TAIPEI | SEP. 21-22, 2016
Che-Lun Hung, 2016/9/21
MEDICAL IMAGE PROCESSING ON
NVIDIA TK1/TX1
2
AGENDA
Medical Image
Brain MRI Image Segmentation
Fuzzy C-Means Method on TK1/TX1
Genetic Fuzzy C-Means Method on Multiple TK1s
3
MEDICAL IMAGE
4
MEDICAL IMAGE
X-Ray
Ultrasound
Image resource : wiki
CT MRI
Image Source:
https://en.wikipedia.org/
5
WHY NEED MEDICAL IMAGE PROCESSING?
9/26/16
Computer-aided diagnosis Description of Lension
Image Source:
http://www.dailyherald.com/
Image Source:
http://artificialintelligencefordummies.weebly.com/
6
TK1/TX1
TK1
Kepler
192 CUDA cores
2G Memory
TX1
Maxwell
256 CUDA cores
4G Memory
7
BRAIN MRI IMAGE SEGMENTATION
8
BRAIN MRI IMAGE
Image Source: http://brainweb.bic.mni.mcgill.ca/brainweb/
9
SEGMENTATION
Image Source: http://brainweb.bic.mni.mcgill.ca/brainweb/
10
CLUSTERING METHODOLOGY
11
SEGMENTATION FOR BRAIN MRI
12
FUZZY C-MEANS METHOD ON TK1/TX1
13
FUZZY C-MEANS METHOD
Jm = uij
n
d xi,θj( )
j=1
c
∑
i=1
n
∑
14
EXPERIMENTAL PLATFORMS
TK1/TX1
The host (CPU) Intel Xeon E3-1231 v3 3.40GHz with 64GB RAM
Data Size 1150*1280
9/26/16
15
SEGMENTATION RESULTS
Image Source: http://brainweb.bic.mni.mcgill.ca/brainweb/
16
PERFORMANCE
1
7.2
12.9
0
2
4
6
8
10
12
14
Intel	E3	CPU	 TK1	GPU	 TX1	
Speedup
Platform
IMG Size= 1150*1280
17
DIFFERENT PRECISION FORMAT
5.93
2.22
3.81
1.42
0
1
2
3
4
5
6
7
TK1	GPU	double TK1	GPU	float TX1	GPU	double TX1	GPU	float
Time(seconds)
Platform
18
TK1/TX1 MAXIMUM PERFORMANCE MODE
5.93
2.22
3.81
1.42
5.45
2.15
3.69
1.39
0
1
2
3
4
5
6
7
TK1	GPU	double TK1	GPU	float TX1	GPU	double TX1	GPU	float
Time(seconds)
Platform
Kernel	time(Normal) Kernel	time(HP)
19
DIFFERENT MEMORY COPY MODES
2.15
1.39
2.38
1.5
2.37
1.45
0
0.5
1
1.5
2
2.5
TK1	GPU	float TX1	GPU	float
Time(s)
Platform
Kernel	time Kernel	time(Zero-copy) Kernel	time(Unified	memory)
20
GENETIC FUZZY C-MEANS METHOD ON
MULTIPLE TK1S
21
GENETIC FUZZY C-MEANS METHOD
Image Source: http://http://www.turingfinance.com/
22
MESSAGE PASSING INTERFACE (MPI)
Image Source: https://computing.llnl.gov/tutorials/mpi/
23
MULTIPLE GPU
MPI+CUDA
24
EXPERIMENTAL PLATFORMS
TK1/TX1
The hosts (CPU) Intel Xeon E5-2620 2.5GHz, E3-1231 V3 3.4GHz, and I7-4280K 3.7GHz.
Data Size 1150*1280
9/26/16
25
DIFFERENT POPULATION SIZES
(a) (b)
(c) (d)
(e) (f)
(a) population size = 30,
(b) population size = 60,
(c) population size = 90,
(d) population size = 120,
(e) population size = 150,
(f) population size = 180.
Image Source: http://brainweb.bic.mni.mcgill.ca/brainweb/
26
PERFORMANCE
27
SUITABLE FOR ALL MEDICAL IMAGE
PROCESSING TECHNOLOGIES?
28
MAMMOGRAPHIC IMAGE
29
TEXTURE-BASED IMAGE PROCESSING (1)
30
TEXTURE-BASED IMAGE PROCESSING (2)
127*127127*127127*127127*127 ……………127*127 127 * 127 threads
31
EXPERIMENTAL PLATFORMS
TK1/TX1
The host (CPU) Intel Xeon E3-1231 v3 3.40GHz with 64GB RAM
Data Size 1123*1751
9/26/16
32
PERFORMANCE
0
5000
10000
15000
20000
25000
30000
35000
Matlab with NVIDIA
GTX 980
Matlab with Intel Xeon
E3-1231
NVIDIA TX1 NVIDIA TK1
550 1752
20260
31469
Executiontime(s)
Device
33
MORE POSSIBILITIES FOR GPU ON MEDICAL
IMAGE PROCESSING
TAIPEI | SEP. 21-22, 2016
THANK YOU

Medical Image Processing on NVIDIA TK1/TX1