SlideShare a Scribd company logo
∆ηµήτρης Ψούνης – ΠΛΗ30, Τέστ 9 1
ΠΛΗ30 – ΤΕΣΤ 9
ΘΕΜΑ 1: ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
(A) Ιεραρχήστε τις παρακάτω συναρτήσεις σε αύξουσα σειρά ασυµπτωτικής
πολυπλοκότητας:
= = 2 = 5 			 =
∆ηµήτρης Ψούνης – ΠΛΗ30, Τέστ 9 2
(Β) Να λύσετε τις αναδροµές:
n
n
T
n
TnT log
5
2
2
)()1( +





+





=
4/7
4
128)()2( n
n
TnT +





=
n
n
TnT +





=
25
5)()3(
( ) 5
21)()4( nnTnT +−=
Στη συνέχεια, να διαταχθούν οι λύσεις τους κατά αύξουσα τάξη µεγέθους.
Θεώρηµα Κυριαρχίας: Έστω η αναδροµική εξίσωση T(n) = aT(n/b) + f(n), όπου a≥1, b>1 είναι σταθερές, και
f(n) είναι µια ασυµπτωτικά θετική συνάρτηση. Τότε διακρίνονται οι ακόλουθες τρεις περιπτώσεις:
log log
( ) ( ), ( )b ba a
(1) αν f n O n για κάποια σταθερά ε>0, τότε T(n) = nεεεε−−−−
= Θ= Θ= Θ= Θ
log log
( ) ( ), ( log )b ba a
(2) αν f n n τότε T(n) = n n= Θ Θ= Θ Θ= Θ Θ= Θ Θ
log
( ) ( ), ,
( ( )).
b a
0
0
(3) αν f n n για κάποια σταθερά ε>0, και αν υπάρχει σταθερά n τέτοια
n
ώστε, για κάθε n n , af cf(n) για κάποια σταθερά c<1, τότε T(n) = f n
b
εεεε++++
= Ω= Ω= Ω= Ω
    
≥ ≤ Θ≥ ≤ Θ≥ ≤ Θ≥ ≤ Θ    
    
Υπόδειξη: Θεωρείστε γνωστό ότι: )( 6
1
5
ni
n
i
Θ=∑=
∆ηµήτρης Ψούνης – ΠΛΗ30, Τέστ 9 3
ΘΕΜΑ 2: ΣΧΕ∆ΙΑΣΗ ΑΛΓΟΡΙΘΜΩΝ
Ένα υποσύνολο κορυφών VI ⊆ ονοµάζεται ανεξάρτητο αν οποιεσδήποτε δύο κορυφές του I δεν συνδέονται µε
ακµή, και ονοµάζεται µέγιστο ανεξάρτητο υποσύνολο αν έχει τη µέγιστη συνολική βαρύτητα µεταξύ όλων των
υποσυνόλων του V. Θεωρήστε, για παράδειγµα, την παρακάτω βεβαρυµµένη διαδροµή 7 κορυφών (οι αριθµοί
εντός των κορυφών συµβολίζουν βαρύτητες)
v1 v2 v3 v4 v5 v6 v7
όπου τα υποσύνολα Ι1 = {v1, v3, v5, v7}, Ι2 = {v2, v4, v6}, Ι3 = {v2, v5, v7} είναι ανεξάρτητα µε βαρύτητες 21, 23, και
24 αντίστοιχα. Το Ι3 είναι το µέγιστο ανεξάρτητο υποσύνολο για την παραπάνω βεβαρυµµένη διαδροµή 7
κορυφών.
(Α) Σχεδιάστε έναν αλγόριθµο δυναµικού προγραµµατισµού ο οποίος, δεδοµένης µιας βεβαρυµµένης
διαδροµής n κορυφών, βρίσκει τη βαρύτητα του µέγιστου ανεξάρτητου υποσυνόλου (κόστος βέλτιστης λύσης).
Η περιγραφή του αλγορίθµου µπορεί να είναι σε άτυπη µορφή, αλλά πρέπει να περιλαµβάνει οπωσδήποτε
την/τις αναδροµική/-κες σχέση/-εις που διέπουν τον αλγόριθµο και συµπληρώνουν τον πίνακα δυναµικού
προγραµµατισµού. ∆ώστε τον χρόνο εκτέλεσης του αλγορίθµου σας, ο οποίος πρέπει να είναι πολυωνυµικός
ως προς το n και ανεξάρτητος των τιµών των βαρυτήτων των κορυφών.
(Β) Εκτελέστε τον αλγόριθµό σας στο παραπάνω παράδειγµα δίνοντας τις τιµές του πίνακα δυναµικού
προγραµµατισµού σε κάθε βήµα.
2 10 5 4 8 9 6
∆ηµήτρης Ψούνης – ΠΛΗ30, Τέστ 9 4
ΘΕΜΑ 3: ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ
Κατασκευάστε Κανονικές Εκφράσεις για τις Γλώσσες του αλφαβήτου {0,1}:
L1={ w | w αρχίζει µε 0 και τελειώνει µε 0 }
L2={ w | w αρχίζει µε 01 περιέχει το 001 και τελειώνει µε 00}
L3={ w | w αρχίζει µε 0 και περιέχει δύο τουλάχιστον φορές το 11}
L4={ w | w δεν αρχίζει µε 1}
L5={ w | w δεν περιέχει 0}
L6={ w | τα 0 της w είναι πολλαπλάσιο του 3}
L7={ w | w δεν περιέχει το 11}

More Related Content

What's hot

ΠΛΗ30 ΤΕΣΤ 18
ΠΛΗ30 ΤΕΣΤ 18ΠΛΗ30 ΤΕΣΤ 18
ΠΛΗ30 ΤΕΣΤ 18
Dimitris Psounis
 
ΠΛΗ30 ΤΕΣΤ 5
ΠΛΗ30 ΤΕΣΤ 5ΠΛΗ30 ΤΕΣΤ 5
ΠΛΗ30 ΤΕΣΤ 5
Dimitris Psounis
 
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 3
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 3ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 3
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 3
Dimitris Psounis
 
ΠΛΗ30 ΤΕΣΤ 25
ΠΛΗ30 ΤΕΣΤ 25ΠΛΗ30 ΤΕΣΤ 25
ΠΛΗ30 ΤΕΣΤ 25
Dimitris Psounis
 
ΠΛΗ30 ΤΕΣΤ 27
ΠΛΗ30 ΤΕΣΤ 27ΠΛΗ30 ΤΕΣΤ 27
ΠΛΗ30 ΤΕΣΤ 27
Dimitris Psounis
 
ΠΛΗ30 ΤΕΣΤ 3
ΠΛΗ30 ΤΕΣΤ 3ΠΛΗ30 ΤΕΣΤ 3
ΠΛΗ30 ΤΕΣΤ 3
Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.5
ΠΛΗ30 ΜΑΘΗΜΑ 1.5ΠΛΗ30 ΜΑΘΗΜΑ 1.5
ΠΛΗ30 ΜΑΘΗΜΑ 1.5
Dimitris Psounis
 
ΠΛΗ30 ΤΕΣΤ 2
ΠΛΗ30 ΤΕΣΤ 2ΠΛΗ30 ΤΕΣΤ 2
ΠΛΗ30 ΤΕΣΤ 2
Dimitris Psounis
 
ΠΛΗ30 ΚΑΡΤΑ 1.5
ΠΛΗ30 ΚΑΡΤΑ 1.5ΠΛΗ30 ΚΑΡΤΑ 1.5
ΠΛΗ30 ΚΑΡΤΑ 1.5
Dimitris Psounis
 
ΠΛΗ30 ΤΕΣΤ 6
ΠΛΗ30 ΤΕΣΤ 6ΠΛΗ30 ΤΕΣΤ 6
ΠΛΗ30 ΤΕΣΤ 6
Dimitris Psounis
 
ΠΛΗ30 ΤΕΣΤ 4
ΠΛΗ30 ΤΕΣΤ 4ΠΛΗ30 ΤΕΣΤ 4
ΠΛΗ30 ΤΕΣΤ 4
Dimitris Psounis
 
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 2
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 2ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 2
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 2
Dimitris Psounis
 
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 1
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 1ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 1
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 1
Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.4
ΠΛΗ30 ΜΑΘΗΜΑ 1.4ΠΛΗ30 ΜΑΘΗΜΑ 1.4
ΠΛΗ30 ΜΑΘΗΜΑ 1.4
Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 2.1
ΠΛΗ30 ΜΑΘΗΜΑ 2.1ΠΛΗ30 ΜΑΘΗΜΑ 2.1
ΠΛΗ30 ΜΑΘΗΜΑ 2.1
Dimitris Psounis
 
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.4
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.4ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.4
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.4
Dimitris Psounis
 
ΠΛΗ30 ΤΕΣΤ 19
ΠΛΗ30 ΤΕΣΤ 19ΠΛΗ30 ΤΕΣΤ 19
ΠΛΗ30 ΤΕΣΤ 19
Dimitris Psounis
 
ΠΛΗ30 ΤΕΣΤ 21
ΠΛΗ30 ΤΕΣΤ 21ΠΛΗ30 ΤΕΣΤ 21
ΠΛΗ30 ΤΕΣΤ 21
Dimitris Psounis
 
ΠΛΗ30 ΤΕΣΤ 22
ΠΛΗ30 ΤΕΣΤ 22ΠΛΗ30 ΤΕΣΤ 22
ΠΛΗ30 ΤΕΣΤ 22
Dimitris Psounis
 

What's hot (20)

ΠΛΗ30 ΤΕΣΤ 18
ΠΛΗ30 ΤΕΣΤ 18ΠΛΗ30 ΤΕΣΤ 18
ΠΛΗ30 ΤΕΣΤ 18
 
ΠΛΗ30 ΤΕΣΤ 5
ΠΛΗ30 ΤΕΣΤ 5ΠΛΗ30 ΤΕΣΤ 5
ΠΛΗ30 ΤΕΣΤ 5
 
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 3
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 3ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 3
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 3
 
ΠΛΗ30 ΤΕΣΤ 25
ΠΛΗ30 ΤΕΣΤ 25ΠΛΗ30 ΤΕΣΤ 25
ΠΛΗ30 ΤΕΣΤ 25
 
ΠΛΗ30 ΤΕΣΤ 27
ΠΛΗ30 ΤΕΣΤ 27ΠΛΗ30 ΤΕΣΤ 27
ΠΛΗ30 ΤΕΣΤ 27
 
ΠΛΗ30 ΤΕΣΤ 3
ΠΛΗ30 ΤΕΣΤ 3ΠΛΗ30 ΤΕΣΤ 3
ΠΛΗ30 ΤΕΣΤ 3
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.5
ΠΛΗ30 ΜΑΘΗΜΑ 1.5ΠΛΗ30 ΜΑΘΗΜΑ 1.5
ΠΛΗ30 ΜΑΘΗΜΑ 1.5
 
ΠΛΗ30 ΤΕΣΤ 2
ΠΛΗ30 ΤΕΣΤ 2ΠΛΗ30 ΤΕΣΤ 2
ΠΛΗ30 ΤΕΣΤ 2
 
ΠΛΗ30 ΚΑΡΤΑ 1.5
ΠΛΗ30 ΚΑΡΤΑ 1.5ΠΛΗ30 ΚΑΡΤΑ 1.5
ΠΛΗ30 ΚΑΡΤΑ 1.5
 
ΠΛΗ30 ΤΕΣΤ 6
ΠΛΗ30 ΤΕΣΤ 6ΠΛΗ30 ΤΕΣΤ 6
ΠΛΗ30 ΤΕΣΤ 6
 
ΠΛΗ30 ΤΕΣΤ 4
ΠΛΗ30 ΤΕΣΤ 4ΠΛΗ30 ΤΕΣΤ 4
ΠΛΗ30 ΤΕΣΤ 4
 
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 2
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 2ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 2
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 2
 
ΠΛΗ31 ΤΕΣΤ 18
ΠΛΗ31 ΤΕΣΤ 18ΠΛΗ31 ΤΕΣΤ 18
ΠΛΗ31 ΤΕΣΤ 18
 
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 1
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 1ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 1
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 1
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.4
ΠΛΗ30 ΜΑΘΗΜΑ 1.4ΠΛΗ30 ΜΑΘΗΜΑ 1.4
ΠΛΗ30 ΜΑΘΗΜΑ 1.4
 
ΠΛΗ30 ΜΑΘΗΜΑ 2.1
ΠΛΗ30 ΜΑΘΗΜΑ 2.1ΠΛΗ30 ΜΑΘΗΜΑ 2.1
ΠΛΗ30 ΜΑΘΗΜΑ 2.1
 
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.4
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.4ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.4
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.4
 
ΠΛΗ30 ΤΕΣΤ 19
ΠΛΗ30 ΤΕΣΤ 19ΠΛΗ30 ΤΕΣΤ 19
ΠΛΗ30 ΤΕΣΤ 19
 
ΠΛΗ30 ΤΕΣΤ 21
ΠΛΗ30 ΤΕΣΤ 21ΠΛΗ30 ΤΕΣΤ 21
ΠΛΗ30 ΤΕΣΤ 21
 
ΠΛΗ30 ΤΕΣΤ 22
ΠΛΗ30 ΤΕΣΤ 22ΠΛΗ30 ΤΕΣΤ 22
ΠΛΗ30 ΤΕΣΤ 22
 

Similar to ΠΛΗ30 ΤΕΣΤ 9

Μη τετραγωνικά συστήματα
Μη τετραγωνικά συστήματαΜη τετραγωνικά συστήματα
Μη τετραγωνικά συστήματα
Manolis Vavalis
 
Pan diag b_lyk_2015_sol
Pan diag b_lyk_2015_solPan diag b_lyk_2015_sol
Pan diag b_lyk_2015_sol
Dimitris Kontoudakis
 
Πανελλήνιος Διαγωνισμός Φυσικής B΄ Λυκείου 2015/ Θέματα και Λύσεις
Πανελλήνιος Διαγωνισμός Φυσικής B΄ Λυκείου 2015/ Θέματα και ΛύσειςΠανελλήνιος Διαγωνισμός Φυσικής B΄ Λυκείου 2015/ Θέματα και Λύσεις
Πανελλήνιος Διαγωνισμός Φυσικής B΄ Λυκείου 2015/ Θέματα και Λύσεις
HOME
 
θεματα ανακεφαλαιωτικου διαγωνισματος 2015
θεματα ανακεφαλαιωτικου  διαγωνισματος 2015θεματα ανακεφαλαιωτικου  διαγωνισματος 2015
θεματα ανακεφαλαιωτικου διαγωνισματος 2015
Μάκης Χατζόπουλος
 
Epanalipsi g gymnasiou
Epanalipsi g gymnasiouEpanalipsi g gymnasiou
Epanalipsi g gymnasiou
Christos Loizos
 
ΠΛΗ30 ΜΑΘΗΜΑ 2.2
ΠΛΗ30 ΜΑΘΗΜΑ 2.2ΠΛΗ30 ΜΑΘΗΜΑ 2.2
ΠΛΗ30 ΜΑΘΗΜΑ 2.2
Dimitris Psounis
 
200 επαναληπτικά θέματα Άλγεβρας A Λυκείου
200 επαναληπτικά θέματα Άλγεβρας A Λυκείου200 επαναληπτικά θέματα Άλγεβρας A Λυκείου
200 επαναληπτικά θέματα Άλγεβρας A Λυκείου
Μάκης Χατζόπουλος
 
Ελατήριο με δύο μάζες
Ελατήριο με δύο μάζεςΕλατήριο με δύο μάζες
Ελατήριο με δύο μάζες
John Fiorentinos
 
Ελατήριο ανάμεσα σε δύο μάζες
Ελατήριο ανάμεσα σε δύο μάζεςΕλατήριο ανάμεσα σε δύο μάζες
Ελατήριο ανάμεσα σε δύο μάζες
John Fiorentinos
 
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 8
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 8ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 8
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 8
Dimitris Psounis
 
5ο Εκθετική Λογαριθμική 23_5_2022.docx
5ο Εκθετική Λογαριθμική 23_5_2022.docx5ο Εκθετική Λογαριθμική 23_5_2022.docx
5ο Εκθετική Λογαριθμική 23_5_2022.docx
Dina Kiourtidou
 
K.tambakos diagonisma gel_me_lyseis
K.tambakos diagonisma gel_me_lyseisK.tambakos diagonisma gel_me_lyseis
K.tambakos diagonisma gel_me_lyseis
Christos Loizos
 
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4
Dimitris Psounis
 
Διαγωνίσματα Στατιστικής Γ' Λυκείου ΕΠΑΛ Απαντήσεις-Υποδείξεις
Διαγωνίσματα Στατιστικής Γ' Λυκείου ΕΠΑΛ Απαντήσεις-ΥποδείξειςΔιαγωνίσματα Στατιστικής Γ' Λυκείου ΕΠΑΛ Απαντήσεις-Υποδείξεις
Διαγωνίσματα Στατιστικής Γ' Λυκείου ΕΠΑΛ Απαντήσεις-Υποδείξεις
Ρεβέκα Θεοδωροπούλου
 
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 9
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 9ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 9
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 9
Dimitris Psounis
 
ΠΛΗ20 ΜΑΘΗΜΑ 5.4
ΠΛΗ20 ΜΑΘΗΜΑ 5.4ΠΛΗ20 ΜΑΘΗΜΑ 5.4
ΠΛΗ20 ΜΑΘΗΜΑ 5.4
Dimitris Psounis
 

Similar to ΠΛΗ30 ΤΕΣΤ 9 (20)

Μη τετραγωνικά συστήματα
Μη τετραγωνικά συστήματαΜη τετραγωνικά συστήματα
Μη τετραγωνικά συστήματα
 
Pan diag b_lyk_2015_sol
Pan diag b_lyk_2015_solPan diag b_lyk_2015_sol
Pan diag b_lyk_2015_sol
 
Πανελλήνιος Διαγωνισμός Φυσικής B΄ Λυκείου 2015/ Θέματα και Λύσεις
Πανελλήνιος Διαγωνισμός Φυσικής B΄ Λυκείου 2015/ Θέματα και ΛύσειςΠανελλήνιος Διαγωνισμός Φυσικής B΄ Λυκείου 2015/ Θέματα και Λύσεις
Πανελλήνιος Διαγωνισμός Φυσικής B΄ Λυκείου 2015/ Θέματα και Λύσεις
 
διαγωνισμα μιγαδκοι αναλυση
διαγωνισμα μιγαδκοι αναλυσηδιαγωνισμα μιγαδκοι αναλυση
διαγωνισμα μιγαδκοι αναλυση
 
θεώρημα Rolle θεώρημα μέσης τιμής
θεώρημα Rolle   θεώρημα μέσης τιμήςθεώρημα Rolle   θεώρημα μέσης τιμής
θεώρημα Rolle θεώρημα μέσης τιμής
 
θεματα ανακεφαλαιωτικου διαγωνισματος 2015
θεματα ανακεφαλαιωτικου  διαγωνισματος 2015θεματα ανακεφαλαιωτικου  διαγωνισματος 2015
θεματα ανακεφαλαιωτικου διαγωνισματος 2015
 
Epanalipsi g gymnasiou
Epanalipsi g gymnasiouEpanalipsi g gymnasiou
Epanalipsi g gymnasiou
 
ΠΛΗ30 ΜΑΘΗΜΑ 2.2
ΠΛΗ30 ΜΑΘΗΜΑ 2.2ΠΛΗ30 ΜΑΘΗΜΑ 2.2
ΠΛΗ30 ΜΑΘΗΜΑ 2.2
 
200 επαναληπτικά θέματα Άλγεβρας A Λυκείου
200 επαναληπτικά θέματα Άλγεβρας A Λυκείου200 επαναληπτικά θέματα Άλγεβρας A Λυκείου
200 επαναληπτικά θέματα Άλγεβρας A Λυκείου
 
Ελατήριο με δύο μάζες
Ελατήριο με δύο μάζεςΕλατήριο με δύο μάζες
Ελατήριο με δύο μάζες
 
Ελατήριο ανάμεσα σε δύο μάζες
Ελατήριο ανάμεσα σε δύο μάζεςΕλατήριο ανάμεσα σε δύο μάζες
Ελατήριο ανάμεσα σε δύο μάζες
 
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 8
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 8ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 8
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 8
 
5ο Εκθετική Λογαριθμική 23_5_2022.docx
5ο Εκθετική Λογαριθμική 23_5_2022.docx5ο Εκθετική Λογαριθμική 23_5_2022.docx
5ο Εκθετική Λογαριθμική 23_5_2022.docx
 
ΠΛΗ31 ΤΕΣΤ 24
ΠΛΗ31 ΤΕΣΤ 24ΠΛΗ31 ΤΕΣΤ 24
ΠΛΗ31 ΤΕΣΤ 24
 
K.tambakos diagonisma gel_me_lyseis
K.tambakos diagonisma gel_me_lyseisK.tambakos diagonisma gel_me_lyseis
K.tambakos diagonisma gel_me_lyseis
 
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4
 
Διαγωνίσματα Στατιστικής Γ' Λυκείου ΕΠΑΛ Απαντήσεις-Υποδείξεις
Διαγωνίσματα Στατιστικής Γ' Λυκείου ΕΠΑΛ Απαντήσεις-ΥποδείξειςΔιαγωνίσματα Στατιστικής Γ' Λυκείου ΕΠΑΛ Απαντήσεις-Υποδείξεις
Διαγωνίσματα Στατιστικής Γ' Λυκείου ΕΠΑΛ Απαντήσεις-Υποδείξεις
 
bkefield-april2015.pdf
bkefield-april2015.pdfbkefield-april2015.pdf
bkefield-april2015.pdf
 
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 9
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 9ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 9
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 9
 
ΠΛΗ20 ΜΑΘΗΜΑ 5.4
ΠΛΗ20 ΜΑΘΗΜΑ 5.4ΠΛΗ20 ΜΑΘΗΜΑ 5.4
ΠΛΗ20 ΜΑΘΗΜΑ 5.4
 

More from Dimitris Psounis

Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Dimitris Psounis
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Dimitris Psounis
 
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
Dimitris Psounis
 
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
Dimitris Psounis
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Dimitris Psounis
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Dimitris Psounis
 
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ CC++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
Dimitris Psounis
 
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
Dimitris Psounis
 
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
Dimitris Psounis
 
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
Dimitris Psounis
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
Dimitris Psounis
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
Dimitris Psounis
 

More from Dimitris Psounis (20)

Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
 
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
 
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
 
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ CC++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
 
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
 
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
 
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ31 - ΤΕΣΤ 33
ΠΛΗ31 - ΤΕΣΤ 33ΠΛΗ31 - ΤΕΣΤ 33
ΠΛΗ31 - ΤΕΣΤ 33
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
 

ΠΛΗ30 ΤΕΣΤ 9

  • 1. ∆ηµήτρης Ψούνης – ΠΛΗ30, Τέστ 9 1 ΠΛΗ30 – ΤΕΣΤ 9 ΘΕΜΑ 1: ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ (A) Ιεραρχήστε τις παρακάτω συναρτήσεις σε αύξουσα σειρά ασυµπτωτικής πολυπλοκότητας: = = 2 = 5 =
  • 2. ∆ηµήτρης Ψούνης – ΠΛΗ30, Τέστ 9 2 (Β) Να λύσετε τις αναδροµές: n n T n TnT log 5 2 2 )()1( +      +      = 4/7 4 128)()2( n n TnT +      = n n TnT +      = 25 5)()3( ( ) 5 21)()4( nnTnT +−= Στη συνέχεια, να διαταχθούν οι λύσεις τους κατά αύξουσα τάξη µεγέθους. Θεώρηµα Κυριαρχίας: Έστω η αναδροµική εξίσωση T(n) = aT(n/b) + f(n), όπου a≥1, b>1 είναι σταθερές, και f(n) είναι µια ασυµπτωτικά θετική συνάρτηση. Τότε διακρίνονται οι ακόλουθες τρεις περιπτώσεις: log log ( ) ( ), ( )b ba a (1) αν f n O n για κάποια σταθερά ε>0, τότε T(n) = nεεεε−−−− = Θ= Θ= Θ= Θ log log ( ) ( ), ( log )b ba a (2) αν f n n τότε T(n) = n n= Θ Θ= Θ Θ= Θ Θ= Θ Θ log ( ) ( ), , ( ( )). b a 0 0 (3) αν f n n για κάποια σταθερά ε>0, και αν υπάρχει σταθερά n τέτοια n ώστε, για κάθε n n , af cf(n) για κάποια σταθερά c<1, τότε T(n) = f n b εεεε++++ = Ω= Ω= Ω= Ω      ≥ ≤ Θ≥ ≤ Θ≥ ≤ Θ≥ ≤ Θ          Υπόδειξη: Θεωρείστε γνωστό ότι: )( 6 1 5 ni n i Θ=∑=
  • 3. ∆ηµήτρης Ψούνης – ΠΛΗ30, Τέστ 9 3 ΘΕΜΑ 2: ΣΧΕ∆ΙΑΣΗ ΑΛΓΟΡΙΘΜΩΝ Ένα υποσύνολο κορυφών VI ⊆ ονοµάζεται ανεξάρτητο αν οποιεσδήποτε δύο κορυφές του I δεν συνδέονται µε ακµή, και ονοµάζεται µέγιστο ανεξάρτητο υποσύνολο αν έχει τη µέγιστη συνολική βαρύτητα µεταξύ όλων των υποσυνόλων του V. Θεωρήστε, για παράδειγµα, την παρακάτω βεβαρυµµένη διαδροµή 7 κορυφών (οι αριθµοί εντός των κορυφών συµβολίζουν βαρύτητες) v1 v2 v3 v4 v5 v6 v7 όπου τα υποσύνολα Ι1 = {v1, v3, v5, v7}, Ι2 = {v2, v4, v6}, Ι3 = {v2, v5, v7} είναι ανεξάρτητα µε βαρύτητες 21, 23, και 24 αντίστοιχα. Το Ι3 είναι το µέγιστο ανεξάρτητο υποσύνολο για την παραπάνω βεβαρυµµένη διαδροµή 7 κορυφών. (Α) Σχεδιάστε έναν αλγόριθµο δυναµικού προγραµµατισµού ο οποίος, δεδοµένης µιας βεβαρυµµένης διαδροµής n κορυφών, βρίσκει τη βαρύτητα του µέγιστου ανεξάρτητου υποσυνόλου (κόστος βέλτιστης λύσης). Η περιγραφή του αλγορίθµου µπορεί να είναι σε άτυπη µορφή, αλλά πρέπει να περιλαµβάνει οπωσδήποτε την/τις αναδροµική/-κες σχέση/-εις που διέπουν τον αλγόριθµο και συµπληρώνουν τον πίνακα δυναµικού προγραµµατισµού. ∆ώστε τον χρόνο εκτέλεσης του αλγορίθµου σας, ο οποίος πρέπει να είναι πολυωνυµικός ως προς το n και ανεξάρτητος των τιµών των βαρυτήτων των κορυφών. (Β) Εκτελέστε τον αλγόριθµό σας στο παραπάνω παράδειγµα δίνοντας τις τιµές του πίνακα δυναµικού προγραµµατισµού σε κάθε βήµα. 2 10 5 4 8 9 6
  • 4. ∆ηµήτρης Ψούνης – ΠΛΗ30, Τέστ 9 4 ΘΕΜΑ 3: ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ Κατασκευάστε Κανονικές Εκφράσεις για τις Γλώσσες του αλφαβήτου {0,1}: L1={ w | w αρχίζει µε 0 και τελειώνει µε 0 } L2={ w | w αρχίζει µε 01 περιέχει το 001 και τελειώνει µε 00} L3={ w | w αρχίζει µε 0 και περιέχει δύο τουλάχιστον φορές το 11} L4={ w | w δεν αρχίζει µε 1} L5={ w | w δεν περιέχει 0} L6={ w | τα 0 της w είναι πολλαπλάσιο του 3} L7={ w | w δεν περιέχει το 11}