Amplification, ROADM
and Optical Networking
activities at CPqD
Miquel Garrich Alabarce, PhD.
Senior Researcher – Optical Technologies Division
WTON – Campinas – May 28th 2015
2/23
Outline
Optical Technologies Division
• Optical networks team
Amplification
• Automated amplifier characterizer
• Field calibration procedure for distributed Raman amplifiers
Reconfigurable Optical Add/Drop Multiplexer (ROADM)
• Transient response issues in cascaded WSS-based ROADMs
SDN-based dual-optimization application
• Adaptive EDFA algorithm
• Global WSS equalization algorithm
Collaboration activities with UTD
• Estimating EDFA Output Power with an Efficient Numerical Modeling Framework
• Network-wide signal power control strategies in WDM networks
3/23
Optical Technologies Division at CPqD
Technological Trends
Transmission
and Networks
Product
Technologies
Microelectronics
Integrated
Photonics
Transmission
DSP
Access
Amplification
ROADM
Networks
Hardware
Software
Firmware
Tests
Mechanics
Requirements
Front End
Back End
Design
Alignment
Packaging
Systems
S
Y
S
T
E
M
S
D
E
V
I
C
E
STransport
Optical networks team
4/23
Optical networks team
1 - Alexandre Daoud de Andrade
2 - Anderson Bravalheri
3 - Benjamin Sarti
4 - Camila de Araujo Souto Diniz
5 - Heitor Silva Carvalho
6 - João Carlos Sampaio Januário
7 - Leonardo Fagundes Luz Serrano
8 - Matheus Smythe Svolenski
9 - Miquel Garrich Alabarce
10 - Uiara Celine de Moura
5/23
Motivation
Bandwidth variable
transponders (BVTs)
Reconfigurable optical add-drop
multiplexers (ROADMs)
Wavelength selective switches (WSSs)
Elastic optical networking (EON)
Inputs
1
2
3
Drops Adds
Outputs
1
2
3
EDFA
Splitter
WSS
6/23
Input power
Outputpower
Measuredparam.
Power mask
Aux
Amp
Variable Att
WSS
Splitter
50/50
Optical
switch
OSA
40-CW
laser bank
Serial GPIB
GPIB
USB
Ethernet
Amplifier
Automated amplifier characterizer
7/23
Field calibration procedure for distributed
Raman amplifiers
Distributed counter-propagated Raman amplifier
Sumbitted to International Microwave and Optoelectronics Conference (IMOC) 2015
8/23
ROADM activities
Rx
Tx
Reconfigurable optical add-drop
multiplexer (ROADM)
• Wavelength selective switch (WSS)
• Optical channel monitor (OCM)
9/23
Transient response issues in cascaded ROADMs
Higher threshold
Lower threshold
Target
power
Transient
Failure Convergence
Failure
Iteration:
• Get information
• Calculation
• Application
Operation:
• Simultaneous
• Independent
10/23
Transient response feedback control mechanism
Three analyzed controllers
1. Integrative (I)
2. Proportional, integrative and derivative (PID)
3. Proportional double integrative (PII)
Techniques to enhance the performance of the controllers
1. Threshold levels
2. Standard deviation (STD)
• trigger the actuation on WSS
𝐶I 𝑠 =
𝑘𝑖
𝑠
𝑢[z+1]=𝑢[z]+𝑘1∙𝑒[z]
𝐶PID 𝑠 = 𝑘 𝑝 +
𝑘𝑖
𝑠
+ 𝑘 𝑑 ∙ 𝑠
𝑢[z+1]=𝑢[z]+𝑘1∙𝑒[z]+
𝑘2∙𝑒[z−1]+𝑘3∙𝑒[z−2]
𝐶PII 𝑠 = 𝑘 𝑝 +
𝑘𝑖1
𝑠
+
𝑘𝑖2
𝑠 + 𝛼
𝑢[z+1]=𝑘1∙𝑢[z]+𝑘2∙𝑢[z−1]+𝑘3∙𝑒[z]+
𝑘4∙𝑒[z−1]+𝑘5∙𝑒[z−2]
11/23
Node
Transient response simulation analysis
Exhaustive approach:
Full analysis with all controllers and the enhanced techniques
Node
IterationsTransient[dB]
Number of controllers
analyzed:
1. I: 70
2. PID: 4096
3. PII: 4096
1 2 3 4 5 6 7 8
0
2
4
6
1 2 3 4 5 6 7 8
0
3
6
9
12
15
17
I
PID
PII
ISTD
PIDSTD
PIISTD
I
PID
PII
ISTD
PIDSTD
PIISTD
Iteration:
• Get information
• Calculation
• Application
12/23
Experimental setup
• 100km links
• Two EDFA per link and per direction
• 80 continuous wave lasers
• 128Gb/s DP-QPSK channels (at 50GHz)
Node 1
Node 2
Node 3
Node 4
Node 5
WSS cardsKEY:
EDFA cards
SOM/SOD cards
Eth. switches 100-km SMF spans
ROADM node
• SDN controller
• EDFA gain configuration
• lightpath establishment
• NETCONF protocol
13/23
Iterations
Transient response experimental results
Demonstration the overshoot problem for an I controller (ki = 0.4)
without STD enhance technique
5 10 15 20 25 30
-6
-2
2
6
I (sim) I (exp)
5 10 15 20 25 30
-6
-1
4
9
12
I (sim) I (exp)
Iterations
Node4Node8
Power[dBm]Power[dBm]
14/23
Iterations
Transient response experimental results
Dynamic power response of the PII controller (kp= 0.05; ki1= 0.1;
ki2=0.05) with STD enhance technique for overshoot suppression
5 10 15 20 25 30
-6
-4
-2
0
2
PIISTD
(sim) PIISTD
(exp)
5 10 15 20 25 30
-6
-4
-2
0
2
PIISTD
(sim) PIISTD
(exp)
Node4Node8
Power[dBm]Power[dBm]
Iterations
Optical Fiber Communication Conference (OFC) March 2015
15/23
Adaptive EDFA algorithm
Input power
Outputpower
Measuredparam.
Power mask
Dual-optimization application
Tx
add
ROADM 1 ROADM 3
drop
Rx
Pin Measurment
Gain Search
Given: SDN control
Apply Gain
ROADM 4ROADM 2
16/23
Local equalization algorithm
Dual-optimization application
Tx
add
ROADM 1 ROADM 3
drop
Rx
ROADM 4ROADM 2
1.53 1.5351.54 1.5451.55 1.5551.56-50
-40
-30
-20
-10
0
10
Wavelength
Power
1.53 1.535 1.54 1.545 1.55 1.555 1.56-60
-50
-40
-30
-20
-10
0
10
Wavelength
Power
1.531.5351.541.5451.55 1.5551.56-60
-50
-40
-30
-20
-10
0
10
Wavelength
Power
‘
1.53 1.5351.54 1.5451.55 1.5551.56-50
-40
-30
-20
-10
0
10
Wavelength
Power
1.53 1.5351.54 1.5451.55 1.5551.56-50
-40
-30
-20
-10
0
10
Wavelength
Power
1.53 1.5351.54 1.5451.55 1.5551.56-50
-40
-30
-20
-10
0
10
Wavelength
Power
17/23
Global equalization algorithm
Dual-optimization application
Tx
add
ROADM 1 ROADM 3
drop
Rx
ROADM 4ROADM 2
1.53 1.5351.54 1.5451.55 1.5551.56-50
-40
-30
-20
-10
0
10
Wavelength
Power
1.53 1.535 1.54 1.545 1.55 1.555 1.56-60
-50
-40
-30
-20
-10
0
10
Wavelength
Power
1.531.5351.541.5451.55 1.5551.56-60
-50
-40
-30
-20
-10
0
10
Wavelength
Power
1.53 1.5351.54 1.5451.55 1.5551.56-50
-40
-30
-20
-10
0
10
Wavelength
Power




1
2
TOTAL
N
i
i TAA
][minTOTAL wAA TOTAL
w

Apply Γ
T ≤ allowed tilt?
End
Yes
No
Given: N ≥ 2, W, A{1, …, N - 1} , T
18/23
Dual-optimization application
Adaptive EDFA algorithm Global equalization algorithm




1
2
TOTAL
N
i
i TAA
][minTOTAL wAA TOTAL
w

Apply Γ
T ≤ allowed tilt?
End
Yes
No
Given: N ≥ 2, W, A{1, …, N - 1} , T
Input power
Outputpower
Measuredparam.
Power mask
Pin Measurment
Gain Search
Given: SDN control
Apply Gain
Tx
add
ROADM 1 ROADM 3
drop
Rx
ROADM 4ROADM 2
19/23
Test-bed description (SDN controller)
• Sub Controler
• NETCONF-modeling language
YANG models ROADM building
blocks and its interconnections
(ROADM-plugin)
• Application Server
• Node abstraction model
ApplicationServer
SDK-C++
SubController
NETCONF / REST
REST
REST
Adaptive EDFA Global WSS Equalization
Dual-optimization application
SDN
controller
Node
Properties
Interfaces
Property 1
Property 2
Property N
Interface 1 Interface N
Property 1
Property 2
Property N
...
...
Property 1
Property 2
Property N
...
...
Lightpath with:
Λ1 = 20
Λ2 = 40
Λ3 = 80
20/23
1530 1535 1540 1545 1550 1555 1560
10
15
20
25
30
1530 1535 1540 1545 1550 1555 1560
0
10
20
30
40
Local
Local + EDFA
Global
Global + EDFA
Dual-optimization application (experimental results)
OSNR(dB)
Wavelength (nm)
Attenuation(dB)
0 20 40 60 80 100
0
5
10
15
20
25
Local
Local + EDFA
Global
Global + EDFA
Number of channels
Lightpaths (Λ) 20 40 80
Local 13,7 12,9 11,83
Local+EDFA 19,4 16,58 13,86
Global 19,43 21,52 16,43
Global+EDFA 23,3 23,79 20
Mean OSNR (dB)
Wavelength (nm)
Optical Fiber Communication Conference (OFC) March 2015
21/23
International Conference on Communications (ICC) June 2015
Collaboration activities with UTD
Estimating EDFA Output Power with an Efficient
Numerical Modeling Framework
Input power
Outputpower
Measuredparam.
Power mask
Module 1: Finer
Spectrum Granularity
Module 2: Continuous
Input Power Values
22/23
One of top three scored papers in Optical Network Design and Modeling (ONDM) May 2015
Collaboration activities with UTD
Network-wide signal power control strategies in WDM networks
• EDFA gain control
• Ideal gain
• Fixed gain
• Noise Figure (NF)-based gain
• WSS power equalization control
• Flat output power (FP)
• Linear tilted output power (LTP)
• Flat OSNR (FOSNR)
• Wavelength assignment algorithm
• WA: High-to-low frequency First Fit
• WA: Low-to-high frequency First Fit
Lightpath average OSNR versus offered load
WSS: Flat Power equalization,
EDFA: Fixed Gain and NF-based gain control.
with NF gain control
fixed gain
23/23
Outline / Summary
Amplification
• Automated amplifier characterizer
• Field calibration procedure for distributed Raman amplifiers
Reconfigurable Optical Add/Drop Multiplexer (ROADM)
• Transient response issues in cascaded WSS-based ROADMs
SDN-based dual-optimization application
• Adaptive EDFA algorithm
• Global WSS equalization algorithm
Collaboration activities with UTD
• Estimating EDFA Output Power with an Efficient Numerical Modeling Framework
• Network-wide signal power control strategies in WDM networks
Thank You!
miquel@cpqd.com.br
www.cpqd.com.br

Amplification, ROADM and Optical Networking activities at CPqD

  • 1.
    Amplification, ROADM and OpticalNetworking activities at CPqD Miquel Garrich Alabarce, PhD. Senior Researcher – Optical Technologies Division WTON – Campinas – May 28th 2015
  • 2.
    2/23 Outline Optical Technologies Division •Optical networks team Amplification • Automated amplifier characterizer • Field calibration procedure for distributed Raman amplifiers Reconfigurable Optical Add/Drop Multiplexer (ROADM) • Transient response issues in cascaded WSS-based ROADMs SDN-based dual-optimization application • Adaptive EDFA algorithm • Global WSS equalization algorithm Collaboration activities with UTD • Estimating EDFA Output Power with an Efficient Numerical Modeling Framework • Network-wide signal power control strategies in WDM networks
  • 3.
    3/23 Optical Technologies Divisionat CPqD Technological Trends Transmission and Networks Product Technologies Microelectronics Integrated Photonics Transmission DSP Access Amplification ROADM Networks Hardware Software Firmware Tests Mechanics Requirements Front End Back End Design Alignment Packaging Systems S Y S T E M S D E V I C E STransport Optical networks team
  • 4.
    4/23 Optical networks team 1- Alexandre Daoud de Andrade 2 - Anderson Bravalheri 3 - Benjamin Sarti 4 - Camila de Araujo Souto Diniz 5 - Heitor Silva Carvalho 6 - João Carlos Sampaio Januário 7 - Leonardo Fagundes Luz Serrano 8 - Matheus Smythe Svolenski 9 - Miquel Garrich Alabarce 10 - Uiara Celine de Moura
  • 5.
    5/23 Motivation Bandwidth variable transponders (BVTs) Reconfigurableoptical add-drop multiplexers (ROADMs) Wavelength selective switches (WSSs) Elastic optical networking (EON) Inputs 1 2 3 Drops Adds Outputs 1 2 3 EDFA Splitter WSS
  • 6.
    6/23 Input power Outputpower Measuredparam. Power mask Aux Amp VariableAtt WSS Splitter 50/50 Optical switch OSA 40-CW laser bank Serial GPIB GPIB USB Ethernet Amplifier Automated amplifier characterizer
  • 7.
    7/23 Field calibration procedurefor distributed Raman amplifiers Distributed counter-propagated Raman amplifier Sumbitted to International Microwave and Optoelectronics Conference (IMOC) 2015
  • 8.
    8/23 ROADM activities Rx Tx Reconfigurable opticaladd-drop multiplexer (ROADM) • Wavelength selective switch (WSS) • Optical channel monitor (OCM)
  • 9.
    9/23 Transient response issuesin cascaded ROADMs Higher threshold Lower threshold Target power Transient Failure Convergence Failure Iteration: • Get information • Calculation • Application Operation: • Simultaneous • Independent
  • 10.
    10/23 Transient response feedbackcontrol mechanism Three analyzed controllers 1. Integrative (I) 2. Proportional, integrative and derivative (PID) 3. Proportional double integrative (PII) Techniques to enhance the performance of the controllers 1. Threshold levels 2. Standard deviation (STD) • trigger the actuation on WSS 𝐶I 𝑠 = 𝑘𝑖 𝑠 𝑢[z+1]=𝑢[z]+𝑘1∙𝑒[z] 𝐶PID 𝑠 = 𝑘 𝑝 + 𝑘𝑖 𝑠 + 𝑘 𝑑 ∙ 𝑠 𝑢[z+1]=𝑢[z]+𝑘1∙𝑒[z]+ 𝑘2∙𝑒[z−1]+𝑘3∙𝑒[z−2] 𝐶PII 𝑠 = 𝑘 𝑝 + 𝑘𝑖1 𝑠 + 𝑘𝑖2 𝑠 + 𝛼 𝑢[z+1]=𝑘1∙𝑢[z]+𝑘2∙𝑢[z−1]+𝑘3∙𝑒[z]+ 𝑘4∙𝑒[z−1]+𝑘5∙𝑒[z−2]
  • 11.
    11/23 Node Transient response simulationanalysis Exhaustive approach: Full analysis with all controllers and the enhanced techniques Node IterationsTransient[dB] Number of controllers analyzed: 1. I: 70 2. PID: 4096 3. PII: 4096 1 2 3 4 5 6 7 8 0 2 4 6 1 2 3 4 5 6 7 8 0 3 6 9 12 15 17 I PID PII ISTD PIDSTD PIISTD I PID PII ISTD PIDSTD PIISTD Iteration: • Get information • Calculation • Application
  • 12.
    12/23 Experimental setup • 100kmlinks • Two EDFA per link and per direction • 80 continuous wave lasers • 128Gb/s DP-QPSK channels (at 50GHz) Node 1 Node 2 Node 3 Node 4 Node 5 WSS cardsKEY: EDFA cards SOM/SOD cards Eth. switches 100-km SMF spans ROADM node • SDN controller • EDFA gain configuration • lightpath establishment • NETCONF protocol
  • 13.
    13/23 Iterations Transient response experimentalresults Demonstration the overshoot problem for an I controller (ki = 0.4) without STD enhance technique 5 10 15 20 25 30 -6 -2 2 6 I (sim) I (exp) 5 10 15 20 25 30 -6 -1 4 9 12 I (sim) I (exp) Iterations Node4Node8 Power[dBm]Power[dBm]
  • 14.
    14/23 Iterations Transient response experimentalresults Dynamic power response of the PII controller (kp= 0.05; ki1= 0.1; ki2=0.05) with STD enhance technique for overshoot suppression 5 10 15 20 25 30 -6 -4 -2 0 2 PIISTD (sim) PIISTD (exp) 5 10 15 20 25 30 -6 -4 -2 0 2 PIISTD (sim) PIISTD (exp) Node4Node8 Power[dBm]Power[dBm] Iterations Optical Fiber Communication Conference (OFC) March 2015
  • 15.
    15/23 Adaptive EDFA algorithm Inputpower Outputpower Measuredparam. Power mask Dual-optimization application Tx add ROADM 1 ROADM 3 drop Rx Pin Measurment Gain Search Given: SDN control Apply Gain ROADM 4ROADM 2
  • 16.
    16/23 Local equalization algorithm Dual-optimizationapplication Tx add ROADM 1 ROADM 3 drop Rx ROADM 4ROADM 2 1.53 1.5351.54 1.5451.55 1.5551.56-50 -40 -30 -20 -10 0 10 Wavelength Power 1.53 1.535 1.54 1.545 1.55 1.555 1.56-60 -50 -40 -30 -20 -10 0 10 Wavelength Power 1.531.5351.541.5451.55 1.5551.56-60 -50 -40 -30 -20 -10 0 10 Wavelength Power ‘ 1.53 1.5351.54 1.5451.55 1.5551.56-50 -40 -30 -20 -10 0 10 Wavelength Power 1.53 1.5351.54 1.5451.55 1.5551.56-50 -40 -30 -20 -10 0 10 Wavelength Power 1.53 1.5351.54 1.5451.55 1.5551.56-50 -40 -30 -20 -10 0 10 Wavelength Power
  • 17.
    17/23 Global equalization algorithm Dual-optimizationapplication Tx add ROADM 1 ROADM 3 drop Rx ROADM 4ROADM 2 1.53 1.5351.54 1.5451.55 1.5551.56-50 -40 -30 -20 -10 0 10 Wavelength Power 1.53 1.535 1.54 1.545 1.55 1.555 1.56-60 -50 -40 -30 -20 -10 0 10 Wavelength Power 1.531.5351.541.5451.55 1.5551.56-60 -50 -40 -30 -20 -10 0 10 Wavelength Power 1.53 1.5351.54 1.5451.55 1.5551.56-50 -40 -30 -20 -10 0 10 Wavelength Power     1 2 TOTAL N i i TAA ][minTOTAL wAA TOTAL w  Apply Γ T ≤ allowed tilt? End Yes No Given: N ≥ 2, W, A{1, …, N - 1} , T
  • 18.
    18/23 Dual-optimization application Adaptive EDFAalgorithm Global equalization algorithm     1 2 TOTAL N i i TAA ][minTOTAL wAA TOTAL w  Apply Γ T ≤ allowed tilt? End Yes No Given: N ≥ 2, W, A{1, …, N - 1} , T Input power Outputpower Measuredparam. Power mask Pin Measurment Gain Search Given: SDN control Apply Gain Tx add ROADM 1 ROADM 3 drop Rx ROADM 4ROADM 2
  • 19.
    19/23 Test-bed description (SDNcontroller) • Sub Controler • NETCONF-modeling language YANG models ROADM building blocks and its interconnections (ROADM-plugin) • Application Server • Node abstraction model ApplicationServer SDK-C++ SubController NETCONF / REST REST REST Adaptive EDFA Global WSS Equalization Dual-optimization application SDN controller Node Properties Interfaces Property 1 Property 2 Property N Interface 1 Interface N Property 1 Property 2 Property N ... ... Property 1 Property 2 Property N ... ... Lightpath with: Λ1 = 20 Λ2 = 40 Λ3 = 80
  • 20.
    20/23 1530 1535 15401545 1550 1555 1560 10 15 20 25 30 1530 1535 1540 1545 1550 1555 1560 0 10 20 30 40 Local Local + EDFA Global Global + EDFA Dual-optimization application (experimental results) OSNR(dB) Wavelength (nm) Attenuation(dB) 0 20 40 60 80 100 0 5 10 15 20 25 Local Local + EDFA Global Global + EDFA Number of channels Lightpaths (Λ) 20 40 80 Local 13,7 12,9 11,83 Local+EDFA 19,4 16,58 13,86 Global 19,43 21,52 16,43 Global+EDFA 23,3 23,79 20 Mean OSNR (dB) Wavelength (nm) Optical Fiber Communication Conference (OFC) March 2015
  • 21.
    21/23 International Conference onCommunications (ICC) June 2015 Collaboration activities with UTD Estimating EDFA Output Power with an Efficient Numerical Modeling Framework Input power Outputpower Measuredparam. Power mask Module 1: Finer Spectrum Granularity Module 2: Continuous Input Power Values
  • 22.
    22/23 One of topthree scored papers in Optical Network Design and Modeling (ONDM) May 2015 Collaboration activities with UTD Network-wide signal power control strategies in WDM networks • EDFA gain control • Ideal gain • Fixed gain • Noise Figure (NF)-based gain • WSS power equalization control • Flat output power (FP) • Linear tilted output power (LTP) • Flat OSNR (FOSNR) • Wavelength assignment algorithm • WA: High-to-low frequency First Fit • WA: Low-to-high frequency First Fit Lightpath average OSNR versus offered load WSS: Flat Power equalization, EDFA: Fixed Gain and NF-based gain control. with NF gain control fixed gain
  • 23.
    23/23 Outline / Summary Amplification •Automated amplifier characterizer • Field calibration procedure for distributed Raman amplifiers Reconfigurable Optical Add/Drop Multiplexer (ROADM) • Transient response issues in cascaded WSS-based ROADMs SDN-based dual-optimization application • Adaptive EDFA algorithm • Global WSS equalization algorithm Collaboration activities with UTD • Estimating EDFA Output Power with an Efficient Numerical Modeling Framework • Network-wide signal power control strategies in WDM networks
  • 24.

Editor's Notes

  • #10 Definition of iteration We assume that each ROADM has already a given attenuation for optical power bugdet purpose or channel equalization. So, it justufies a margin to recover from failure and appear a overshoot power. All controllers work simultaneous and independent
  • #11 More details about controllers PII: Our contribution