SlideShare a Scribd company logo
© Fraunhofer
TOWARD A TAXONOMY OF THE DATA
RESOURCE IN THE NETWORKED INDUSTRY
Boris Otto, Rene Abraham, Simon Schlosser
Cologne, June 5, 2014
© Fraunhofer
AGENDA
 Data in the Networked Industry
 Research Approach
 Case Studies on Data in the Networked Industry
 Data Morphology Design
 Method Support
 Outlook
© Fraunhofer
A set of current developments foster the adoption of
networked forms of organization in many industries
Globalization
Internet of Things
Consumer-Centricity
Product Complexity
Networked
Forms of
Organization
© Fraunhofer
The role of data has evolved from a by-product to a
product in its own right traded on data markets
Factual InfoChimps Windows Azure
Data Market
Data.com
Year of
Foundation
2007 2009 2010 2010 (formerly
Jigsaw, 2004)
Owner Venture capital
firms
CSC Microsoft Salesforce.com
Offering Open data
platform, API use
for free or at a
charge.
15,000 data sets,
open data platform,
four
different pricing
models, web service.
Wide range of data,
including open data
platform. Buying and
selling data via
Azure marketplace.
Data sets for
increasing master
data quality,
maintained by
community of
2.000.000 users.
Services Data mining, data
retrieval, data
acquisition from
external parties.
Data collection,
infrastructure
development,
hosting and
distribution.
Software as a Service
(SaaS) applications
and data sets,
partially real-time
access.
Different service and
pricing models.
Access to contact
information, real-
time updated data
sets.
© Fraunhofer
Companies in the networked industry struggle with
finding an appropriate data architecture
Data in the outer circles is of higher
“fuzziness”, volume, change frequency…
Data in the outer circles is of less
control, criticality, unambiguity…
“Nucleus Data”
(Customer master
data, product
master data etc.)
“Community
Data”
(Geo-information,
GTIN, addresses,
ISO codes, GS1
data etc.)
“Open Big Data”
(Tweets, social media
streams, sensor data
etc.)
Megabytes
Gigabytes
Terabytes
Petabytes
© Fraunhofer
The scientific knowledge base falls short in explaining
the role of data in the networked industry
Networked Industry
Perspective
Selected Contributions with Data Focus Summary of Knowledge Base
Enterprise (Addo-Tenkorang, Helo, Shamsuzzoha, Ehrs &
Phuong, 2012), (Bettoni, Alge, Rovere,
Pedrazzoli & Canetta, 2012), (Legner &
Schemm, 2008)
Data modeling in supply chains
Supply chain data management
Network (Howard, Vidgen, Powell & Graves, 2001),
(Lampathaki, Mouzakitis, Gionis, Charalabidis &
Askounis, 2009), (Legner & Schemm, 2008),
(Nelson, Shaw & Qualls, 2005)
Data and information sharing
Data standards
Interoperability
Technology (Chalasani & Boppana, 2007), (D'Amours,
Lefrançois & Montreuil, 1996), (Derakshan et
al., 2007), (Dreibelbis et al., 2008), (Parlanti,
Paganelli & Giuli, 2011) (Wang & Jin, 2008)
Data as a service (SOA)
Information systems design
RFID data architecture design
© Fraunhofer
The goal to increase understanding of data in the
networked industry translates in two research questions
Research Question 1
 How does a morphology of the data resource in the networked industry
look like?
Research Question 2
 How should a methodology be designed that helps companies in the
networked industry to apply the morphology for data architecture
design?
© Fraunhofer
The explorative and design-oriented approach follows a
two-phased research process
Phase IIPhase I
Literature
Review:
DRM/DAM
Case Analysis
Morphology
Analysis and
Design
Literature
Review: DRM
Method
Engineering
Method for
Morphology
Application
Legend: DRM - Data Resource Management; DAM - Data Architecture Management.
© Fraunhofer
Four cases were analyzed for morphology analysis and
design
Case A B C D
Perspective Consumer-Centricity Supply Chain
Excellence, IoT
Purchasing Electronic
commerce
Industry Consumer goods
and retail
Consumer goods
and retail
Pharmaceutical,
chemical, food
Online retailing
Data objects in
focus
Suppliers, retailers,
products, consumers
Suppliers, retailers,
load carrier
Suppliers Customers,
products
Case study partners Beiersdorf, Migros Mars, Rewe, Chep Bayer, Nestlé,
Novartis, Syngenta
Amazon
Data collection and
analysis
Interviews
Participatory case
study
Expert interviews
Case study
Interviews, focus
groups, data
overlap analysis
Participatory case
study
Archival records,
public
documentation
Case Study
Project context Competence Center
Corporate Data
Quality
SmaRTI Corporate Data
League
-
© Fraunhofer
In Case A, Beiersdorf analyzed the betweenness of
product data flows in its network
Agency
Consumer information provider
Brand
owner
Consumer
Retailer
Consumer
Agency
Consumer
information provider
Consumer technology
provider
GDSN
Social
network
Online
retailer
Brand
owner
Retailer
web shop
Forum &
Blogs
2007 2012
Legend: GDSN - Global Data Synchronisation Network.
Media
© Fraunhofer
Analysis of Case A revealed shortcomings when it comes
to managing data in a networked industry
 Today, the label drives product data management
 Carbon foot print information or allergen implications not considered
 Product data quality differs
 High quality in supply chain data, low quality with regard to product
information
 Data sources are not transparent when controlled by the consumer
(ratings, blogs, posts about products etc.).
 Variety of data formats increases (videos, streams, images etc.)
© Fraunhofer
Case B analyzes the consumer goods supply chain in the
context of the SmaRTI project
Cloud-based data service for data aggregation
and provisioning etc.
 Cloud-based
 Service-oriented
 Standardized
Intelligent load carriers such as
 Retail pallets
 Air cargo pallets
Process modeling following Internet
of Things design principles
 Self-controlled
 Decentralized
Internet of Service
 Data marketplace
 Business intelligence
 Apps
© Fraunhofer
Analysis of Case B revealed shortcomings when it comes
to managing data in a networked industry
 Collaborative environment needed to collect, aggregate, analyze data
from EPCIS events
 Value network-wide standardization of data formats and semantics
needed
 Traditional design principles for application systems becoming obsolete
 Maintaining pallets as stock items
 Real-time data availability on item level conflicts with standard
document flow
 Ownership of collaborative data unclear
 Integration of structured ECPIS data and value-added PoS and
multimedia data not clear
Legend: EPCIS - Electronic Product Code Information Services; PoS - Point-of-Sale.
© Fraunhofer
The data morphology for the networked industry covers
various dimensions
Dimension Characteristics
Business criticality Competitive advantage Compliance relevant Operations relevant
Data classification Private Public Purpose-related
Data domain type Account Party Thing Other
Data format ASCII Audio JPEG Video Numeric XML
Data management level Class Instantiation
Data occurrence Batch Stream
Data ownership Owned by one legal entity “Club” good Public good
Data quality Authoritative Within tolerance, fuzzy Below thresholds
Data source Internal External
Data standardization Semantics Syntax Values
Data trustworthiness Not trusted Trusted
Data sharing Open Free Proprietary
Data maintenance costs Low Medium High
© Fraunhofer
Phase I: Identify domain and scope
A method provides methodological support for applying
the morphology in practice
 Design data architecture
 Create transparency
 Managing risks
 Find data management
patterns
Activities Results Roles
I.1 Define scope
I.2 Identify data
objects and items
Phase III: Design
Phase II: Analyze
II.1 Create
transparency
II.2 Analyze
and assess
III.1 Derive design
requirements
III.1 Design data
architecture
Identified data domain
and analysis objective
List of data objects and
items to be analyzed
Data steward
Data steward, data
architect, data
owner
Data steward, data
owner, data
scientist, (business
partners)
Data scientist, data
architect
Data (heat) map
Risks and opportunities
Requirements list
Data architecture
Data architect, data
steward
Data architect
© Fraunhofer
The morphology identifies data resource patterns as the
example of business partner data from Case C shows
Dimension Characteristics
Business criticality Competitive advantage Compliance relevant Operations relevant
Data classification Private Public Purpose-related
Data domain type Account Party Thing Other
Data format ASCII Audio JPEG Video Numeric XML
Data management level Class Instantiation
Data occurrence Batch Stream
Data ownership Owned by one legal entity “Club” good Public good
Data quality Authoritative Within tolerance, fuzzy Below thresholds
Data source Internal External
Data standardization Semantics Syntax Values
Data trustworthiness Not trusted Trusted
Data sharing Open Free Proprietary
Data maintenance costs Low Medium High
Legend: The darker the more apprproiate.
© Fraunhofer
The research has limitations and points the ways to
some further research opportunities
 Limitations
 Qualitative data
 First design cycle only
 Morphology needs refinement
 No large scale evaluation
 For pattern detection
 Outlook
 Data architecture patterns for verticals
 Elaboration of methodological support
 Networked data management systems
© Fraunhofer
Please get in touch for further information
Univ.-Prof. Dr. Ing. habil. Boris Otto
TU Dortmund University
Audi-Endowed Chair of
Supply Net Order Management
LogistikCampus
Joseph-v.-Fraunhofer-Straße 2-4
D-44227 Dortmund
Tel.: +49-231-755-5959
Boris.Otto@tu-dortmund.de
Fraunhofer Institute for
Material Flow and Logistics
Director Information Management
& Engineering
Joseph-v.-Fraunhofer-Straße 2-4
D-44227 Dortmund
Tel.: +49-231-9743-655
Boris.Otto@iml.fraunhofer.de

More Related Content

What's hot

IDS: Update on Reference Architecture and Ecosystem Design
IDS: Update on Reference Architecture and Ecosystem DesignIDS: Update on Reference Architecture and Ecosystem Design
IDS: Update on Reference Architecture and Ecosystem Design
Boris Otto
 
Industrial Data Space: Digital Sovereignty for Industry 4.0 and Smart Services
Industrial Data Space: Digital Sovereignty for Industry 4.0 and Smart ServicesIndustrial Data Space: Digital Sovereignty for Industry 4.0 and Smart Services
Industrial Data Space: Digital Sovereignty for Industry 4.0 and Smart Services
Boris Otto
 
Shared Digital Twins: Collaboration in Ecosystems
Shared Digital Twins: Collaboration in EcosystemsShared Digital Twins: Collaboration in Ecosystems
Shared Digital Twins: Collaboration in Ecosystems
Boris Otto
 
INDUSTRIAL DATA SPACE - SOVEREIGN, SECURE, SIMPLE
INDUSTRIAL DATA SPACE - SOVEREIGN, SECURE, SIMPLEINDUSTRIAL DATA SPACE - SOVEREIGN, SECURE, SIMPLE
INDUSTRIAL DATA SPACE - SOVEREIGN, SECURE, SIMPLE
Thorsten Huelsmann
 
International Data Spaces: Data Sovereignty for Business Model Innovation
International Data Spaces: Data Sovereignty for Business Model InnovationInternational Data Spaces: Data Sovereignty for Business Model Innovation
International Data Spaces: Data Sovereignty for Business Model Innovation
Boris Otto
 
Introducing Industrial Data Space Initiative, CPDP Conferende 2017
Introducing Industrial Data Space Initiative, CPDP Conferende 2017Introducing Industrial Data Space Initiative, CPDP Conferende 2017
Introducing Industrial Data Space Initiative, CPDP Conferende 2017
Thorsten Huelsmann
 
Enabling the Industry 4.0 vision: Hype? Real Opportunity!
Enabling the Industry 4.0 vision: Hype? Real Opportunity!Enabling the Industry 4.0 vision: Hype? Real Opportunity!
Enabling the Industry 4.0 vision: Hype? Real Opportunity!
Boris Otto
 
IDS@BKM: Gaining Transparency in Automotive Supply Chains
IDS@BKM: Gaining Transparency in Automotive Supply ChainsIDS@BKM: Gaining Transparency in Automotive Supply Chains
IDS@BKM: Gaining Transparency in Automotive Supply Chains
Sebastian Opriel
 
Industry 4.0: Smart Service with InsideOut Ecosystem
Industry 4.0: Smart Service with InsideOut EcosystemIndustry 4.0: Smart Service with InsideOut Ecosystem
Industry 4.0: Smart Service with InsideOut Ecosystem
Dr. Paul Gromball
 
WHY WE NEED AN EUROPEAN LOGISTICS DATA SPACE
WHY WE NEED AN EUROPEAN LOGISTICS DATA SPACEWHY WE NEED AN EUROPEAN LOGISTICS DATA SPACE
WHY WE NEED AN EUROPEAN LOGISTICS DATA SPACE
Thorsten Huelsmann
 
Webinar Industrial Data Space Association: Introduction and Architecture
Webinar Industrial Data Space Association: Introduction and ArchitectureWebinar Industrial Data Space Association: Introduction and Architecture
Webinar Industrial Data Space Association: Introduction and Architecture
Thorsten Huelsmann
 
EDF2014: Christian Lindemann, Wolters Kluwer Germany & Christian Dirschl, Wol...
EDF2014: Christian Lindemann, Wolters Kluwer Germany & Christian Dirschl, Wol...EDF2014: Christian Lindemann, Wolters Kluwer Germany & Christian Dirschl, Wol...
EDF2014: Christian Lindemann, Wolters Kluwer Germany & Christian Dirschl, Wol...
European Data Forum
 
Bde sc3 2nd_workshop_2016_10_04_p01_bde_introduction
Bde sc3 2nd_workshop_2016_10_04_p01_bde_introductionBde sc3 2nd_workshop_2016_10_04_p01_bde_introduction
Bde sc3 2nd_workshop_2016_10_04_p01_bde_introduction
BigData_Europe
 
Bde sc3 2nd_workshop_2016_10_04_p03_efacec
Bde sc3 2nd_workshop_2016_10_04_p03_efacecBde sc3 2nd_workshop_2016_10_04_p03_efacec
Bde sc3 2nd_workshop_2016_10_04_p03_efacec
BigData_Europe
 
Bde sc3 2nd_workshop_2016_10_04_p02_maher_chebbo_sap
Bde sc3 2nd_workshop_2016_10_04_p02_maher_chebbo_sapBde sc3 2nd_workshop_2016_10_04_p02_maher_chebbo_sap
Bde sc3 2nd_workshop_2016_10_04_p02_maher_chebbo_sap
BigData_Europe
 
Evolution of Data Spaces
Evolution of Data SpacesEvolution of Data Spaces
Evolution of Data Spaces
Boris Otto
 
EDF2014: Talk of Stefan Decker, Director, Insight Galway, Ireland & Anthony M...
EDF2014: Talk of Stefan Decker, Director, Insight Galway, Ireland & Anthony M...EDF2014: Talk of Stefan Decker, Director, Insight Galway, Ireland & Anthony M...
EDF2014: Talk of Stefan Decker, Director, Insight Galway, Ireland & Anthony M...
European Data Forum
 
Barbato leit ict 15-16-17
Barbato leit ict 15-16-17Barbato leit ict 15-16-17
Barbato leit ict 15-16-17
European Data Forum
 
EDF2013: Selected Talk, Ghislain Atemezing: Towards Interoperable Visualizati...
EDF2013: Selected Talk, Ghislain Atemezing: Towards Interoperable Visualizati...EDF2013: Selected Talk, Ghislain Atemezing: Towards Interoperable Visualizati...
EDF2013: Selected Talk, Ghislain Atemezing: Towards Interoperable Visualizati...
European Data Forum
 
EDF2014: BIG - NESSI Networking Session: Nuria de Lama, Representative to the...
EDF2014: BIG - NESSI Networking Session: Nuria de Lama, Representative to the...EDF2014: BIG - NESSI Networking Session: Nuria de Lama, Representative to the...
EDF2014: BIG - NESSI Networking Session: Nuria de Lama, Representative to the...
European Data Forum
 

What's hot (20)

IDS: Update on Reference Architecture and Ecosystem Design
IDS: Update on Reference Architecture and Ecosystem DesignIDS: Update on Reference Architecture and Ecosystem Design
IDS: Update on Reference Architecture and Ecosystem Design
 
Industrial Data Space: Digital Sovereignty for Industry 4.0 and Smart Services
Industrial Data Space: Digital Sovereignty for Industry 4.0 and Smart ServicesIndustrial Data Space: Digital Sovereignty for Industry 4.0 and Smart Services
Industrial Data Space: Digital Sovereignty for Industry 4.0 and Smart Services
 
Shared Digital Twins: Collaboration in Ecosystems
Shared Digital Twins: Collaboration in EcosystemsShared Digital Twins: Collaboration in Ecosystems
Shared Digital Twins: Collaboration in Ecosystems
 
INDUSTRIAL DATA SPACE - SOVEREIGN, SECURE, SIMPLE
INDUSTRIAL DATA SPACE - SOVEREIGN, SECURE, SIMPLEINDUSTRIAL DATA SPACE - SOVEREIGN, SECURE, SIMPLE
INDUSTRIAL DATA SPACE - SOVEREIGN, SECURE, SIMPLE
 
International Data Spaces: Data Sovereignty for Business Model Innovation
International Data Spaces: Data Sovereignty for Business Model InnovationInternational Data Spaces: Data Sovereignty for Business Model Innovation
International Data Spaces: Data Sovereignty for Business Model Innovation
 
Introducing Industrial Data Space Initiative, CPDP Conferende 2017
Introducing Industrial Data Space Initiative, CPDP Conferende 2017Introducing Industrial Data Space Initiative, CPDP Conferende 2017
Introducing Industrial Data Space Initiative, CPDP Conferende 2017
 
Enabling the Industry 4.0 vision: Hype? Real Opportunity!
Enabling the Industry 4.0 vision: Hype? Real Opportunity!Enabling the Industry 4.0 vision: Hype? Real Opportunity!
Enabling the Industry 4.0 vision: Hype? Real Opportunity!
 
IDS@BKM: Gaining Transparency in Automotive Supply Chains
IDS@BKM: Gaining Transparency in Automotive Supply ChainsIDS@BKM: Gaining Transparency in Automotive Supply Chains
IDS@BKM: Gaining Transparency in Automotive Supply Chains
 
Industry 4.0: Smart Service with InsideOut Ecosystem
Industry 4.0: Smart Service with InsideOut EcosystemIndustry 4.0: Smart Service with InsideOut Ecosystem
Industry 4.0: Smart Service with InsideOut Ecosystem
 
WHY WE NEED AN EUROPEAN LOGISTICS DATA SPACE
WHY WE NEED AN EUROPEAN LOGISTICS DATA SPACEWHY WE NEED AN EUROPEAN LOGISTICS DATA SPACE
WHY WE NEED AN EUROPEAN LOGISTICS DATA SPACE
 
Webinar Industrial Data Space Association: Introduction and Architecture
Webinar Industrial Data Space Association: Introduction and ArchitectureWebinar Industrial Data Space Association: Introduction and Architecture
Webinar Industrial Data Space Association: Introduction and Architecture
 
EDF2014: Christian Lindemann, Wolters Kluwer Germany & Christian Dirschl, Wol...
EDF2014: Christian Lindemann, Wolters Kluwer Germany & Christian Dirschl, Wol...EDF2014: Christian Lindemann, Wolters Kluwer Germany & Christian Dirschl, Wol...
EDF2014: Christian Lindemann, Wolters Kluwer Germany & Christian Dirschl, Wol...
 
Bde sc3 2nd_workshop_2016_10_04_p01_bde_introduction
Bde sc3 2nd_workshop_2016_10_04_p01_bde_introductionBde sc3 2nd_workshop_2016_10_04_p01_bde_introduction
Bde sc3 2nd_workshop_2016_10_04_p01_bde_introduction
 
Bde sc3 2nd_workshop_2016_10_04_p03_efacec
Bde sc3 2nd_workshop_2016_10_04_p03_efacecBde sc3 2nd_workshop_2016_10_04_p03_efacec
Bde sc3 2nd_workshop_2016_10_04_p03_efacec
 
Bde sc3 2nd_workshop_2016_10_04_p02_maher_chebbo_sap
Bde sc3 2nd_workshop_2016_10_04_p02_maher_chebbo_sapBde sc3 2nd_workshop_2016_10_04_p02_maher_chebbo_sap
Bde sc3 2nd_workshop_2016_10_04_p02_maher_chebbo_sap
 
Evolution of Data Spaces
Evolution of Data SpacesEvolution of Data Spaces
Evolution of Data Spaces
 
EDF2014: Talk of Stefan Decker, Director, Insight Galway, Ireland & Anthony M...
EDF2014: Talk of Stefan Decker, Director, Insight Galway, Ireland & Anthony M...EDF2014: Talk of Stefan Decker, Director, Insight Galway, Ireland & Anthony M...
EDF2014: Talk of Stefan Decker, Director, Insight Galway, Ireland & Anthony M...
 
Barbato leit ict 15-16-17
Barbato leit ict 15-16-17Barbato leit ict 15-16-17
Barbato leit ict 15-16-17
 
EDF2013: Selected Talk, Ghislain Atemezing: Towards Interoperable Visualizati...
EDF2013: Selected Talk, Ghislain Atemezing: Towards Interoperable Visualizati...EDF2013: Selected Talk, Ghislain Atemezing: Towards Interoperable Visualizati...
EDF2013: Selected Talk, Ghislain Atemezing: Towards Interoperable Visualizati...
 
EDF2014: BIG - NESSI Networking Session: Nuria de Lama, Representative to the...
EDF2014: BIG - NESSI Networking Session: Nuria de Lama, Representative to the...EDF2014: BIG - NESSI Networking Session: Nuria de Lama, Representative to the...
EDF2014: BIG - NESSI Networking Session: Nuria de Lama, Representative to the...
 

Viewers also liked

Industrie 4.0 in der Logistik: Stand der Umsetzung und Ausblick
Industrie 4.0 in der Logistik: Stand der Umsetzung und AusblickIndustrie 4.0 in der Logistik: Stand der Umsetzung und Ausblick
Industrie 4.0 in der Logistik: Stand der Umsetzung und Ausblick
Boris Otto
 
Konsortialforschung: Gestaltungsorientierte Wirtschaftsinformatikforschung in...
Konsortialforschung: Gestaltungsorientierte Wirtschaftsinformatikforschung in...Konsortialforschung: Gestaltungsorientierte Wirtschaftsinformatikforschung in...
Konsortialforschung: Gestaltungsorientierte Wirtschaftsinformatikforschung in...
Boris Otto
 
Digitalisierung: Datenzentrierte Geschäftsinnovation
Digitalisierung: Datenzentrierte GeschäftsinnovationDigitalisierung: Datenzentrierte Geschäftsinnovation
Digitalisierung: Datenzentrierte Geschäftsinnovation
Boris Otto
 
Überblick zum Industrial Data Space
Überblick zum Industrial Data SpaceÜberblick zum Industrial Data Space
Überblick zum Industrial Data Space
Boris Otto
 
Digital Business Engineering am Fraunhofer ISST
Digital Business Engineering am Fraunhofer ISSTDigital Business Engineering am Fraunhofer ISST
Digital Business Engineering am Fraunhofer ISST
Boris Otto
 
Digitalisierung der Industrie
Digitalisierung der IndustrieDigitalisierung der Industrie
Digitalisierung der Industrie
Boris Otto
 
Logistik in der digitalen Wirtschaft: Daten als strategische Ressource
Logistik in der digitalen Wirtschaft: Daten als strategische RessourceLogistik in der digitalen Wirtschaft: Daten als strategische Ressource
Logistik in der digitalen Wirtschaft: Daten als strategische Ressource
Boris Otto
 
Industrial Data Space: Referenzarchitektur für Data Supply Chains
Industrial Data Space: Referenzarchitektur für Data Supply ChainsIndustrial Data Space: Referenzarchitektur für Data Supply Chains
Industrial Data Space: Referenzarchitektur für Data Supply Chains
Boris Otto
 
Industrial Data Space: Digitale Souveränität über Daten
Industrial Data Space: Digitale Souveränität über DatenIndustrial Data Space: Digitale Souveränität über Daten
Industrial Data Space: Digitale Souveränität über Daten
Boris Otto
 
Digitalisierung in der Logistik
Digitalisierung in der LogistikDigitalisierung in der Logistik
Digitalisierung in der Logistik
Boris Otto
 
Industrial Data Space: Referenzarchitekturmodell für die Digitalisierung
Industrial Data Space: Referenzarchitekturmodell für die DigitalisierungIndustrial Data Space: Referenzarchitekturmodell für die Digitalisierung
Industrial Data Space: Referenzarchitekturmodell für die Digitalisierung
Boris Otto
 

Viewers also liked (11)

Industrie 4.0 in der Logistik: Stand der Umsetzung und Ausblick
Industrie 4.0 in der Logistik: Stand der Umsetzung und AusblickIndustrie 4.0 in der Logistik: Stand der Umsetzung und Ausblick
Industrie 4.0 in der Logistik: Stand der Umsetzung und Ausblick
 
Konsortialforschung: Gestaltungsorientierte Wirtschaftsinformatikforschung in...
Konsortialforschung: Gestaltungsorientierte Wirtschaftsinformatikforschung in...Konsortialforschung: Gestaltungsorientierte Wirtschaftsinformatikforschung in...
Konsortialforschung: Gestaltungsorientierte Wirtschaftsinformatikforschung in...
 
Digitalisierung: Datenzentrierte Geschäftsinnovation
Digitalisierung: Datenzentrierte GeschäftsinnovationDigitalisierung: Datenzentrierte Geschäftsinnovation
Digitalisierung: Datenzentrierte Geschäftsinnovation
 
Überblick zum Industrial Data Space
Überblick zum Industrial Data SpaceÜberblick zum Industrial Data Space
Überblick zum Industrial Data Space
 
Digital Business Engineering am Fraunhofer ISST
Digital Business Engineering am Fraunhofer ISSTDigital Business Engineering am Fraunhofer ISST
Digital Business Engineering am Fraunhofer ISST
 
Digitalisierung der Industrie
Digitalisierung der IndustrieDigitalisierung der Industrie
Digitalisierung der Industrie
 
Logistik in der digitalen Wirtschaft: Daten als strategische Ressource
Logistik in der digitalen Wirtschaft: Daten als strategische RessourceLogistik in der digitalen Wirtschaft: Daten als strategische Ressource
Logistik in der digitalen Wirtschaft: Daten als strategische Ressource
 
Industrial Data Space: Referenzarchitektur für Data Supply Chains
Industrial Data Space: Referenzarchitektur für Data Supply ChainsIndustrial Data Space: Referenzarchitektur für Data Supply Chains
Industrial Data Space: Referenzarchitektur für Data Supply Chains
 
Industrial Data Space: Digitale Souveränität über Daten
Industrial Data Space: Digitale Souveränität über DatenIndustrial Data Space: Digitale Souveränität über Daten
Industrial Data Space: Digitale Souveränität über Daten
 
Digitalisierung in der Logistik
Digitalisierung in der LogistikDigitalisierung in der Logistik
Digitalisierung in der Logistik
 
Industrial Data Space: Referenzarchitekturmodell für die Digitalisierung
Industrial Data Space: Referenzarchitekturmodell für die DigitalisierungIndustrial Data Space: Referenzarchitekturmodell für die Digitalisierung
Industrial Data Space: Referenzarchitekturmodell für die Digitalisierung
 

Similar to A Taxonomy of the Data Resource in the Networked Industry

Tag.bio: Self Service Data Mesh Platform
Tag.bio: Self Service Data Mesh PlatformTag.bio: Self Service Data Mesh Platform
Tag.bio: Self Service Data Mesh Platform
Sanjay Padhi, Ph.D
 
Data Virtualization: Introduction and Business Value (UK)
Data Virtualization: Introduction and Business Value (UK)Data Virtualization: Introduction and Business Value (UK)
Data Virtualization: Introduction and Business Value (UK)
Denodo
 
Qo Introduction V2
Qo Introduction V2Qo Introduction V2
Qo Introduction V2
Joe_F
 
Linking HPC to Data Management - EUDAT Summer School (Giuseppe Fiameni, CINECA)
Linking HPC to Data Management - EUDAT Summer School (Giuseppe Fiameni, CINECA)Linking HPC to Data Management - EUDAT Summer School (Giuseppe Fiameni, CINECA)
Linking HPC to Data Management - EUDAT Summer School (Giuseppe Fiameni, CINECA)
EUDAT
 
02 a holistic approach to big data
02 a holistic approach to big data02 a holistic approach to big data
02 a holistic approach to big data
Raul Chong
 
Big Data Analytics Research Report
Big Data Analytics Research ReportBig Data Analytics Research Report
Big Data Analytics Research Report
Ila Group
 
Introduction Big Data
Introduction Big DataIntroduction Big Data
Introduction Big Data
Frank Kienle
 
Big Data Analytics
Big Data AnalyticsBig Data Analytics
Big Data Analytics
Global Business Solutions SME
 
Data Mesh in Azure using Cloud Scale Analytics (WAF)
Data Mesh in Azure using Cloud Scale Analytics (WAF)Data Mesh in Azure using Cloud Scale Analytics (WAF)
Data Mesh in Azure using Cloud Scale Analytics (WAF)
Nathan Bijnens
 
Hybrid Cloud Strategy for Big Data and Analytics
Hybrid Cloud Strategy for Big Data and Analytics Hybrid Cloud Strategy for Big Data and Analytics
Hybrid Cloud Strategy for Big Data and Analytics
DataWorks Summit/Hadoop Summit
 
Cognitive data
Cognitive dataCognitive data
Cognitive data
Sören Auer
 
Dublinked tech workshop_15_dec2011
Dublinked tech workshop_15_dec2011Dublinked tech workshop_15_dec2011
Dublinked tech workshop_15_dec2011
Dublinked .
 
Introduction to Data Analytics and data analytics life cycle
Introduction to Data Analytics and data analytics life cycleIntroduction to Data Analytics and data analytics life cycle
Introduction to Data Analytics and data analytics life cycle
Dr. Radhey Shyam
 
Big data an elephant business opportunities
Big data an elephant   business opportunitiesBig data an elephant   business opportunities
Big data an elephant business opportunities
Bigdata Meetup Kochi
 
A Survey on Data Mining
A Survey on Data MiningA Survey on Data Mining
A Survey on Data Mining
IOSR Journals
 
Ijdbms
IjdbmsIjdbms
Mapping presentation THAG big data from space
Mapping presentation THAG big data from spaceMapping presentation THAG big data from space
Mapping presentation THAG big data from space
Bartosz Szkudlarek
 
Advanced Analytics and Machine Learning with Data Virtualization
Advanced Analytics and Machine Learning with Data VirtualizationAdvanced Analytics and Machine Learning with Data Virtualization
Advanced Analytics and Machine Learning with Data Virtualization
Denodo
 
Smart Data for Smart Labs
Smart Data for Smart Labs Smart Data for Smart Labs
Smart Data for Smart Labs
OSTHUS
 
Ijdbms
IjdbmsIjdbms

Similar to A Taxonomy of the Data Resource in the Networked Industry (20)

Tag.bio: Self Service Data Mesh Platform
Tag.bio: Self Service Data Mesh PlatformTag.bio: Self Service Data Mesh Platform
Tag.bio: Self Service Data Mesh Platform
 
Data Virtualization: Introduction and Business Value (UK)
Data Virtualization: Introduction and Business Value (UK)Data Virtualization: Introduction and Business Value (UK)
Data Virtualization: Introduction and Business Value (UK)
 
Qo Introduction V2
Qo Introduction V2Qo Introduction V2
Qo Introduction V2
 
Linking HPC to Data Management - EUDAT Summer School (Giuseppe Fiameni, CINECA)
Linking HPC to Data Management - EUDAT Summer School (Giuseppe Fiameni, CINECA)Linking HPC to Data Management - EUDAT Summer School (Giuseppe Fiameni, CINECA)
Linking HPC to Data Management - EUDAT Summer School (Giuseppe Fiameni, CINECA)
 
02 a holistic approach to big data
02 a holistic approach to big data02 a holistic approach to big data
02 a holistic approach to big data
 
Big Data Analytics Research Report
Big Data Analytics Research ReportBig Data Analytics Research Report
Big Data Analytics Research Report
 
Introduction Big Data
Introduction Big DataIntroduction Big Data
Introduction Big Data
 
Big Data Analytics
Big Data AnalyticsBig Data Analytics
Big Data Analytics
 
Data Mesh in Azure using Cloud Scale Analytics (WAF)
Data Mesh in Azure using Cloud Scale Analytics (WAF)Data Mesh in Azure using Cloud Scale Analytics (WAF)
Data Mesh in Azure using Cloud Scale Analytics (WAF)
 
Hybrid Cloud Strategy for Big Data and Analytics
Hybrid Cloud Strategy for Big Data and Analytics Hybrid Cloud Strategy for Big Data and Analytics
Hybrid Cloud Strategy for Big Data and Analytics
 
Cognitive data
Cognitive dataCognitive data
Cognitive data
 
Dublinked tech workshop_15_dec2011
Dublinked tech workshop_15_dec2011Dublinked tech workshop_15_dec2011
Dublinked tech workshop_15_dec2011
 
Introduction to Data Analytics and data analytics life cycle
Introduction to Data Analytics and data analytics life cycleIntroduction to Data Analytics and data analytics life cycle
Introduction to Data Analytics and data analytics life cycle
 
Big data an elephant business opportunities
Big data an elephant   business opportunitiesBig data an elephant   business opportunities
Big data an elephant business opportunities
 
A Survey on Data Mining
A Survey on Data MiningA Survey on Data Mining
A Survey on Data Mining
 
Ijdbms
IjdbmsIjdbms
Ijdbms
 
Mapping presentation THAG big data from space
Mapping presentation THAG big data from spaceMapping presentation THAG big data from space
Mapping presentation THAG big data from space
 
Advanced Analytics and Machine Learning with Data Virtualization
Advanced Analytics and Machine Learning with Data VirtualizationAdvanced Analytics and Machine Learning with Data Virtualization
Advanced Analytics and Machine Learning with Data Virtualization
 
Smart Data for Smart Labs
Smart Data for Smart Labs Smart Data for Smart Labs
Smart Data for Smart Labs
 
Ijdbms
IjdbmsIjdbms
Ijdbms
 

More from Boris Otto

Deutschland auf dem Weg in die Datenökonomie
Deutschland auf dem Weg in die DatenökonomieDeutschland auf dem Weg in die Datenökonomie
Deutschland auf dem Weg in die Datenökonomie
Boris Otto
 
Business mit Daten? Deutschland auf dem Weg in die smarte Datenwirtschaft
Business mit Daten? Deutschland auf dem Weg in die smarte DatenwirtschaftBusiness mit Daten? Deutschland auf dem Weg in die smarte Datenwirtschaft
Business mit Daten? Deutschland auf dem Weg in die smarte Datenwirtschaft
Boris Otto
 
Data Governance
Data GovernanceData Governance
Data Governance
Boris Otto
 
Data Resource Management: Good Practices to Make the Most out of a Hidden Tre...
Data Resource Management: Good Practices to Make the Most out of a Hidden Tre...Data Resource Management: Good Practices to Make the Most out of a Hidden Tre...
Data Resource Management: Good Practices to Make the Most out of a Hidden Tre...
Boris Otto
 
Smart Data Engineering: Erfolgsfaktor für die digitale Transformation
Smart Data Engineering: Erfolgsfaktor für die digitale TransformationSmart Data Engineering: Erfolgsfaktor für die digitale Transformation
Smart Data Engineering: Erfolgsfaktor für die digitale Transformation
Boris Otto
 
Datensouveränität in Produktions- und Logistiknetzwerken
Datensouveränität in Produktions- und LogistiknetzwerkenDatensouveränität in Produktions- und Logistiknetzwerken
Datensouveränität in Produktions- und Logistiknetzwerken
Boris Otto
 

More from Boris Otto (6)

Deutschland auf dem Weg in die Datenökonomie
Deutschland auf dem Weg in die DatenökonomieDeutschland auf dem Weg in die Datenökonomie
Deutschland auf dem Weg in die Datenökonomie
 
Business mit Daten? Deutschland auf dem Weg in die smarte Datenwirtschaft
Business mit Daten? Deutschland auf dem Weg in die smarte DatenwirtschaftBusiness mit Daten? Deutschland auf dem Weg in die smarte Datenwirtschaft
Business mit Daten? Deutschland auf dem Weg in die smarte Datenwirtschaft
 
Data Governance
Data GovernanceData Governance
Data Governance
 
Data Resource Management: Good Practices to Make the Most out of a Hidden Tre...
Data Resource Management: Good Practices to Make the Most out of a Hidden Tre...Data Resource Management: Good Practices to Make the Most out of a Hidden Tre...
Data Resource Management: Good Practices to Make the Most out of a Hidden Tre...
 
Smart Data Engineering: Erfolgsfaktor für die digitale Transformation
Smart Data Engineering: Erfolgsfaktor für die digitale TransformationSmart Data Engineering: Erfolgsfaktor für die digitale Transformation
Smart Data Engineering: Erfolgsfaktor für die digitale Transformation
 
Datensouveränität in Produktions- und Logistiknetzwerken
Datensouveränität in Produktions- und LogistiknetzwerkenDatensouveränität in Produktions- und Logistiknetzwerken
Datensouveränität in Produktions- und Logistiknetzwerken
 

Recently uploaded

Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
University of Maribor
 
2. Operations Strategy in a Global Environment.ppt
2. Operations Strategy in a Global Environment.ppt2. Operations Strategy in a Global Environment.ppt
2. Operations Strategy in a Global Environment.ppt
PuktoonEngr
 
New techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdfNew techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdf
wisnuprabawa3
 
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdfBPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
MIGUELANGEL966976
 
bank management system in java and mysql report1.pdf
bank management system in java and mysql report1.pdfbank management system in java and mysql report1.pdf
bank management system in java and mysql report1.pdf
Divyam548318
 
Literature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptxLiterature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptx
Dr Ramhari Poudyal
 
14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
SyedAbiiAzazi1
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
gestioneergodomus
 
Technical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prismsTechnical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prisms
heavyhaig
 
Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
mahammadsalmanmech
 
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
gerogepatton
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
jpsjournal1
 
sieving analysis and results interpretation
sieving analysis and results interpretationsieving analysis and results interpretation
sieving analysis and results interpretation
ssuser36d3051
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
insn4465
 
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdfIron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
RadiNasr
 
Exception Handling notes in java exception
Exception Handling notes in java exceptionException Handling notes in java exception
Exception Handling notes in java exception
Ratnakar Mikkili
 
International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...
gerogepatton
 
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
awadeshbabu
 
Wearable antenna for antenna applications
Wearable antenna for antenna applicationsWearable antenna for antenna applications
Wearable antenna for antenna applications
Madhumitha Jayaram
 
Swimming pool mechanical components design.pptx
Swimming pool  mechanical components design.pptxSwimming pool  mechanical components design.pptx
Swimming pool mechanical components design.pptx
yokeleetan1
 

Recently uploaded (20)

Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
 
2. Operations Strategy in a Global Environment.ppt
2. Operations Strategy in a Global Environment.ppt2. Operations Strategy in a Global Environment.ppt
2. Operations Strategy in a Global Environment.ppt
 
New techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdfNew techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdf
 
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdfBPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
 
bank management system in java and mysql report1.pdf
bank management system in java and mysql report1.pdfbank management system in java and mysql report1.pdf
bank management system in java and mysql report1.pdf
 
Literature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptxLiterature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptx
 
14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
 
Technical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prismsTechnical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prisms
 
Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
 
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
 
sieving analysis and results interpretation
sieving analysis and results interpretationsieving analysis and results interpretation
sieving analysis and results interpretation
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
 
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdfIron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
 
Exception Handling notes in java exception
Exception Handling notes in java exceptionException Handling notes in java exception
Exception Handling notes in java exception
 
International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...
 
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
 
Wearable antenna for antenna applications
Wearable antenna for antenna applicationsWearable antenna for antenna applications
Wearable antenna for antenna applications
 
Swimming pool mechanical components design.pptx
Swimming pool  mechanical components design.pptxSwimming pool  mechanical components design.pptx
Swimming pool mechanical components design.pptx
 

A Taxonomy of the Data Resource in the Networked Industry

  • 1. © Fraunhofer TOWARD A TAXONOMY OF THE DATA RESOURCE IN THE NETWORKED INDUSTRY Boris Otto, Rene Abraham, Simon Schlosser Cologne, June 5, 2014
  • 2. © Fraunhofer AGENDA  Data in the Networked Industry  Research Approach  Case Studies on Data in the Networked Industry  Data Morphology Design  Method Support  Outlook
  • 3. © Fraunhofer A set of current developments foster the adoption of networked forms of organization in many industries Globalization Internet of Things Consumer-Centricity Product Complexity Networked Forms of Organization
  • 4. © Fraunhofer The role of data has evolved from a by-product to a product in its own right traded on data markets Factual InfoChimps Windows Azure Data Market Data.com Year of Foundation 2007 2009 2010 2010 (formerly Jigsaw, 2004) Owner Venture capital firms CSC Microsoft Salesforce.com Offering Open data platform, API use for free or at a charge. 15,000 data sets, open data platform, four different pricing models, web service. Wide range of data, including open data platform. Buying and selling data via Azure marketplace. Data sets for increasing master data quality, maintained by community of 2.000.000 users. Services Data mining, data retrieval, data acquisition from external parties. Data collection, infrastructure development, hosting and distribution. Software as a Service (SaaS) applications and data sets, partially real-time access. Different service and pricing models. Access to contact information, real- time updated data sets.
  • 5. © Fraunhofer Companies in the networked industry struggle with finding an appropriate data architecture Data in the outer circles is of higher “fuzziness”, volume, change frequency… Data in the outer circles is of less control, criticality, unambiguity… “Nucleus Data” (Customer master data, product master data etc.) “Community Data” (Geo-information, GTIN, addresses, ISO codes, GS1 data etc.) “Open Big Data” (Tweets, social media streams, sensor data etc.) Megabytes Gigabytes Terabytes Petabytes
  • 6. © Fraunhofer The scientific knowledge base falls short in explaining the role of data in the networked industry Networked Industry Perspective Selected Contributions with Data Focus Summary of Knowledge Base Enterprise (Addo-Tenkorang, Helo, Shamsuzzoha, Ehrs & Phuong, 2012), (Bettoni, Alge, Rovere, Pedrazzoli & Canetta, 2012), (Legner & Schemm, 2008) Data modeling in supply chains Supply chain data management Network (Howard, Vidgen, Powell & Graves, 2001), (Lampathaki, Mouzakitis, Gionis, Charalabidis & Askounis, 2009), (Legner & Schemm, 2008), (Nelson, Shaw & Qualls, 2005) Data and information sharing Data standards Interoperability Technology (Chalasani & Boppana, 2007), (D'Amours, Lefrançois & Montreuil, 1996), (Derakshan et al., 2007), (Dreibelbis et al., 2008), (Parlanti, Paganelli & Giuli, 2011) (Wang & Jin, 2008) Data as a service (SOA) Information systems design RFID data architecture design
  • 7. © Fraunhofer The goal to increase understanding of data in the networked industry translates in two research questions Research Question 1  How does a morphology of the data resource in the networked industry look like? Research Question 2  How should a methodology be designed that helps companies in the networked industry to apply the morphology for data architecture design?
  • 8. © Fraunhofer The explorative and design-oriented approach follows a two-phased research process Phase IIPhase I Literature Review: DRM/DAM Case Analysis Morphology Analysis and Design Literature Review: DRM Method Engineering Method for Morphology Application Legend: DRM - Data Resource Management; DAM - Data Architecture Management.
  • 9. © Fraunhofer Four cases were analyzed for morphology analysis and design Case A B C D Perspective Consumer-Centricity Supply Chain Excellence, IoT Purchasing Electronic commerce Industry Consumer goods and retail Consumer goods and retail Pharmaceutical, chemical, food Online retailing Data objects in focus Suppliers, retailers, products, consumers Suppliers, retailers, load carrier Suppliers Customers, products Case study partners Beiersdorf, Migros Mars, Rewe, Chep Bayer, Nestlé, Novartis, Syngenta Amazon Data collection and analysis Interviews Participatory case study Expert interviews Case study Interviews, focus groups, data overlap analysis Participatory case study Archival records, public documentation Case Study Project context Competence Center Corporate Data Quality SmaRTI Corporate Data League -
  • 10. © Fraunhofer In Case A, Beiersdorf analyzed the betweenness of product data flows in its network Agency Consumer information provider Brand owner Consumer Retailer Consumer Agency Consumer information provider Consumer technology provider GDSN Social network Online retailer Brand owner Retailer web shop Forum & Blogs 2007 2012 Legend: GDSN - Global Data Synchronisation Network. Media
  • 11. © Fraunhofer Analysis of Case A revealed shortcomings when it comes to managing data in a networked industry  Today, the label drives product data management  Carbon foot print information or allergen implications not considered  Product data quality differs  High quality in supply chain data, low quality with regard to product information  Data sources are not transparent when controlled by the consumer (ratings, blogs, posts about products etc.).  Variety of data formats increases (videos, streams, images etc.)
  • 12. © Fraunhofer Case B analyzes the consumer goods supply chain in the context of the SmaRTI project Cloud-based data service for data aggregation and provisioning etc.  Cloud-based  Service-oriented  Standardized Intelligent load carriers such as  Retail pallets  Air cargo pallets Process modeling following Internet of Things design principles  Self-controlled  Decentralized Internet of Service  Data marketplace  Business intelligence  Apps
  • 13. © Fraunhofer Analysis of Case B revealed shortcomings when it comes to managing data in a networked industry  Collaborative environment needed to collect, aggregate, analyze data from EPCIS events  Value network-wide standardization of data formats and semantics needed  Traditional design principles for application systems becoming obsolete  Maintaining pallets as stock items  Real-time data availability on item level conflicts with standard document flow  Ownership of collaborative data unclear  Integration of structured ECPIS data and value-added PoS and multimedia data not clear Legend: EPCIS - Electronic Product Code Information Services; PoS - Point-of-Sale.
  • 14. © Fraunhofer The data morphology for the networked industry covers various dimensions Dimension Characteristics Business criticality Competitive advantage Compliance relevant Operations relevant Data classification Private Public Purpose-related Data domain type Account Party Thing Other Data format ASCII Audio JPEG Video Numeric XML Data management level Class Instantiation Data occurrence Batch Stream Data ownership Owned by one legal entity “Club” good Public good Data quality Authoritative Within tolerance, fuzzy Below thresholds Data source Internal External Data standardization Semantics Syntax Values Data trustworthiness Not trusted Trusted Data sharing Open Free Proprietary Data maintenance costs Low Medium High
  • 15. © Fraunhofer Phase I: Identify domain and scope A method provides methodological support for applying the morphology in practice  Design data architecture  Create transparency  Managing risks  Find data management patterns Activities Results Roles I.1 Define scope I.2 Identify data objects and items Phase III: Design Phase II: Analyze II.1 Create transparency II.2 Analyze and assess III.1 Derive design requirements III.1 Design data architecture Identified data domain and analysis objective List of data objects and items to be analyzed Data steward Data steward, data architect, data owner Data steward, data owner, data scientist, (business partners) Data scientist, data architect Data (heat) map Risks and opportunities Requirements list Data architecture Data architect, data steward Data architect
  • 16. © Fraunhofer The morphology identifies data resource patterns as the example of business partner data from Case C shows Dimension Characteristics Business criticality Competitive advantage Compliance relevant Operations relevant Data classification Private Public Purpose-related Data domain type Account Party Thing Other Data format ASCII Audio JPEG Video Numeric XML Data management level Class Instantiation Data occurrence Batch Stream Data ownership Owned by one legal entity “Club” good Public good Data quality Authoritative Within tolerance, fuzzy Below thresholds Data source Internal External Data standardization Semantics Syntax Values Data trustworthiness Not trusted Trusted Data sharing Open Free Proprietary Data maintenance costs Low Medium High Legend: The darker the more apprproiate.
  • 17. © Fraunhofer The research has limitations and points the ways to some further research opportunities  Limitations  Qualitative data  First design cycle only  Morphology needs refinement  No large scale evaluation  For pattern detection  Outlook  Data architecture patterns for verticals  Elaboration of methodological support  Networked data management systems
  • 18. © Fraunhofer Please get in touch for further information Univ.-Prof. Dr. Ing. habil. Boris Otto TU Dortmund University Audi-Endowed Chair of Supply Net Order Management LogistikCampus Joseph-v.-Fraunhofer-Straße 2-4 D-44227 Dortmund Tel.: +49-231-755-5959 Boris.Otto@tu-dortmund.de Fraunhofer Institute for Material Flow and Logistics Director Information Management & Engineering Joseph-v.-Fraunhofer-Straße 2-4 D-44227 Dortmund Tel.: +49-231-9743-655 Boris.Otto@iml.fraunhofer.de