SlideShare a Scribd company logo
A pixel-to-pixel segmentation of DILD
without masks
using CNN and Perlin noise
2016.11 njkim@jamonglab.com
Objectives
● Segmenting and labeling regional patterns in
DILD(Diffuse Interstitial Lung Disease) HRCT
images.
From : Younjun Chang et al, “Fast and efficient lung disease classification using hierarchical
one-against-all SVM and cost-sensitive feature selection”. 2012.
Challenges
● Small dataset
○ only 547 ROI ( 20x20 bounding box ) patches
● No human mask label
○ Extremely expensive
Dataset
Dataset
Dataset
Dataset
Traditional approach
● Superpixel approach
Traditional approach
● Superpixel result - factor 0.25
Traditional approach
● Superpixel result - factor 2
Traditional approach
● Superpixel result - factor 4
Traditional approach
● Superpixel result - factor 9
Traditional approach
● Superpixel accuracy
Traditional approach
● Superpixel limitation
○ deterministic and strong assumption
( Similarity of neighboring pixels )
New approach
● Deep learning pixel-to-pixel segmentation.
○ Hand labelled mask is needed.
○ Let’s generate it !
From : Ra Gyoung Yoon et al, “Quantitative assesment of change in regional disease patterns on
serial HRCT of fibrotic interstitial pneumonia with texture-based automated quantification system”.
2012.
Mask generation
● A naive approach → Failed.
○ Because the neural network have learned deterministic
patterns instead of lung disease patterns.
Honeycombing
Emphysema
Mask generation
● Ken Perlin, “An image Synthesizer”, 1985
○ natural appearing textures
○ gradient based fractal noise
○ heavily used in game business
Mask generation
● One random Perlin noise ( simplex noise )
● two randomly selected ROI patches
ConsolidationGGO
Mask ROI Patch
Mask generation
● 547 patches → Infinite patches ( O(1006xN
) )
Model architecture
● UNet + SWWAE architecture
○ Olaf et al, “U-Net: Convolutional Networks for Biomedical Image
Segmentation”, 2015
○ Junbo et al, “Stacked What-Where Auto-encoders”, 2015
Model architecture
Skip connections
Deep learning approach
● pixel-to-pixel segmentation result
Deep learning approach
● pixel-to-pixel segmentation result
Deep learning approach
● pixel-to-pixel segmentation result
Deep learning approach
● pixel-to-pixel segmentation accuracy
High resolution segmentation
● 20 x 20 patches per 512 x 512 image
○ (512 - 20 + 1)2
→ Too expensive
High resolution segmentation
● Fully convolutional layer used
○ Various sized image input available
High resolution segmentation
● 200 x 80 grids
High resolution segmentation
● 500 x 20 grid ( Vertical grids )
High resolution segmentation
● 20 x 500 grid ( Horizontal grids )
High resolution segmentation
● Computation complexity
High resolution segmentation
● Results ( Hortz )
High resolution segmentation
● Results ( Vert )
High resolution segmentation
● Results ( Mix )
High resolution segmentation
● Comparison - Accuracy
High resolution segmentation
● Comparison - computation time
Our contributions
● A simple and practical pixel mask generation
method for DILD ROI dataset using Perlin noise.
○ No radiologist mask needed.
● We applied state-of-the-art deep CNN based
pixel-to-pixel segmentation method to DILD
dataset.
○ High accuracy with reasonable computing time.
Thank you !!!

More Related Content

What's hot

Generative Adversarial Networks (GAN)
Generative Adversarial Networks (GAN)Generative Adversarial Networks (GAN)
Generative Adversarial Networks (GAN)
Manohar Mukku
 
NYAI - A Path To Unsupervised Learning Through Adversarial Networks by Soumit...
NYAI - A Path To Unsupervised Learning Through Adversarial Networks by Soumit...NYAI - A Path To Unsupervised Learning Through Adversarial Networks by Soumit...
NYAI - A Path To Unsupervised Learning Through Adversarial Networks by Soumit...
Rizwan Habib
 
Generative Adversarial Networks 2
Generative Adversarial Networks 2Generative Adversarial Networks 2
Generative Adversarial Networks 2
Alireza Shafaei
 
GAN - Theory and Applications
GAN - Theory and ApplicationsGAN - Theory and Applications
GAN - Theory and Applications
Emanuele Ghelfi
 
Deep Generative Models
Deep Generative ModelsDeep Generative Models
Deep Generative Models
Mijung Kim
 
그림 그리는 AI
그림 그리는 AI그림 그리는 AI
그림 그리는 AI
NAVER Engineering
 
Gan intro
Gan introGan intro
Gan intro
Hyungjoo Cho
 
Deep Advances in Generative Modeling
Deep Advances in Generative ModelingDeep Advances in Generative Modeling
Deep Advances in Generative Modeling
indico data
 
Tutorial on Theory and Application of Generative Adversarial Networks
Tutorial on Theory and Application of Generative Adversarial NetworksTutorial on Theory and Application of Generative Adversarial Networks
Tutorial on Theory and Application of Generative Adversarial Networks
MLReview
 
EuroSciPy 2019 - GANs: Theory and Applications
EuroSciPy 2019 - GANs: Theory and ApplicationsEuroSciPy 2019 - GANs: Theory and Applications
EuroSciPy 2019 - GANs: Theory and Applications
Emanuele Ghelfi
 
Basic Generative Adversarial Networks
Basic Generative Adversarial NetworksBasic Generative Adversarial Networks
Basic Generative Adversarial Networks
Dong Heon Cho
 
Generative adversarial networks
Generative adversarial networksGenerative adversarial networks
Generative adversarial networks
Yunjey Choi
 
GANs and Applications
GANs and ApplicationsGANs and Applications
GANs and Applications
Hoang Nguyen
 
Generative Adversarial Networks
Generative Adversarial NetworksGenerative Adversarial Networks
Generative Adversarial Networks
Mark Chang
 
Tutorial on Deep Generative Models
 Tutorial on Deep Generative Models Tutorial on Deep Generative Models
Tutorial on Deep Generative Models
MLReview
 
ICASSP 2018 Tutorial: Generative Adversarial Network and its Applications to ...
ICASSP 2018 Tutorial: Generative Adversarial Network and its Applications to ...ICASSP 2018 Tutorial: Generative Adversarial Network and its Applications to ...
ICASSP 2018 Tutorial: Generative Adversarial Network and its Applications to ...
宏毅 李
 
Unsupervised learning represenation with DCGAN
Unsupervised learning represenation with DCGANUnsupervised learning represenation with DCGAN
Unsupervised learning represenation with DCGAN
Shyam Krishna Khadka
 
Generative Adversarial Networks and Their Applications
Generative Adversarial Networks and Their ApplicationsGenerative Adversarial Networks and Their Applications
Generative Adversarial Networks and Their Applications
Artifacia
 
Image-to-Image Translation with Conditional Adversarial Nets (UPC Reading Group)
Image-to-Image Translation with Conditional Adversarial Nets (UPC Reading Group)Image-to-Image Translation with Conditional Adversarial Nets (UPC Reading Group)
Image-to-Image Translation with Conditional Adversarial Nets (UPC Reading Group)
Universitat Politècnica de Catalunya
 
GAN in medical imaging
GAN in medical imagingGAN in medical imaging
GAN in medical imaging
Cheng-Bin Jin
 

What's hot (20)

Generative Adversarial Networks (GAN)
Generative Adversarial Networks (GAN)Generative Adversarial Networks (GAN)
Generative Adversarial Networks (GAN)
 
NYAI - A Path To Unsupervised Learning Through Adversarial Networks by Soumit...
NYAI - A Path To Unsupervised Learning Through Adversarial Networks by Soumit...NYAI - A Path To Unsupervised Learning Through Adversarial Networks by Soumit...
NYAI - A Path To Unsupervised Learning Through Adversarial Networks by Soumit...
 
Generative Adversarial Networks 2
Generative Adversarial Networks 2Generative Adversarial Networks 2
Generative Adversarial Networks 2
 
GAN - Theory and Applications
GAN - Theory and ApplicationsGAN - Theory and Applications
GAN - Theory and Applications
 
Deep Generative Models
Deep Generative ModelsDeep Generative Models
Deep Generative Models
 
그림 그리는 AI
그림 그리는 AI그림 그리는 AI
그림 그리는 AI
 
Gan intro
Gan introGan intro
Gan intro
 
Deep Advances in Generative Modeling
Deep Advances in Generative ModelingDeep Advances in Generative Modeling
Deep Advances in Generative Modeling
 
Tutorial on Theory and Application of Generative Adversarial Networks
Tutorial on Theory and Application of Generative Adversarial NetworksTutorial on Theory and Application of Generative Adversarial Networks
Tutorial on Theory and Application of Generative Adversarial Networks
 
EuroSciPy 2019 - GANs: Theory and Applications
EuroSciPy 2019 - GANs: Theory and ApplicationsEuroSciPy 2019 - GANs: Theory and Applications
EuroSciPy 2019 - GANs: Theory and Applications
 
Basic Generative Adversarial Networks
Basic Generative Adversarial NetworksBasic Generative Adversarial Networks
Basic Generative Adversarial Networks
 
Generative adversarial networks
Generative adversarial networksGenerative adversarial networks
Generative adversarial networks
 
GANs and Applications
GANs and ApplicationsGANs and Applications
GANs and Applications
 
Generative Adversarial Networks
Generative Adversarial NetworksGenerative Adversarial Networks
Generative Adversarial Networks
 
Tutorial on Deep Generative Models
 Tutorial on Deep Generative Models Tutorial on Deep Generative Models
Tutorial on Deep Generative Models
 
ICASSP 2018 Tutorial: Generative Adversarial Network and its Applications to ...
ICASSP 2018 Tutorial: Generative Adversarial Network and its Applications to ...ICASSP 2018 Tutorial: Generative Adversarial Network and its Applications to ...
ICASSP 2018 Tutorial: Generative Adversarial Network and its Applications to ...
 
Unsupervised learning represenation with DCGAN
Unsupervised learning represenation with DCGANUnsupervised learning represenation with DCGAN
Unsupervised learning represenation with DCGAN
 
Generative Adversarial Networks and Their Applications
Generative Adversarial Networks and Their ApplicationsGenerative Adversarial Networks and Their Applications
Generative Adversarial Networks and Their Applications
 
Image-to-Image Translation with Conditional Adversarial Nets (UPC Reading Group)
Image-to-Image Translation with Conditional Adversarial Nets (UPC Reading Group)Image-to-Image Translation with Conditional Adversarial Nets (UPC Reading Group)
Image-to-Image Translation with Conditional Adversarial Nets (UPC Reading Group)
 
GAN in medical imaging
GAN in medical imagingGAN in medical imaging
GAN in medical imaging
 

Similar to A pixel to-pixel segmentation method of DILD without masks using CNN and perlin noise

Semantic Segmentation on Satellite Imagery
Semantic Segmentation on Satellite ImagerySemantic Segmentation on Satellite Imagery
Semantic Segmentation on Satellite Imagery
RAHUL BHOJWANI
 
Semantic segmentation with Convolutional Neural Network Approaches
Semantic segmentation with Convolutional Neural Network ApproachesSemantic segmentation with Convolutional Neural Network Approaches
Semantic segmentation with Convolutional Neural Network Approaches
Fellowship at Vodafone FutureLab
 
物件偵測與辨識技術
物件偵測與辨識技術物件偵測與辨識技術
物件偵測與辨識技術
CHENHuiMei
 
Cvpr 2017 Summary Meetup
Cvpr 2017 Summary MeetupCvpr 2017 Summary Meetup
Cvpr 2017 Summary Meetup
Amir Alush
 
Brodmann17 CVPR 2017 review - meetup slides
Brodmann17 CVPR 2017 review - meetup slides Brodmann17 CVPR 2017 review - meetup slides
Brodmann17 CVPR 2017 review - meetup slides
Brodmann17
 
Pratik ibm-open power-ppt
Pratik ibm-open power-pptPratik ibm-open power-ppt
Pratik ibm-open power-ppt
Vaibhav R
 
Transformer in Vision
Transformer in VisionTransformer in Vision
Transformer in Vision
Sangmin Woo
 
Image Segmentation (D3L1 2017 UPC Deep Learning for Computer Vision)
Image Segmentation (D3L1 2017 UPC Deep Learning for Computer Vision)Image Segmentation (D3L1 2017 UPC Deep Learning for Computer Vision)
Image Segmentation (D3L1 2017 UPC Deep Learning for Computer Vision)
Universitat Politècnica de Catalunya
 
Structured Forests for Fast Edge Detection [Paper Presentation]
Structured Forests for Fast Edge Detection [Paper Presentation]Structured Forests for Fast Edge Detection [Paper Presentation]
Structured Forests for Fast Edge Detection [Paper Presentation]
Mohammad Shaker
 
Diffusion models beat gans on image synthesis
Diffusion models beat gans on image synthesisDiffusion models beat gans on image synthesis
Diffusion models beat gans on image synthesis
BeerenSahu
 
Brain Tumour Detection.pptx
Brain Tumour Detection.pptxBrain Tumour Detection.pptx
Brain Tumour Detection.pptx
RevolverRaja2
 
A location-aware embedding technique for accurate landmark recognition
A location-aware embedding technique for accurate landmark recognitionA location-aware embedding technique for accurate landmark recognition
A location-aware embedding technique for accurate landmark recognition
Federico Magliani
 
Face Detection.pptx
Face Detection.pptxFace Detection.pptx
Face Detection.pptx
TorshaSett
 
Unsupervised Learning (D2L6 2017 UPC Deep Learning for Computer Vision)
Unsupervised Learning (D2L6 2017 UPC Deep Learning for Computer Vision)Unsupervised Learning (D2L6 2017 UPC Deep Learning for Computer Vision)
Unsupervised Learning (D2L6 2017 UPC Deep Learning for Computer Vision)
Universitat Politècnica de Catalunya
 
Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019
Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019
Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019
Universitat Politècnica de Catalunya
 
Learning visual representation without human label
Learning visual representation without human labelLearning visual representation without human label
Learning visual representation without human label
Kai-Wen Zhao
 
SPIE 10059-36(Reheman Baikejiang)
SPIE 10059-36(Reheman Baikejiang)SPIE 10059-36(Reheman Baikejiang)
SPIE 10059-36(Reheman Baikejiang)
Reheman Baikejiang
 
contrastive-learning2.pdf
contrastive-learning2.pdfcontrastive-learning2.pdf
contrastive-learning2.pdf
omogire
 
Deep Conditional Adversarial learning for polyp Segmentation
Deep Conditional Adversarial learning for polyp SegmentationDeep Conditional Adversarial learning for polyp Segmentation
Deep Conditional Adversarial learning for polyp Segmentation
multimediaeval
 
Supervised Learning of Sparsity-Promoting Regularizers for Denoising
Supervised Learning of Sparsity-Promoting Regularizers for DenoisingSupervised Learning of Sparsity-Promoting Regularizers for Denoising
Supervised Learning of Sparsity-Promoting Regularizers for Denoising
Mike McCann
 

Similar to A pixel to-pixel segmentation method of DILD without masks using CNN and perlin noise (20)

Semantic Segmentation on Satellite Imagery
Semantic Segmentation on Satellite ImagerySemantic Segmentation on Satellite Imagery
Semantic Segmentation on Satellite Imagery
 
Semantic segmentation with Convolutional Neural Network Approaches
Semantic segmentation with Convolutional Neural Network ApproachesSemantic segmentation with Convolutional Neural Network Approaches
Semantic segmentation with Convolutional Neural Network Approaches
 
物件偵測與辨識技術
物件偵測與辨識技術物件偵測與辨識技術
物件偵測與辨識技術
 
Cvpr 2017 Summary Meetup
Cvpr 2017 Summary MeetupCvpr 2017 Summary Meetup
Cvpr 2017 Summary Meetup
 
Brodmann17 CVPR 2017 review - meetup slides
Brodmann17 CVPR 2017 review - meetup slides Brodmann17 CVPR 2017 review - meetup slides
Brodmann17 CVPR 2017 review - meetup slides
 
Pratik ibm-open power-ppt
Pratik ibm-open power-pptPratik ibm-open power-ppt
Pratik ibm-open power-ppt
 
Transformer in Vision
Transformer in VisionTransformer in Vision
Transformer in Vision
 
Image Segmentation (D3L1 2017 UPC Deep Learning for Computer Vision)
Image Segmentation (D3L1 2017 UPC Deep Learning for Computer Vision)Image Segmentation (D3L1 2017 UPC Deep Learning for Computer Vision)
Image Segmentation (D3L1 2017 UPC Deep Learning for Computer Vision)
 
Structured Forests for Fast Edge Detection [Paper Presentation]
Structured Forests for Fast Edge Detection [Paper Presentation]Structured Forests for Fast Edge Detection [Paper Presentation]
Structured Forests for Fast Edge Detection [Paper Presentation]
 
Diffusion models beat gans on image synthesis
Diffusion models beat gans on image synthesisDiffusion models beat gans on image synthesis
Diffusion models beat gans on image synthesis
 
Brain Tumour Detection.pptx
Brain Tumour Detection.pptxBrain Tumour Detection.pptx
Brain Tumour Detection.pptx
 
A location-aware embedding technique for accurate landmark recognition
A location-aware embedding technique for accurate landmark recognitionA location-aware embedding technique for accurate landmark recognition
A location-aware embedding technique for accurate landmark recognition
 
Face Detection.pptx
Face Detection.pptxFace Detection.pptx
Face Detection.pptx
 
Unsupervised Learning (D2L6 2017 UPC Deep Learning for Computer Vision)
Unsupervised Learning (D2L6 2017 UPC Deep Learning for Computer Vision)Unsupervised Learning (D2L6 2017 UPC Deep Learning for Computer Vision)
Unsupervised Learning (D2L6 2017 UPC Deep Learning for Computer Vision)
 
Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019
Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019
Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019
 
Learning visual representation without human label
Learning visual representation without human labelLearning visual representation without human label
Learning visual representation without human label
 
SPIE 10059-36(Reheman Baikejiang)
SPIE 10059-36(Reheman Baikejiang)SPIE 10059-36(Reheman Baikejiang)
SPIE 10059-36(Reheman Baikejiang)
 
contrastive-learning2.pdf
contrastive-learning2.pdfcontrastive-learning2.pdf
contrastive-learning2.pdf
 
Deep Conditional Adversarial learning for polyp Segmentation
Deep Conditional Adversarial learning for polyp SegmentationDeep Conditional Adversarial learning for polyp Segmentation
Deep Conditional Adversarial learning for polyp Segmentation
 
Supervised Learning of Sparsity-Promoting Regularizers for Denoising
Supervised Learning of Sparsity-Promoting Regularizers for DenoisingSupervised Learning of Sparsity-Promoting Regularizers for Denoising
Supervised Learning of Sparsity-Promoting Regularizers for Denoising
 

Recently uploaded

Traffic Engineering-MODULE-1 vtu syllabus.pptx
Traffic Engineering-MODULE-1 vtu syllabus.pptxTraffic Engineering-MODULE-1 vtu syllabus.pptx
Traffic Engineering-MODULE-1 vtu syllabus.pptx
mailmad391
 
Disaster Management and Mitigation presentation
Disaster Management and Mitigation presentationDisaster Management and Mitigation presentation
Disaster Management and Mitigation presentation
RajaRamannaTarigoppu
 
杨洋李一桐做爱视频流出【网芷:ht28.co】国产国产午夜精华>>>[网趾:ht28.co】]<<<
杨洋李一桐做爱视频流出【网芷:ht28.co】国产国产午夜精华>>>[网趾:ht28.co】]<<<杨洋李一桐做爱视频流出【网芷:ht28.co】国产国产午夜精华>>>[网趾:ht28.co】]<<<
杨洋李一桐做爱视频流出【网芷:ht28.co】国产国产午夜精华>>>[网趾:ht28.co】]<<<
amzhoxvzidbke
 
PPT_grt.pptx engineering criteria grt for accrediation
PPT_grt.pptx engineering criteria  grt for accrediationPPT_grt.pptx engineering criteria  grt for accrediation
PPT_grt.pptx engineering criteria grt for accrediation
SHALINIRAJAN20
 
Concepts Basic/ Technical Electronic Material.pdf
Concepts Basic/ Technical Electronic Material.pdfConcepts Basic/ Technical Electronic Material.pdf
Concepts Basic/ Technical Electronic Material.pdf
OBD II
 
Girls Call Chennai 000XX00000 Provide Best And Top Girl Service And No1 in City
Girls Call Chennai 000XX00000 Provide Best And Top Girl Service And No1 in CityGirls Call Chennai 000XX00000 Provide Best And Top Girl Service And No1 in City
Girls Call Chennai 000XX00000 Provide Best And Top Girl Service And No1 in City
sunnuchadda
 
Online toll plaza booking system project report.doc.pdf
Online toll plaza booking system project report.doc.pdfOnline toll plaza booking system project report.doc.pdf
Online toll plaza booking system project report.doc.pdf
Kamal Acharya
 
CGR-Unit-1 Basics of Computer Graphics.pdf
CGR-Unit-1 Basics of Computer Graphics.pdfCGR-Unit-1 Basics of Computer Graphics.pdf
CGR-Unit-1 Basics of Computer Graphics.pdf
Rugved Collection
 
Software Engineering and Project Management - Activity Planning
Software Engineering and Project Management - Activity PlanningSoftware Engineering and Project Management - Activity Planning
Software Engineering and Project Management - Activity Planning
Prakhyath Rai
 
libro de modelado de diseño-part-1[160-250].pdf
libro de modelado de diseño-part-1[160-250].pdflibro de modelado de diseño-part-1[160-250].pdf
libro de modelado de diseño-part-1[160-250].pdf
celiosilva66
 
Rockets and missiles notes engineering ppt
Rockets and missiles notes engineering pptRockets and missiles notes engineering ppt
Rockets and missiles notes engineering ppt
archithaero
 
Online airline reservation system project report.pdf
Online airline reservation system project report.pdfOnline airline reservation system project report.pdf
Online airline reservation system project report.pdf
Kamal Acharya
 
Vernier Caliper and How to use Vernier Caliper.ppsx
Vernier Caliper and How to use Vernier Caliper.ppsxVernier Caliper and How to use Vernier Caliper.ppsx
Vernier Caliper and How to use Vernier Caliper.ppsx
Tool and Die Tech
 
lecture10-efficient-scoring.ppmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmt
lecture10-efficient-scoring.ppmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmtlecture10-efficient-scoring.ppmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmt
lecture10-efficient-scoring.ppmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmt
RAtna29
 
Evento anual Splunk .conf24 Highlights recap
Evento anual Splunk .conf24 Highlights recapEvento anual Splunk .conf24 Highlights recap
Evento anual Splunk .conf24 Highlights recap
Rafael Santos
 
How to Formulate A Good Research Question
How to Formulate A  Good Research QuestionHow to Formulate A  Good Research Question
How to Formulate A Good Research Question
rkpv2002
 
The world of Technology Management MEM 814.pptx
The world of Technology Management MEM 814.pptxThe world of Technology Management MEM 814.pptx
The world of Technology Management MEM 814.pptx
engrasjadshahzad
 
李易峰祝绪丹做爱视频流出【网芷:ht28.co】可爱学生妹>>>[网趾:ht28.co】]<<<
李易峰祝绪丹做爱视频流出【网芷:ht28.co】可爱学生妹>>>[网趾:ht28.co】]<<<李易峰祝绪丹做爱视频流出【网芷:ht28.co】可爱学生妹>>>[网趾:ht28.co】]<<<
李易峰祝绪丹做爱视频流出【网芷:ht28.co】可爱学生妹>>>[网趾:ht28.co】]<<<
amzhoxvzidbke
 
Natural Is The Best: Model-Agnostic Code Simplification for Pre-trained Large...
Natural Is The Best: Model-Agnostic Code Simplification for Pre-trained Large...Natural Is The Best: Model-Agnostic Code Simplification for Pre-trained Large...
Natural Is The Best: Model-Agnostic Code Simplification for Pre-trained Large...
YanKing2
 
OSHA LOTO training, LOTO, lock out tag out
OSHA LOTO training, LOTO, lock out tag outOSHA LOTO training, LOTO, lock out tag out
OSHA LOTO training, LOTO, lock out tag out
Ateeb19
 

Recently uploaded (20)

Traffic Engineering-MODULE-1 vtu syllabus.pptx
Traffic Engineering-MODULE-1 vtu syllabus.pptxTraffic Engineering-MODULE-1 vtu syllabus.pptx
Traffic Engineering-MODULE-1 vtu syllabus.pptx
 
Disaster Management and Mitigation presentation
Disaster Management and Mitigation presentationDisaster Management and Mitigation presentation
Disaster Management and Mitigation presentation
 
杨洋李一桐做爱视频流出【网芷:ht28.co】国产国产午夜精华>>>[网趾:ht28.co】]<<<
杨洋李一桐做爱视频流出【网芷:ht28.co】国产国产午夜精华>>>[网趾:ht28.co】]<<<杨洋李一桐做爱视频流出【网芷:ht28.co】国产国产午夜精华>>>[网趾:ht28.co】]<<<
杨洋李一桐做爱视频流出【网芷:ht28.co】国产国产午夜精华>>>[网趾:ht28.co】]<<<
 
PPT_grt.pptx engineering criteria grt for accrediation
PPT_grt.pptx engineering criteria  grt for accrediationPPT_grt.pptx engineering criteria  grt for accrediation
PPT_grt.pptx engineering criteria grt for accrediation
 
Concepts Basic/ Technical Electronic Material.pdf
Concepts Basic/ Technical Electronic Material.pdfConcepts Basic/ Technical Electronic Material.pdf
Concepts Basic/ Technical Electronic Material.pdf
 
Girls Call Chennai 000XX00000 Provide Best And Top Girl Service And No1 in City
Girls Call Chennai 000XX00000 Provide Best And Top Girl Service And No1 in CityGirls Call Chennai 000XX00000 Provide Best And Top Girl Service And No1 in City
Girls Call Chennai 000XX00000 Provide Best And Top Girl Service And No1 in City
 
Online toll plaza booking system project report.doc.pdf
Online toll plaza booking system project report.doc.pdfOnline toll plaza booking system project report.doc.pdf
Online toll plaza booking system project report.doc.pdf
 
CGR-Unit-1 Basics of Computer Graphics.pdf
CGR-Unit-1 Basics of Computer Graphics.pdfCGR-Unit-1 Basics of Computer Graphics.pdf
CGR-Unit-1 Basics of Computer Graphics.pdf
 
Software Engineering and Project Management - Activity Planning
Software Engineering and Project Management - Activity PlanningSoftware Engineering and Project Management - Activity Planning
Software Engineering and Project Management - Activity Planning
 
libro de modelado de diseño-part-1[160-250].pdf
libro de modelado de diseño-part-1[160-250].pdflibro de modelado de diseño-part-1[160-250].pdf
libro de modelado de diseño-part-1[160-250].pdf
 
Rockets and missiles notes engineering ppt
Rockets and missiles notes engineering pptRockets and missiles notes engineering ppt
Rockets and missiles notes engineering ppt
 
Online airline reservation system project report.pdf
Online airline reservation system project report.pdfOnline airline reservation system project report.pdf
Online airline reservation system project report.pdf
 
Vernier Caliper and How to use Vernier Caliper.ppsx
Vernier Caliper and How to use Vernier Caliper.ppsxVernier Caliper and How to use Vernier Caliper.ppsx
Vernier Caliper and How to use Vernier Caliper.ppsx
 
lecture10-efficient-scoring.ppmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmt
lecture10-efficient-scoring.ppmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmtlecture10-efficient-scoring.ppmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmt
lecture10-efficient-scoring.ppmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmt
 
Evento anual Splunk .conf24 Highlights recap
Evento anual Splunk .conf24 Highlights recapEvento anual Splunk .conf24 Highlights recap
Evento anual Splunk .conf24 Highlights recap
 
How to Formulate A Good Research Question
How to Formulate A  Good Research QuestionHow to Formulate A  Good Research Question
How to Formulate A Good Research Question
 
The world of Technology Management MEM 814.pptx
The world of Technology Management MEM 814.pptxThe world of Technology Management MEM 814.pptx
The world of Technology Management MEM 814.pptx
 
李易峰祝绪丹做爱视频流出【网芷:ht28.co】可爱学生妹>>>[网趾:ht28.co】]<<<
李易峰祝绪丹做爱视频流出【网芷:ht28.co】可爱学生妹>>>[网趾:ht28.co】]<<<李易峰祝绪丹做爱视频流出【网芷:ht28.co】可爱学生妹>>>[网趾:ht28.co】]<<<
李易峰祝绪丹做爱视频流出【网芷:ht28.co】可爱学生妹>>>[网趾:ht28.co】]<<<
 
Natural Is The Best: Model-Agnostic Code Simplification for Pre-trained Large...
Natural Is The Best: Model-Agnostic Code Simplification for Pre-trained Large...Natural Is The Best: Model-Agnostic Code Simplification for Pre-trained Large...
Natural Is The Best: Model-Agnostic Code Simplification for Pre-trained Large...
 
OSHA LOTO training, LOTO, lock out tag out
OSHA LOTO training, LOTO, lock out tag outOSHA LOTO training, LOTO, lock out tag out
OSHA LOTO training, LOTO, lock out tag out
 

A pixel to-pixel segmentation method of DILD without masks using CNN and perlin noise