SlideShare a Scribd company logo
… data warehousing has reached the most
significant tipping point since its inception.
The biggest, possibly most elaborate data
management system in IT is changing.
– Gartner, “The State of Data Warehousing in 2012”
Data sources
5
Data sources
Increasing
data volumes
1
Real-time
data
2
Non-Relational Data
New data
sources & types
3
Cloud-born
data
4
ETL Tool
(SSIS, etc)
EDW
(SQL Svr, Teradata, etc)
Extract
Original Data
Load
Transformed
Data
Transform
BI Tools
Data Marts
Data Lake(s)
Dashboards
Apps
ETL Tool
(SSIS, etc)
EDW
(SQL Svr, Teradata, etc)
Extract
Original Data
Load
Transformed
Data
Transform
BI Tools
Ingest (EL)
Original Data
Data Marts
Data Lake(s)
Dashboards
Apps
ETL Tool
(SSIS, etc)
EDW
(SQL Svr, Teradata, etc)
Extract
Original Data
Load
Transformed
Data
Transform
BI Tools
Ingest (EL)
Original Data
Scale-out
Storage &
Compute
(HDFS, Blob Storage,
etc)
Transform & Load
Data Marts
Data Lake(s)
Dashboards
Apps
Streaming data
ETL Tool
(SSIS, etc)
EDW
(SQL Svr, Teradata, etc)
Extract
Original Data
Load
Transformed
Data
Transform
BI Tools
Ingest (EL)
Original Data
Scale-out
Storage &
Compute
(HDFS, Blob Storage,
etc)
Transform & Load
Data Marts
Data Lake(s)
Dashboards
Apps
Streaming data
BI Tools
Data Marts
Data Lake(s)
Dashboards
Apps
Data Hub
(Storage & Compute)
Data Sources
(Import From)
Move data
among Hubs
Data Hub
(Storage & Compute)
Data Sources
(Import From)
Ingest
Connect & Collect Transform & Enrich Publish
Information Production:
Ingest
Move to data mart, etc
BI Tools
Data Marts
Data Lake(s)
Dashboards
Apps
Data Hub
(Storage & Compute)
Data Sources
(Import From)
Data Connector:
Import from source to
Hub
Data
Connector:
Import/Export
among Hubs
Data Hub
(Storage & Compute)
Data Sources
(Import From)
Data Connector:
Import from source to
Hub
Data Connector:
Export from Hub to data
store
Connect & Collect Transform & Enrich Publish
Information Production:
• Coordination & Scheduling
• Monitoring & Mgmt
• Data Lineage
Example Scenario:
Customer Profiling (game usage analytics)
2277,2013-06-01 02:26:54.3943450,111,164.234.187.32,24.84.225.233,true,8,1,2058
2277,2013-06-01 03:26:23.2240000,111,164.234.187.32,24.84.225.233,true,8,1,2058-2123-2009-2068-2166
2277,2013-06-01 04:22:39.4940000,111,164.234.187.32,24.84.225.233,true,8,1,
2277,2013-06-01 05:43:54.1240000,111,164.234.187.32,24.84.225.233,true,8,1,2058-225545-2309-2068-2166
2277,2013-06-01 06:11:23.9274300,111,164.234.187.32,24.84.225.233,true,8,1,223-2123-2009-4229-9936623
2277,2013-06-01 07:37:01.3962500,111,164.234.187.32,24.84.225.233,true,8,1,
2277,2013-06-01 08:12:03.1109790,111,164.234.187.32,24.84.225.233,true,8,1,234322-2123-2234234-12432-344323
…
Log Files Snippet (10s of TBs per day in cloud storage)
User Table
UserID FirstName LastName State …
2277 Pratik Patel Oregon
664432 Dave Nettleton Washington
8853 Mike Flasko California
New User Activity Per Week By Region
profileid day state duration rank weaponsused interactedwith
1148 6/2/2013Oregon 216 33 1 5
1004 6/2/2013Missouri 22 40 6 2
292 6/1/2013Georgia 201 137 1 5
1059 6/2/2013Oregon 27 104 5 2
675 6/2/2013California 65 164 3 2
1348 6/3/2013Nebraska 21 95 5 2
Data Factory Walkthrough
New-AzureDataFactory
-Name “HaloTelemetry“
-Location “West-US“
New-AzureDataFactory
-Name “GameTelemetry“
-Location “West-US“
New-AzureDataFactoryLinkedService
-Name "MyHDInsightCluster“
-DataFactory“GameTelemetry"
-File HDIResource.json
New-AzureDataFactoryLinkedService
-Name "MyStorageAccount"
-DataFactory“GameTelemetry"
-File BlobResource.json
On Premises SQL Server Azure Blob Storage
1000’s Log FilesNew User View
Azure Data Factory
On Premises SQL Server Azure Blob Storage
1000’s Log FilesNew User View
Azure Data FactoryViewOf
Game Usage
ViewOf
New Users
New User
Activity
ViewOf
On Premises SQL Server Azure Blob Storage
1000’s Log FilesNew User View
Copy “NewUsers” to
Blob Storage
Cloud New
Users
Azure Data FactoryViewOf
Game Usage
ViewOf
New Users
New User
Activity
Pipeline
On Premises SQL Server Azure Blob Storage
1000’s Log FilesNew User View
Copy NewUsers to
Blob Storage
Cloud New
Users
Azure Data FactoryViewOf
Game Usage
ViewOf
Mask & Geo-
Code
New Users
Geo Dictionary
Geo Coded
Game Usage
HDInsight
New User
Activity
Pipeline
Pipeline
On Premises SQL Server Azure Blob Storage
1000’s Log FilesNew User View
Copy NewUsers to
Blob Storage
Cloud New
Users
Azure Data FactoryViewOf
Game Usage
ViewOf
RunsOn
Mask & Geo-
Code
New Users
Geo Dictionary
Geo Coded
Game Usage
Join &
Aggregate
HDInsight
New User
Activity
ViewOf
Pipeline
Pipeline
Pipeline
On Premises SQL Server Azure Blob Storage
1000’s Log FilesNew User View
Copy NewUsers to
Blob Storage
Cloud New
Users
Azure Data FactoryViewOf
Game Usage
ViewOf
RunsOn
Mask & Geo-
Code
New Users
Geo Dictionary
Geo Coded
Game Usage
Join &
Aggregate
HDInsight
New User
Activity
ViewOf
Pipeline
Pipeline
Pipeline
“GeoCoded Game Usage” Table:
Pipeline Definition:
// Deploy Table
New-AzureDataFactoryTable
-DataFactory“GameTelemetry“
-File NewUserActivityPerRegion.json
// Deploy Pipeline
New-AzureDataFactoryPipeline
-DataFactory “GameTelemetry“
-File NewUserTelemetryPipeline.json
// Start Pipeline
Set-AzureDataFactoryPipelineActivePeriod
-Name “NewUserTelemetryPipeline“
-DataFactory “GameTelemetry“
-StartTime 10/29/2014 12:00:00
"availability": { "frequency": "Day", interval": 1 }
Hourly
12-1
1-2
2-3
GameUsageActivity: (e.g. Hive):
Dataset2
Dataset3
Hourly
12-1
1-2
2-3
Daily
Monday
Tuesday
Wednesday
Daily
Monday
Tuesday
Wednesday
Hive
Activity
GameUsage
GeoCodeDictionary
Geo-Coded
GameUsage
• Is my data successfully getting produced?
• Is it produced on time?
• Am I alerted quickly of failures?
• What about troubleshooting information?
• Are there any policy warnings or errors?
Coordination:
• Rich scheduling
• Complex dependencies
• Incremental rerun
Authoring:
• JSON & Powershell/C#
Management:
• Lineage
• Data production policies (late data, rerun, latency, etc)
Hub: Azure Hub (HDInsight + Blob storage)
• Activities: Hive, Pig, C#
• Data Connectors: Blobs, Tables, Azure DB, On Prem SQL Server, MDS [internal]
• Contact me: ChristianCote@IA-TechConsulting.com
www.microsoft.com/learning
http://microsoft.com/technet
http://channel9.msdn.com/Events/TechEd
http://developer.microsoft.com

More Related Content

What's hot

Azure data factory
Azure data factoryAzure data factory
Azure data factory
BizTalk360
 
Azure DocumentDB for Healthcare Integration
Azure DocumentDB for Healthcare IntegrationAzure DocumentDB for Healthcare Integration
Azure DocumentDB for Healthcare Integration
BizTalk360
 
Joins and Other MongoDB 3.2 Aggregation Enhancements
Joins and Other MongoDB 3.2 Aggregation EnhancementsJoins and Other MongoDB 3.2 Aggregation Enhancements
Joins and Other MongoDB 3.2 Aggregation Enhancements
Andrew Morgan
 
NDC Minnesota - Analyzing StackExchange data with Azure Data Lake
NDC Minnesota - Analyzing StackExchange data with Azure Data LakeNDC Minnesota - Analyzing StackExchange data with Azure Data Lake
NDC Minnesota - Analyzing StackExchange data with Azure Data Lake
Tom Kerkhove
 
Elasticsearch 5.0
Elasticsearch 5.0Elasticsearch 5.0
Elasticsearch 5.0
Matias Cascallares
 
Elasticsearch War Stories
Elasticsearch War StoriesElasticsearch War Stories
Elasticsearch War Stories
Arno Broekhof
 
Deep Dive Into Elasticsearch
Deep Dive Into ElasticsearchDeep Dive Into Elasticsearch
Deep Dive Into Elasticsearch
Knoldus Inc.
 
Analyzing twitter data with hadoop
Analyzing twitter data with hadoopAnalyzing twitter data with hadoop
Analyzing twitter data with hadoop
Joey Echeverria
 
Unleash the power of Azure Data Factory
Unleash the power of Azure Data Factory Unleash the power of Azure Data Factory
Unleash the power of Azure Data Factory
Sergio Zenatti Filho
 
Dev411
Dev411Dev411
Dev411
guest2130e
 
An intro to Azure Data Lake
An intro to Azure Data LakeAn intro to Azure Data Lake
An intro to Azure Data Lake
Rick van den Bosch
 
August meetup - All about Apache Druid
August meetup - All about Apache Druid August meetup - All about Apache Druid
August meetup - All about Apache Druid
Imply
 
CouchDB : More Couch
CouchDB : More CouchCouchDB : More Couch
CouchDB : More Couch
delagoya
 
Elasticsearch for beginners
Elasticsearch for beginnersElasticsearch for beginners
Elasticsearch for beginners
Neil Baker
 
Centralized log-management-with-elastic-stack
Centralized log-management-with-elastic-stackCentralized log-management-with-elastic-stack
Centralized log-management-with-elastic-stack
Rich Lee
 
Querying NoSQL with SQL: HAVING Your JSON Cake and SELECTing it too
Querying NoSQL with SQL: HAVING Your JSON Cake and SELECTing it tooQuerying NoSQL with SQL: HAVING Your JSON Cake and SELECTing it too
Querying NoSQL with SQL: HAVING Your JSON Cake and SELECTing it too
All Things Open
 
Elasticsearch - under the hood
Elasticsearch - under the hoodElasticsearch - under the hood
Elasticsearch - under the hood
SmartCat
 
Introduction to Elasticsearch
Introduction to ElasticsearchIntroduction to Elasticsearch
Introduction to Elasticsearch
Ruslan Zavacky
 
Side by Side with Elasticsearch and Solr
Side by Side with Elasticsearch and SolrSide by Side with Elasticsearch and Solr
Side by Side with Elasticsearch and Solr
Sematext Group, Inc.
 
Lessons Learned: Understanding Azure Data Factory Pricing (Microsoft Ignite 2...
Lessons Learned: Understanding Azure Data Factory Pricing (Microsoft Ignite 2...Lessons Learned: Understanding Azure Data Factory Pricing (Microsoft Ignite 2...
Lessons Learned: Understanding Azure Data Factory Pricing (Microsoft Ignite 2...
Cathrine Wilhelmsen
 

What's hot (20)

Azure data factory
Azure data factoryAzure data factory
Azure data factory
 
Azure DocumentDB for Healthcare Integration
Azure DocumentDB for Healthcare IntegrationAzure DocumentDB for Healthcare Integration
Azure DocumentDB for Healthcare Integration
 
Joins and Other MongoDB 3.2 Aggregation Enhancements
Joins and Other MongoDB 3.2 Aggregation EnhancementsJoins and Other MongoDB 3.2 Aggregation Enhancements
Joins and Other MongoDB 3.2 Aggregation Enhancements
 
NDC Minnesota - Analyzing StackExchange data with Azure Data Lake
NDC Minnesota - Analyzing StackExchange data with Azure Data LakeNDC Minnesota - Analyzing StackExchange data with Azure Data Lake
NDC Minnesota - Analyzing StackExchange data with Azure Data Lake
 
Elasticsearch 5.0
Elasticsearch 5.0Elasticsearch 5.0
Elasticsearch 5.0
 
Elasticsearch War Stories
Elasticsearch War StoriesElasticsearch War Stories
Elasticsearch War Stories
 
Deep Dive Into Elasticsearch
Deep Dive Into ElasticsearchDeep Dive Into Elasticsearch
Deep Dive Into Elasticsearch
 
Analyzing twitter data with hadoop
Analyzing twitter data with hadoopAnalyzing twitter data with hadoop
Analyzing twitter data with hadoop
 
Unleash the power of Azure Data Factory
Unleash the power of Azure Data Factory Unleash the power of Azure Data Factory
Unleash the power of Azure Data Factory
 
Dev411
Dev411Dev411
Dev411
 
An intro to Azure Data Lake
An intro to Azure Data LakeAn intro to Azure Data Lake
An intro to Azure Data Lake
 
August meetup - All about Apache Druid
August meetup - All about Apache Druid August meetup - All about Apache Druid
August meetup - All about Apache Druid
 
CouchDB : More Couch
CouchDB : More CouchCouchDB : More Couch
CouchDB : More Couch
 
Elasticsearch for beginners
Elasticsearch for beginnersElasticsearch for beginners
Elasticsearch for beginners
 
Centralized log-management-with-elastic-stack
Centralized log-management-with-elastic-stackCentralized log-management-with-elastic-stack
Centralized log-management-with-elastic-stack
 
Querying NoSQL with SQL: HAVING Your JSON Cake and SELECTing it too
Querying NoSQL with SQL: HAVING Your JSON Cake and SELECTing it tooQuerying NoSQL with SQL: HAVING Your JSON Cake and SELECTing it too
Querying NoSQL with SQL: HAVING Your JSON Cake and SELECTing it too
 
Elasticsearch - under the hood
Elasticsearch - under the hoodElasticsearch - under the hood
Elasticsearch - under the hood
 
Introduction to Elasticsearch
Introduction to ElasticsearchIntroduction to Elasticsearch
Introduction to Elasticsearch
 
Side by Side with Elasticsearch and Solr
Side by Side with Elasticsearch and SolrSide by Side with Elasticsearch and Solr
Side by Side with Elasticsearch and Solr
 
Lessons Learned: Understanding Azure Data Factory Pricing (Microsoft Ignite 2...
Lessons Learned: Understanding Azure Data Factory Pricing (Microsoft Ignite 2...Lessons Learned: Understanding Azure Data Factory Pricing (Microsoft Ignite 2...
Lessons Learned: Understanding Azure Data Factory Pricing (Microsoft Ignite 2...
 

Similar to Adf walkthrough

Adf dw walkthrough
Adf dw walkthroughAdf dw walkthrough
Adf dw walkthrough
MSDEVMTL
 
Data Analytics Meetup: Introduction to Azure Data Lake Storage
Data Analytics Meetup: Introduction to Azure Data Lake Storage Data Analytics Meetup: Introduction to Azure Data Lake Storage
Data Analytics Meetup: Introduction to Azure Data Lake Storage
CCG
 
Azure Stream Analytics : Analyse Data in Motion
Azure Stream Analytics  : Analyse Data in MotionAzure Stream Analytics  : Analyse Data in Motion
Azure Stream Analytics : Analyse Data in Motion
Ruhani Arora
 
Lighthouse - an open-source library to build data lakes - Kris Peeters
Lighthouse - an open-source library to build data lakes - Kris PeetersLighthouse - an open-source library to build data lakes - Kris Peeters
Lighthouse - an open-source library to build data lakes - Kris Peeters
Data Science Leuven
 
Azure datafactory
Azure datafactoryAzure datafactory
Azure datafactory
Dimko Zhluktenko
 
تقنيات البيانات الضخمة.pptx
تقنيات البيانات الضخمة.pptxتقنيات البيانات الضخمة.pptx
تقنيات البيانات الضخمة.pptx
Fahad Alamoudi
 
Datalake Architecture
Datalake ArchitectureDatalake Architecture
Databricks Platform.pptx
Databricks Platform.pptxDatabricks Platform.pptx
Databricks Platform.pptx
Alex Ivy
 
Collaborate 2011– Leveraging and Enriching the Capabilities of Oracle Databas...
Collaborate 2011– Leveraging and Enriching the Capabilities of Oracle Databas...Collaborate 2011– Leveraging and Enriching the Capabilities of Oracle Databas...
Collaborate 2011– Leveraging and Enriching the Capabilities of Oracle Databas...
djkucera
 
Designing big data analytics solutions on azure
Designing big data analytics solutions on azureDesigning big data analytics solutions on azure
Designing big data analytics solutions on azure
Mohamed Tawfik
 
Building a Data Lake on AWS
Building a Data Lake on AWSBuilding a Data Lake on AWS
Building a Data Lake on AWS
Gary Stafford
 
Microsoft Ignite AU 2017 - Orchestrating Big Data Pipelines with Azure Data F...
Microsoft Ignite AU 2017 - Orchestrating Big Data Pipelines with Azure Data F...Microsoft Ignite AU 2017 - Orchestrating Big Data Pipelines with Azure Data F...
Microsoft Ignite AU 2017 - Orchestrating Big Data Pipelines with Azure Data F...
Lace Lofranco
 
Modern Data Warehousing with the Microsoft Analytics Platform System
Modern Data Warehousing with the Microsoft Analytics Platform SystemModern Data Warehousing with the Microsoft Analytics Platform System
Modern Data Warehousing with the Microsoft Analytics Platform System
James Serra
 
IT Summit - Modernizing Enterprise Analytics: the IT Story
IT Summit - Modernizing Enterprise Analytics: the IT StoryIT Summit - Modernizing Enterprise Analytics: the IT Story
IT Summit - Modernizing Enterprise Analytics: the IT Story
Tableau Software
 
Innovation Track AWS Cloud Experience Argentina - Data Lakes & Analytics en AWS
Innovation Track AWS Cloud Experience Argentina - Data Lakes & Analytics en AWS Innovation Track AWS Cloud Experience Argentina - Data Lakes & Analytics en AWS
Innovation Track AWS Cloud Experience Argentina - Data Lakes & Analytics en AWS
Amazon Web Services LATAM
 
Users as Data
Users as DataUsers as Data
Users as Data
pdingles
 
Samedi SQL Québec - La plateforme data de Azure
Samedi SQL Québec - La plateforme data de AzureSamedi SQL Québec - La plateforme data de Azure
Samedi SQL Québec - La plateforme data de Azure
MSDEVMTL
 
Big Data Analytics from Azure Cloud to Power BI Mobile
Big Data Analytics from Azure Cloud to Power BI MobileBig Data Analytics from Azure Cloud to Power BI Mobile
Big Data Analytics from Azure Cloud to Power BI Mobile
Roy Kim
 
Azure Data Lake Intro (SQLBits 2016)
Azure Data Lake Intro (SQLBits 2016)Azure Data Lake Intro (SQLBits 2016)
Azure Data Lake Intro (SQLBits 2016)
Michael Rys
 
Making Apache Spark Better with Delta Lake
Making Apache Spark Better with Delta LakeMaking Apache Spark Better with Delta Lake
Making Apache Spark Better with Delta Lake
Databricks
 

Similar to Adf walkthrough (20)

Adf dw walkthrough
Adf dw walkthroughAdf dw walkthrough
Adf dw walkthrough
 
Data Analytics Meetup: Introduction to Azure Data Lake Storage
Data Analytics Meetup: Introduction to Azure Data Lake Storage Data Analytics Meetup: Introduction to Azure Data Lake Storage
Data Analytics Meetup: Introduction to Azure Data Lake Storage
 
Azure Stream Analytics : Analyse Data in Motion
Azure Stream Analytics  : Analyse Data in MotionAzure Stream Analytics  : Analyse Data in Motion
Azure Stream Analytics : Analyse Data in Motion
 
Lighthouse - an open-source library to build data lakes - Kris Peeters
Lighthouse - an open-source library to build data lakes - Kris PeetersLighthouse - an open-source library to build data lakes - Kris Peeters
Lighthouse - an open-source library to build data lakes - Kris Peeters
 
Azure datafactory
Azure datafactoryAzure datafactory
Azure datafactory
 
تقنيات البيانات الضخمة.pptx
تقنيات البيانات الضخمة.pptxتقنيات البيانات الضخمة.pptx
تقنيات البيانات الضخمة.pptx
 
Datalake Architecture
Datalake ArchitectureDatalake Architecture
Datalake Architecture
 
Databricks Platform.pptx
Databricks Platform.pptxDatabricks Platform.pptx
Databricks Platform.pptx
 
Collaborate 2011– Leveraging and Enriching the Capabilities of Oracle Databas...
Collaborate 2011– Leveraging and Enriching the Capabilities of Oracle Databas...Collaborate 2011– Leveraging and Enriching the Capabilities of Oracle Databas...
Collaborate 2011– Leveraging and Enriching the Capabilities of Oracle Databas...
 
Designing big data analytics solutions on azure
Designing big data analytics solutions on azureDesigning big data analytics solutions on azure
Designing big data analytics solutions on azure
 
Building a Data Lake on AWS
Building a Data Lake on AWSBuilding a Data Lake on AWS
Building a Data Lake on AWS
 
Microsoft Ignite AU 2017 - Orchestrating Big Data Pipelines with Azure Data F...
Microsoft Ignite AU 2017 - Orchestrating Big Data Pipelines with Azure Data F...Microsoft Ignite AU 2017 - Orchestrating Big Data Pipelines with Azure Data F...
Microsoft Ignite AU 2017 - Orchestrating Big Data Pipelines with Azure Data F...
 
Modern Data Warehousing with the Microsoft Analytics Platform System
Modern Data Warehousing with the Microsoft Analytics Platform SystemModern Data Warehousing with the Microsoft Analytics Platform System
Modern Data Warehousing with the Microsoft Analytics Platform System
 
IT Summit - Modernizing Enterprise Analytics: the IT Story
IT Summit - Modernizing Enterprise Analytics: the IT StoryIT Summit - Modernizing Enterprise Analytics: the IT Story
IT Summit - Modernizing Enterprise Analytics: the IT Story
 
Innovation Track AWS Cloud Experience Argentina - Data Lakes & Analytics en AWS
Innovation Track AWS Cloud Experience Argentina - Data Lakes & Analytics en AWS Innovation Track AWS Cloud Experience Argentina - Data Lakes & Analytics en AWS
Innovation Track AWS Cloud Experience Argentina - Data Lakes & Analytics en AWS
 
Users as Data
Users as DataUsers as Data
Users as Data
 
Samedi SQL Québec - La plateforme data de Azure
Samedi SQL Québec - La plateforme data de AzureSamedi SQL Québec - La plateforme data de Azure
Samedi SQL Québec - La plateforme data de Azure
 
Big Data Analytics from Azure Cloud to Power BI Mobile
Big Data Analytics from Azure Cloud to Power BI MobileBig Data Analytics from Azure Cloud to Power BI Mobile
Big Data Analytics from Azure Cloud to Power BI Mobile
 
Azure Data Lake Intro (SQLBits 2016)
Azure Data Lake Intro (SQLBits 2016)Azure Data Lake Intro (SQLBits 2016)
Azure Data Lake Intro (SQLBits 2016)
 
Making Apache Spark Better with Delta Lake
Making Apache Spark Better with Delta LakeMaking Apache Spark Better with Delta Lake
Making Apache Spark Better with Delta Lake
 

More from MSDEVMTL

Intro grpc.net
Intro  grpc.netIntro  grpc.net
Intro grpc.net
MSDEVMTL
 
Grpc and asp.net partie 2
Grpc and asp.net partie 2Grpc and asp.net partie 2
Grpc and asp.net partie 2
MSDEVMTL
 
Property based testing
Property based testingProperty based testing
Property based testing
MSDEVMTL
 
Improve cloud visibility and cost in Microsoft Azure
Improve cloud visibility and cost in Microsoft AzureImprove cloud visibility and cost in Microsoft Azure
Improve cloud visibility and cost in Microsoft Azure
MSDEVMTL
 
Return on Ignite 2019: Azure, .NET, A.I. & Data
Return on Ignite 2019: Azure, .NET, A.I. & DataReturn on Ignite 2019: Azure, .NET, A.I. & Data
Return on Ignite 2019: Azure, .NET, A.I. & Data
MSDEVMTL
 
C sharp 8.0 new features
C sharp 8.0 new featuresC sharp 8.0 new features
C sharp 8.0 new features
MSDEVMTL
 
Asp.net core 3
Asp.net core 3Asp.net core 3
Asp.net core 3
MSDEVMTL
 
MSDEVMTL Informations 2019
MSDEVMTL Informations 2019MSDEVMTL Informations 2019
MSDEVMTL Informations 2019
MSDEVMTL
 
Common features in webapi aspnetcore
Common features in webapi aspnetcoreCommon features in webapi aspnetcore
Common features in webapi aspnetcore
MSDEVMTL
 
Groupe Excel et Power BI - Rencontre du 25 septembre 2018
Groupe Excel et Power BI  - Rencontre du 25 septembre 2018Groupe Excel et Power BI  - Rencontre du 25 septembre 2018
Groupe Excel et Power BI - Rencontre du 25 septembre 2018
MSDEVMTL
 
Api gateway
Api gatewayApi gateway
Api gateway
MSDEVMTL
 
Common features in webapi aspnetcore
Common features in webapi aspnetcoreCommon features in webapi aspnetcore
Common features in webapi aspnetcore
MSDEVMTL
 
Stephane Lapointe: Governance in Azure, keep control of your environments
Stephane Lapointe: Governance in Azure, keep control of your environmentsStephane Lapointe: Governance in Azure, keep control of your environments
Stephane Lapointe: Governance in Azure, keep control of your environments
MSDEVMTL
 
Eric Routhier: Garder le contrôle sur vos coûts Azure
Eric Routhier: Garder le contrôle sur vos coûts AzureEric Routhier: Garder le contrôle sur vos coûts Azure
Eric Routhier: Garder le contrôle sur vos coûts Azure
MSDEVMTL
 
Data science presentation
Data science presentationData science presentation
Data science presentation
MSDEVMTL
 
Michel Ouellette + Gabriel Lainesse: Process Automation & Data Analytics at S...
Michel Ouellette + Gabriel Lainesse: Process Automation & Data Analytics at S...Michel Ouellette + Gabriel Lainesse: Process Automation & Data Analytics at S...
Michel Ouellette + Gabriel Lainesse: Process Automation & Data Analytics at S...
MSDEVMTL
 
Open id connect, azure ad, angular 5, web api core
Open id connect, azure ad, angular 5, web api coreOpen id connect, azure ad, angular 5, web api core
Open id connect, azure ad, angular 5, web api core
MSDEVMTL
 
Yoann Clombe : Fail fast, iterate quickly with power bi and google analytics
Yoann Clombe : Fail fast, iterate quickly with power bi and google analyticsYoann Clombe : Fail fast, iterate quickly with power bi and google analytics
Yoann Clombe : Fail fast, iterate quickly with power bi and google analytics
MSDEVMTL
 
CAE: etude de cas - Rolling Average
CAE: etude de cas - Rolling AverageCAE: etude de cas - Rolling Average
CAE: etude de cas - Rolling Average
MSDEVMTL
 
CAE: etude de cas
CAE: etude de casCAE: etude de cas
CAE: etude de cas
MSDEVMTL
 

More from MSDEVMTL (20)

Intro grpc.net
Intro  grpc.netIntro  grpc.net
Intro grpc.net
 
Grpc and asp.net partie 2
Grpc and asp.net partie 2Grpc and asp.net partie 2
Grpc and asp.net partie 2
 
Property based testing
Property based testingProperty based testing
Property based testing
 
Improve cloud visibility and cost in Microsoft Azure
Improve cloud visibility and cost in Microsoft AzureImprove cloud visibility and cost in Microsoft Azure
Improve cloud visibility and cost in Microsoft Azure
 
Return on Ignite 2019: Azure, .NET, A.I. & Data
Return on Ignite 2019: Azure, .NET, A.I. & DataReturn on Ignite 2019: Azure, .NET, A.I. & Data
Return on Ignite 2019: Azure, .NET, A.I. & Data
 
C sharp 8.0 new features
C sharp 8.0 new featuresC sharp 8.0 new features
C sharp 8.0 new features
 
Asp.net core 3
Asp.net core 3Asp.net core 3
Asp.net core 3
 
MSDEVMTL Informations 2019
MSDEVMTL Informations 2019MSDEVMTL Informations 2019
MSDEVMTL Informations 2019
 
Common features in webapi aspnetcore
Common features in webapi aspnetcoreCommon features in webapi aspnetcore
Common features in webapi aspnetcore
 
Groupe Excel et Power BI - Rencontre du 25 septembre 2018
Groupe Excel et Power BI  - Rencontre du 25 septembre 2018Groupe Excel et Power BI  - Rencontre du 25 septembre 2018
Groupe Excel et Power BI - Rencontre du 25 septembre 2018
 
Api gateway
Api gatewayApi gateway
Api gateway
 
Common features in webapi aspnetcore
Common features in webapi aspnetcoreCommon features in webapi aspnetcore
Common features in webapi aspnetcore
 
Stephane Lapointe: Governance in Azure, keep control of your environments
Stephane Lapointe: Governance in Azure, keep control of your environmentsStephane Lapointe: Governance in Azure, keep control of your environments
Stephane Lapointe: Governance in Azure, keep control of your environments
 
Eric Routhier: Garder le contrôle sur vos coûts Azure
Eric Routhier: Garder le contrôle sur vos coûts AzureEric Routhier: Garder le contrôle sur vos coûts Azure
Eric Routhier: Garder le contrôle sur vos coûts Azure
 
Data science presentation
Data science presentationData science presentation
Data science presentation
 
Michel Ouellette + Gabriel Lainesse: Process Automation & Data Analytics at S...
Michel Ouellette + Gabriel Lainesse: Process Automation & Data Analytics at S...Michel Ouellette + Gabriel Lainesse: Process Automation & Data Analytics at S...
Michel Ouellette + Gabriel Lainesse: Process Automation & Data Analytics at S...
 
Open id connect, azure ad, angular 5, web api core
Open id connect, azure ad, angular 5, web api coreOpen id connect, azure ad, angular 5, web api core
Open id connect, azure ad, angular 5, web api core
 
Yoann Clombe : Fail fast, iterate quickly with power bi and google analytics
Yoann Clombe : Fail fast, iterate quickly with power bi and google analyticsYoann Clombe : Fail fast, iterate quickly with power bi and google analytics
Yoann Clombe : Fail fast, iterate quickly with power bi and google analytics
 
CAE: etude de cas - Rolling Average
CAE: etude de cas - Rolling AverageCAE: etude de cas - Rolling Average
CAE: etude de cas - Rolling Average
 
CAE: etude de cas
CAE: etude de casCAE: etude de cas
CAE: etude de cas
 

Recently uploaded

GNSS spoofing via SDR (Criptored Talks 2024)
GNSS spoofing via SDR (Criptored Talks 2024)GNSS spoofing via SDR (Criptored Talks 2024)
GNSS spoofing via SDR (Criptored Talks 2024)
Javier Junquera
 
"Frontline Battles with DDoS: Best practices and Lessons Learned", Igor Ivaniuk
"Frontline Battles with DDoS: Best practices and Lessons Learned",  Igor Ivaniuk"Frontline Battles with DDoS: Best practices and Lessons Learned",  Igor Ivaniuk
"Frontline Battles with DDoS: Best practices and Lessons Learned", Igor Ivaniuk
Fwdays
 
Christine's Supplier Sourcing Presentaion.pptx
Christine's Supplier Sourcing Presentaion.pptxChristine's Supplier Sourcing Presentaion.pptx
Christine's Supplier Sourcing Presentaion.pptx
christinelarrosa
 
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
Edge AI and Vision Alliance
 
inQuba Webinar Mastering Customer Journey Management with Dr Graham Hill
inQuba Webinar Mastering Customer Journey Management with Dr Graham HillinQuba Webinar Mastering Customer Journey Management with Dr Graham Hill
inQuba Webinar Mastering Customer Journey Management with Dr Graham Hill
LizaNolte
 
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
Alex Pruden
 
LF Energy Webinar: Carbon Data Specifications: Mechanisms to Improve Data Acc...
LF Energy Webinar: Carbon Data Specifications: Mechanisms to Improve Data Acc...LF Energy Webinar: Carbon Data Specifications: Mechanisms to Improve Data Acc...
LF Energy Webinar: Carbon Data Specifications: Mechanisms to Improve Data Acc...
DanBrown980551
 
Fueling AI with Great Data with Airbyte Webinar
Fueling AI with Great Data with Airbyte WebinarFueling AI with Great Data with Airbyte Webinar
Fueling AI with Great Data with Airbyte Webinar
Zilliz
 
PRODUCT LISTING OPTIMIZATION PRESENTATION.pptx
PRODUCT LISTING OPTIMIZATION PRESENTATION.pptxPRODUCT LISTING OPTIMIZATION PRESENTATION.pptx
PRODUCT LISTING OPTIMIZATION PRESENTATION.pptx
christinelarrosa
 
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdfHow to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
Chart Kalyan
 
Y-Combinator seed pitch deck template PP
Y-Combinator seed pitch deck template PPY-Combinator seed pitch deck template PP
Y-Combinator seed pitch deck template PP
c5vrf27qcz
 
Apps Break Data
Apps Break DataApps Break Data
Apps Break Data
Ivo Velitchkov
 
Nordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptxNordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptx
MichaelKnudsen27
 
Freshworks Rethinks NoSQL for Rapid Scaling & Cost-Efficiency
Freshworks Rethinks NoSQL for Rapid Scaling & Cost-EfficiencyFreshworks Rethinks NoSQL for Rapid Scaling & Cost-Efficiency
Freshworks Rethinks NoSQL for Rapid Scaling & Cost-Efficiency
ScyllaDB
 
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge GraphGraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
Neo4j
 
Essentials of Automations: Exploring Attributes & Automation Parameters
Essentials of Automations: Exploring Attributes & Automation ParametersEssentials of Automations: Exploring Attributes & Automation Parameters
Essentials of Automations: Exploring Attributes & Automation Parameters
Safe Software
 
A Deep Dive into ScyllaDB's Architecture
A Deep Dive into ScyllaDB's ArchitectureA Deep Dive into ScyllaDB's Architecture
A Deep Dive into ScyllaDB's Architecture
ScyllaDB
 
Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)
Jakub Marek
 
Dandelion Hashtable: beyond billion requests per second on a commodity server
Dandelion Hashtable: beyond billion requests per second on a commodity serverDandelion Hashtable: beyond billion requests per second on a commodity server
Dandelion Hashtable: beyond billion requests per second on a commodity server
Antonios Katsarakis
 
High performance Serverless Java on AWS- GoTo Amsterdam 2024
High performance Serverless Java on AWS- GoTo Amsterdam 2024High performance Serverless Java on AWS- GoTo Amsterdam 2024
High performance Serverless Java on AWS- GoTo Amsterdam 2024
Vadym Kazulkin
 

Recently uploaded (20)

GNSS spoofing via SDR (Criptored Talks 2024)
GNSS spoofing via SDR (Criptored Talks 2024)GNSS spoofing via SDR (Criptored Talks 2024)
GNSS spoofing via SDR (Criptored Talks 2024)
 
"Frontline Battles with DDoS: Best practices and Lessons Learned", Igor Ivaniuk
"Frontline Battles with DDoS: Best practices and Lessons Learned",  Igor Ivaniuk"Frontline Battles with DDoS: Best practices and Lessons Learned",  Igor Ivaniuk
"Frontline Battles with DDoS: Best practices and Lessons Learned", Igor Ivaniuk
 
Christine's Supplier Sourcing Presentaion.pptx
Christine's Supplier Sourcing Presentaion.pptxChristine's Supplier Sourcing Presentaion.pptx
Christine's Supplier Sourcing Presentaion.pptx
 
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
 
inQuba Webinar Mastering Customer Journey Management with Dr Graham Hill
inQuba Webinar Mastering Customer Journey Management with Dr Graham HillinQuba Webinar Mastering Customer Journey Management with Dr Graham Hill
inQuba Webinar Mastering Customer Journey Management with Dr Graham Hill
 
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
 
LF Energy Webinar: Carbon Data Specifications: Mechanisms to Improve Data Acc...
LF Energy Webinar: Carbon Data Specifications: Mechanisms to Improve Data Acc...LF Energy Webinar: Carbon Data Specifications: Mechanisms to Improve Data Acc...
LF Energy Webinar: Carbon Data Specifications: Mechanisms to Improve Data Acc...
 
Fueling AI with Great Data with Airbyte Webinar
Fueling AI with Great Data with Airbyte WebinarFueling AI with Great Data with Airbyte Webinar
Fueling AI with Great Data with Airbyte Webinar
 
PRODUCT LISTING OPTIMIZATION PRESENTATION.pptx
PRODUCT LISTING OPTIMIZATION PRESENTATION.pptxPRODUCT LISTING OPTIMIZATION PRESENTATION.pptx
PRODUCT LISTING OPTIMIZATION PRESENTATION.pptx
 
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdfHow to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
 
Y-Combinator seed pitch deck template PP
Y-Combinator seed pitch deck template PPY-Combinator seed pitch deck template PP
Y-Combinator seed pitch deck template PP
 
Apps Break Data
Apps Break DataApps Break Data
Apps Break Data
 
Nordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptxNordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptx
 
Freshworks Rethinks NoSQL for Rapid Scaling & Cost-Efficiency
Freshworks Rethinks NoSQL for Rapid Scaling & Cost-EfficiencyFreshworks Rethinks NoSQL for Rapid Scaling & Cost-Efficiency
Freshworks Rethinks NoSQL for Rapid Scaling & Cost-Efficiency
 
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge GraphGraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
 
Essentials of Automations: Exploring Attributes & Automation Parameters
Essentials of Automations: Exploring Attributes & Automation ParametersEssentials of Automations: Exploring Attributes & Automation Parameters
Essentials of Automations: Exploring Attributes & Automation Parameters
 
A Deep Dive into ScyllaDB's Architecture
A Deep Dive into ScyllaDB's ArchitectureA Deep Dive into ScyllaDB's Architecture
A Deep Dive into ScyllaDB's Architecture
 
Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)
 
Dandelion Hashtable: beyond billion requests per second on a commodity server
Dandelion Hashtable: beyond billion requests per second on a commodity serverDandelion Hashtable: beyond billion requests per second on a commodity server
Dandelion Hashtable: beyond billion requests per second on a commodity server
 
High performance Serverless Java on AWS- GoTo Amsterdam 2024
High performance Serverless Java on AWS- GoTo Amsterdam 2024High performance Serverless Java on AWS- GoTo Amsterdam 2024
High performance Serverless Java on AWS- GoTo Amsterdam 2024
 

Adf walkthrough