THEORY21EC63_Module1B.pptx VLSI design 21ec63 MOS TRANSISTOR THEORY
21EC63_Module1B.pptx VLSI design 21ec63 MOS TRANSISTOR THEORY
 
Tutorial on MySQl and its basic concepts
Tutorial on MySQl and its basic conceptsTutorial on MySQl and its basic concepts
Tutorial on MySQl and its basic concepts
 
RECENT DEVELOPMENTS IN RING SPINNING.pptx
RECENT DEVELOPMENTS IN RING SPINNING.pptxRECENT DEVELOPMENTS IN RING SPINNING.pptx
RECENT DEVELOPMENTS IN RING SPINNING.pptx
 
OSHA LOTO training, LOTO, lock out tag out
OSHA LOTO training, LOTO, lock out tag outOSHA LOTO training, LOTO, lock out tag out
OSHA LOTO training, LOTO, lock out tag out
 
Metrology Book, Bachelors in Mechanical Engineering
Metrology Book, Bachelors in Mechanical EngineeringMetrology Book, Bachelors in Mechanical Engineering
Metrology Book, Bachelors in Mechanical Engineering
 
Stiffness Method for structure analysis - Truss
Stiffness Method  for structure analysis - TrussStiffness Method  for structure analysis - Truss
Stiffness Method for structure analysis - Truss
 
Ludo system project report management .pdf
Ludo  system project report management .pdfLudo  system project report management .pdf
Ludo system project report management .pdf
 
Generative-AI-a-boost-for-operations-Presentation.pdf
Generative-AI-a-boost-for-operations-Presentation.pdfGenerative-AI-a-boost-for-operations-Presentation.pdf
Generative-AI-a-boost-for-operations-Presentation.pdf
 
Response & Safe AI at Summer School of AI at IIITH
Response & Safe AI at Summer School of AI at IIITHResponse & Safe AI at Summer School of AI at IIITH
Response & Safe AI at Summer School of AI at IIITH
 
Evento anual Splunk .conf24 Highlights recap
Evento anual Splunk .conf24 Highlights recapEvento anual Splunk .conf24 Highlights recap
Evento anual Splunk .conf24 Highlights recap
 
The world of Technology Management MEM 814.pptx
The world of Technology Management MEM 814.pptxThe world of Technology Management MEM 814.pptx
The world of Technology Management MEM 814.pptx
 
Concepts Basic/ Technical Electronic Material.pdf
Concepts Basic/ Technical Electronic Material.pdfConcepts Basic/ Technical Electronic Material.pdf
Concepts Basic/ Technical Electronic Material.pdf
 
Rockets and missiles notes engineering ppt
Rockets and missiles notes engineering pptRockets and missiles notes engineering ppt
Rockets and missiles notes engineering ppt
 
杨洋李一桐做爱视频流出【网芷:ht28.co】国产国产午夜精华>>>[网趾:ht28.co】]<<<
杨洋李一桐做爱视频流出【网芷:ht28.co】国产国产午夜精华>>>[网趾:ht28.co】]<<<杨洋李一桐做爱视频流出【网芷:ht28.co】国产国产午夜精华>>>[网趾:ht28.co】]<<<
杨洋李一桐做爱视频流出【网芷:ht28.co】国产国产午夜精华>>>[网趾:ht28.co】]<<<
 
Online toll plaza booking system project report.doc.pdf
Online toll plaza booking system project report.doc.pdfOnline toll plaza booking system project report.doc.pdf
Online toll plaza booking system project report.doc.pdf
 
libro de modelado de diseño-part-1[160-250].pdf
libro de modelado de diseño-part-1[160-250].pdflibro de modelado de diseño-part-1[160-250].pdf
libro de modelado de diseño-part-1[160-250].pdf
 
EAAP2023 : Durabilité et services écosystémiques de l'élevage ovin de montagne
EAAP2023 : Durabilité et services écosystémiques de l'élevage ovin de montagneEAAP2023 : Durabilité et services écosystémiques de l'élevage ovin de montagne
EAAP2023 : Durabilité et services écosystémiques de l'élevage ovin de montagne
 
Red Hat Enterprise Linux Administration 9.0 RH124 pdf
Red Hat Enterprise Linux Administration 9.0 RH124 pdfRed Hat Enterprise Linux Administration 9.0 RH124 pdf
Red Hat Enterprise Linux Administration 9.0 RH124 pdf
 
Disaster Management and Mitigation presentation
Disaster Management and Mitigation presentationDisaster Management and Mitigation presentation
Disaster Management and Mitigation presentation
 

ArtificialIntelligenceDefinitionEthicsandStandards.docx

  • 1. Ziyad Mohammed | 150407 2018/2019 Artificial Intelligence Definition, Ethics and Standards Electronics and Communications: Law, Standards and Practice | 18ELEC07I
  • 2. 1 CONTENTS Abstract........................................................................................................................................... 2 Introduction..................................................................................................................................... 3 Artifical Intelligence vs Robotics................................................................................................ 3 Defining Artificial Intelligence....................................................................................................... 4 Traits of an AI ............................................................................................................................. 4 Types of Ai.................................................................................................................................. 4 Type 1...................................................................................................................................... 4 Type 2 (based on functionalities) ............................................................................................ 5 Achieving AI................................................................................................................................... 6 Natural Language Processing (NLP)........................................................................................... 7 Vision .......................................................................................................................................... 7 Autonomous Vehicles ................................................................................................................. 7 Machine learning......................................................................................................................... 7 Ethical AI........................................................................................................................................ 8 Standards......................................................................................................................................... 8 key areas...................................................................................................................................... 8 Foundational standards (Working Group 1)............................................................................ 8 Trustworthiness (Study Group 2) ............................................................................................ 9 Use cases and applications (Study Group 3) ........................................................................... 9 Conclusion .................................................................................................................................... 10 References..................................................................................................................................... 10 Figure 1: Future of AI..................................................................................................................... 5 Figure 2: AI Branches..................................................................................................................... 6 Figure 3: AI Perception Action Cycle in Autonomous Cars .......................................................... 7
  • 3. 2 ABSTRACT Artificial Intelligence or sometimes called machine intelligence, is intelligence demonstrated by machines, in contrast to the natural intelligence displayed by humans and other animals. Some of the activities that it is designed to do is speech recognition, learning, planning and problem solving. Since Robotics is the field concerned with the connection of perception to action, Artificial Intelligence must have a central role in Robotics if the connection is to be intelligent. Artificial Intelligence addresses the crucial questions of: what knowledge is required in any aspect of thinking; how should that knowledge be represented; and how should that knowledge be used. Robotics challenges Artificial Intelligence by forcing it to deal with real objects in the real world.
  • 4. 3 INTRODUCTION Is robotics part of AI? Is AI part of robotics? What is the difference between the two terms? Robotics and artificial intelligence serve different purposes. However, people often get them mixed up. A lot of people wonder if robotics is a subset of artificial intelligence or if they are the same thing. ARTIFICAL INTELLIGENCE VS ROBOTICS Artificial intelligence (AI) is a branch of computer science. It involves developing computer programs to complete tasks which would otherwise require human intelligence. AI algorithms can tackle learning, perception, problem-solving, language-understanding and/or logical reasoning. AI is used in many ways within the modern world, from personal assistants to self-driving car. Artificial intelligence (AI) is evolving rapidly. While science fiction every so often portraits AI as robots closely as possible to humans. However, Robotics is a branch of technology which deals with robots. Robots are programmable machines which are usually able to carry out a series of actions autonomously, or semi- autonomously. There are three main important factors which constitute a robot: 1. Robots interact with the physical world via sensors and actuators. 2. Robots are programmable. 3. Robots are usually autonomous or semi-autonomous. Robots are "usually" autonomous because some robots aren't. Telerobots, for example, are entirely controlled by a human operator but telerobotics is still classed as a branch of robotics. Eventually, artificially intelligent robots are the bridge between robotics and AI. These are robots which are controlled by AI programs. Many robots are not artificially intelligent. Up until quite recently, all industrial robots could only be programmed to carry out a repetitive series of movements. As we have discussed, repetitive movements do not require artificial intelligence. Non-intelligent robots are quite limited in their functionality. AI algorithms are often necessary to allow the robot to perform more complex tasks.
  • 5. 4 DEFINING ARTIFICIAL INTELLIGENCE TRAITS OF AN AI Capable of predicting and adapting, AI uses algorithms that discover patterns from huge amounts of information. Makes decisions on its own, AI is capable to augment human intelligence, deliver insights and improve productivity. Continuous learning, AI uses algorithms to construct analytical models. From those algorithms, AI technology will find out how to perform tasks through innumerable rounds of trial and error. AI is forward-looking, AI is a tool that allows people to reconsider how we analyze data and integrate information, and then use these insights to make better decisions. AI is capable of motion and perception. TYPES OF AI Type 1 Artificial intelligence today is accurately known as narrow AI (or weak AI), it is non-sentient machine intelligence, typically designed to perform a narrow task (e.g. only facial recognition or only internet searches or only driving a car). However, the long-term goal of many researchers is to create an artificial general intelligence (AGI or strong AI) which is a machine with the ability to apply intelligence to any problem, rather than just one specific problem, typically meaning "at least as smart as a typical human". While narrow AI may outperform humans at whatever its specific task is, like playing chess or solving equations, AGI would outperform humans at nearly every cognitive task.
  • 6. 5 The ultimate hypothetical goal is achieving superintelligence (ASI) which is far surpassing that of the brightest and most gifted human minds. Due to recursive self-improvement, superintelligence is expected to be a rapid outcome of creating artificial general intelligence. [1] [1] Type 2 (based on functionalities) Purely Reactive Reactive machines are basic in that they do not store ‘memories’ or use past experiences to determine future actions. They simply perceive the world and react to it. IBM’s Deep Blue, which defeated chess grandmaster Kasporov, is a reactive machine that sees the pieces on a chess board and reacts to them. It cannot refer to any of its prior experiences, and cannot improve with practice. Limited Memory Limited Memory machines can retain data for a short period of time. While they can use this data for a specific period of time, they cannot add it to a library of their experiences. Many self- driving cars use Limited Memory technology: they store data such as the recent speed of nearby cars, the distance of such cars, the speed limit, and other information that can help them navigate roads. Theory of Mind Psychology tells us that people have thoughts, emotions, memories, and mental models that drive their behaviour. Theory of Mind researchers hope to build computers that imitate our mental models, by forming representations about the world, and about other agents and entities in it. Figure 1: Future of AI
  • 7. 6 One goal of these researchers is to build computers that relate to humans and perceive human intelligence and how people’s emotions are impacted by events and the environment. While plenty of computers use models, a computer with a ‘mind’ does not yet exist. Examples like C- 3PO R2-D2 from Star Wars Universe and Sonny in the 2004 film I, Robot Self-Awareness Self-aware machines are the stuff of science fiction, though many AI enthusiasts believe them to be the ultimate goal of AI development. Even if a machine can operate as a person does, for example by preserving itself, predicting its own needs and demands, and relating to others as an equal, the question of whether a machine can become truly self-aware, or ‘conscious’, is best left for philosophers. Examples like Eva in the 2015 movie Ex Machina and Synths in the 2015 TV series Humans. ACHIEVING AI There are many ways of achieving AI some of them are as follows: [5] But we will be discussing the most important among them. Figure 2: AI Branches
  • 8. 7 NATURAL LANGUAGE PROCESSING (NLP) Natural language processing helps computers communicate with people in their very own language and scales other language-related tasks. For example, NLP makes it possible for computers to read text, hear speech, interpret it, measure thoughts and emotions, and determine which parts are important. Today's machines can analyze more language-based information than humans without exhaustion and in a continuous, unbiased way. VISION In recent years, the cost of acquiring and identifying large data sets has gone down due to advances in IIoT, making machine learning more accessible for inspection applications then ever before. The other main way AI is used in vision systems is to improve recognition applications continuously. AUTONOMOUS VEHICLES Autonomous cars generate data from their surroundings and feeds it into the intelligent agent, which in turn takes decisions and allow an autonomous vehicle to conduct specific activities in almost the same environment, a repetitive loop is established called a perception activity cycle. The figure below shows the autonomous vehicle data flow: [2] MACHINE LEARNING Machine Learning (ML) is an algorithm category that enables software applications to predict responses more accurately and specifically without explicitly programming them. Machine learning is primarily focused on the development of algorithms which are capable of receiving input data as well as using statistical analysis to predict an output while updating outputs with new data. Figure 3: AI Perception Action Cycle in Autonomous Cars
  • 9. 8 ETHICAL AI [3] Trustworthy AI should comply with all applicable legislation and regulations and a set of requirements; specific lists of evaluations are intended to help verify the application of each of the main requirements. Robust and Safety: Dependable AI requires safe, reliable and robust algorithms that address mistakes or inconsistencies throughout all the life cycle phases of the AI systems. Privacy and data governance: Citizens should have full control over their own personal data, whereas their data should not be used for harm or discrimination against them. Transparency: Tractability should be guaranteed for AI systems. Diversity, non - discrimination and fairness: AI systems should consider and guarantee accessibility and the full range of human capabilities, skills and requirements. Societal and environmental well-being: AI systems should be used to promote positive social change and improve environmental sustainability. Accountability: Mechanisms should be placed to ensure accountability and responsibility for AI systems and their products. STANDARDS [4] In 2017, International Electrotechnical Commission (IEC) and International Organization for Standardization (ISO) became the first international standards development organizations (SDOs) to set up a joint committee (ISO/IEC JTC 1/SC 42) which will carry out standardization activities for artificial intelligence. Following the opening meeting in Beijing this April, Wael William Diab, Chairman of SC 42. In the area of information and communication technologies (ICT), Diab is a business and technology strategist with 875 patents. At present he is Huawei's senior director. KEY AREAS Foundational standards (Working Group 1)  Framework for artificial intelligence systems using machine learning ISO/IEC AWI 23053.  Consider the diverse technologies used by the AI systems, including their properties and characteristics (ML algorithms, reasoning, etc.).
  • 10. 9  Consider current specialized AI (NLP or computer vision) systems to understand, characterize and comprehend their underlying computational approaches, architectures and features.  Investigate industries, processes and methods for AI systems application.  Develop proposals for new work items and recommend placement where appropriate. Trustworthiness (Study Group 2)  Investigate approaches to building confidence in AI systems through transparency, authentication, expandability and controllability.  Look at engineering faults and evaluate with mitigation techniques and strategies typically associated threats and risks for AI systems.  Take account of approaches to the strength, adaptability, reliability, accuracy, safety and privacy of AI systems.  Consider the types of bias sources in AI systems to be minimized, such as statistical biases in AI systems and the decision-making process supported by AI.  Develop proposals for new items of work and recommend placement where appropriate. Use cases and applications (Study Group 3)  Identify different areas of AI applications and their various context (fin-tech, health, smart home, autonomous car, social networks and embedded systems).  Collect representative use cases.  To describe and use applications using the ISO / IEC AWI22989 and ISO / IEC AWI 23053 terminology and concepts, extending the terms as required.  Develop suggestions and recommend placement as appropriate for new items of work.
  • 11. 10 CONCLUSION There is a difference between AI and Robotics and there is also a common area which is artificially intelligent robots. There is are a lot of ways of achieving AI which is why some guidelines should be put. Ethical constraints to comply with all the regulations. Standards are also put to govern the future of AI. REFERENCES [1] R. Saracco, "Computers keep getting better … than us," IEEE Future Directions, 2018. [2] S. Gadam, "Artificial Intelligence and Autonomous Vehicles," 19 April 2018. [Online]. Available: https://medium.com/datadriveninvestor/artificial-intelligence-and-autonomous- vehicles-ae877feb6cd2. [3] European Commission, "Ethics guidelines for trustworthy AI," European Commission, 2019. [4] A. Price, "First International Standards committee for entire AI ecosystem," e-tech, no. 03/2018, 2018. [5] C. Kumar, "Artificial Intelligence: Definition, Types, Examples, Technologies," 31 August 2018. [Online]. Available: https://medium.com/@chethankumargn/artificial-intelligence- definition-types-examples-technologies-962ea75c7b9b.