SlideShare a Scribd company logo
‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
١
‫اﻟﺪاﻟﺔ‬ ‫ﺗﻌﺮﯾﻒ‬:
‫ﻛﺎﻧﺖ‬ ‫إذا‬‫ﺳﺲ‬،‫ﺻﺺ‬‫ﻣﻦ‬ ‫اﻟﻌﻼﻗﺔ‬ ‫ﻓﺈن‬ ‫ﺧﺎﻟﯿﺘﯿﻦ‬ ‫ﻏﯿﺮ‬ ‫ﻣﺠﻤﻮﻋﺘﯿﻦ‬‫ﺳﺲ‬‫اﻟﻰ‬‫ﺻﺺ‬‫داﻟﺔ‬ ‫ﺗﺴﻤﻰ‬
‫ﻋﻨﺎﺻﺮ‬ ‫ﻣﻦ‬ ‫ﻋﻨﺼﺮ‬ ‫ﻛﻞ‬ ‫ارﺗﺒﻂ‬ ‫إذا‬‫ﺳﺲ‬‫ﻋﻨﺎﺻﺮ‬ ‫ﻣﻦ‬ ‫ﻓﻘﻂ‬ ‫واﺣﺪ‬ ‫ﺑﻌﻨﺼﺮ‬‫ﺻﺺ‬
‫د‬ ‫ﺗﻜﺘﺐ‬ ‫و‬:‫ﺳﺲ‬C‫ﺻﺺ‬‫ص‬ ‫أو‬=‫د‬)‫س‬(
‫ﺑﻄﺮﯾﻘﺘﯿﻦ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻋﻦ‬ ‫ﻧﻌﺒﺮ‬:
)١(‫اﻟﻤﺮﺗ‬ ‫اﻻزواج‬ ‫ﻣﻦ‬ ‫ﻛﻤﺠﻤﻮﻋﺔ‬‫ﺒﺔ‬)‫اﻟﺪاﻟﺔ‬ ‫ﺑﯿﺎن‬(‫د‬:‫ﺳﺲ‬C‫ﺻﺺ‬
)٢(‫اﻟﺪاﻟﺔ‬ ‫ﻗﺎﻋﺪة‬ ‫ﺗﺴﻤﻰ‬ ‫رﯾﺎﺿﯿﺔ‬ ‫ﺑﻘﺎﻋﺪة‬)‫اﻟﺪاﻟﺔ‬ ‫ﺗﺄﺧﺬھﺎ‬ ‫اﻟﺘﻰ‬ ‫اﻟﺼﻮر‬: (‫ص‬=‫د‬)‫س‬(
‫اﻟﻤﺪى‬ ‫و‬ ‫اﻟﻤﻘﺎﺑﻞ‬ ‫اﻟﻤﺠﺎل‬ ‫و‬ ‫اﻟﻤﺠﺎل‬:
‫ﻣﺎ‬ ‫ﻟﺪاﻟﺔ‬ ‫اﻟﻤﻘﺎﺑﻞ‬ ‫اﻟﺸﻜﻞ‬ ‫ﻣﻦ‬:
‫اﻟﻤﺠﺎل‬:
‫ھﻮ‬‫اﻟﻌﻨ‬ ‫ﻣﺠﻤﻮﻋﺔ‬‫ﺎﺻ‬‫اﻟﻤﺘﻐ‬ ‫ﯾﺄﺧﺬھﺎ‬ ‫اﻟﺘﻰ‬ ‫ﺮ‬‫ـ‬‫اﻟﻨ‬ ‫ﯾﻜـﻮن‬ ‫ﺑﺤﯿﺚ‬ ‫س‬ ‫ﯿﺮ‬‫ﺎﺗﺞ‬
‫ﻣﻌﺮﻓﺔ‬ ‫ﻛﻤﯿﺔ‬"‫ﺣﻘﯿﻘﻰ‬ ‫ﻋـﺪد‬. "‫ﺳﺲ‬=}١،٢،٣،٤{
‫اﻟﺴﯿﻨﺎت‬ ‫ﻣﺤﻮر‬ ‫ﻋﻠﻰ‬ ‫ﻗﯿﻤﮫ‬ ‫ﺗﻜﻮن‬ ‫و‬)‫اﻟﺴﯿﻨﺎت‬ ‫ﻣﺤﻮر‬ ‫ﻋﻠﻰ‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫ﻟﻠﺸﻜﻞ‬ ‫اﻟﻤﻘﺎﺑﻠﺔ‬ ‫اﻟﻔﺘﺮة‬(
‫اﻟﻤﻘﺎﺑﻞ‬ ‫اﻟﻤﺠﺎل‬:‫ﺗﺄﺧﺬھﺎ‬ ‫اﻟﺘﻰ‬ ‫اﻷﻋﺪاد‬ ‫ﻣﺠﻤﻮﻋﺔ‬ ‫ھﻮ‬‫ﺻﺺ‬=}٥،٦،٧،٨،٩{
‫اﻟﻤﺪى‬:}٦،٨،٩{
‫ﻋﻨﺎ‬ ‫ﺻﻮر‬ ‫ﻣﺠﻤﻮﻋﺔ‬‫ﺻﺮ‬‫ﺳﺲ‬‫ﻓﻰ‬‫ﺻﺺ‬
)‫س‬ ‫ﺑﻌﻨﺎﺻﺮ‬ ‫اﻟﻤﺮﺗﺒﻄﺔ‬ ‫ص‬ ‫ﻓﻰ‬ ‫اﻟﻌﻨﺎﺻﺮ‬(
‫ص‬ ‫اﻟﻤﺘﻐﯿﺮ‬ ‫ﯾﺄﺧﺬھﺎ‬ ‫اﻟﺘﻰ‬ ‫اﻟﺤﻘﯿﻘﯿﺔ‬ ‫اﻟﻌﻨﺎﺻﺮ‬ ‫ﻣﺠﻤﻮﻋﺔ‬ ‫ھﻮ‬
‫اﻟﺼﺎدات‬ ‫ﻣﺤﻮر‬ ‫ﻣﻦ‬ ‫ﺑﯿﺎﻧﯿﺎ‬ ‫ﻋﻠﯿﮫ‬ ‫وﻧﺤﺼﻞ‬
][‫ﻗﯿﻤﺔ‬ ‫أﺳﻔﻞ‬،‫ﻗﯿﻤﺔ‬ ‫أﻋﻠﻰ‬][
‫اﻟﺤﻘﯿﻘﯿﺔ‬ ‫اﻟﺪاﻟﺔ‬:‫ﻣﻦ‬ ‫ﺟﺰﺋﯿﺔ‬ ‫ﻣﺠﻤﻮﻋﺔ‬ ‫اﻟﻤﻘﺎﺑﻞ‬ ‫ﻣﺠﺎﻟﮭﺎ‬ ‫و‬ ‫ﻣﺠﺎﻟﮭﺎ‬ ‫ﻣﻦ‬ ‫ﻛﻞ‬ ‫داﻟﺔ‬ ‫ھﻰ‬‫ح‬
‫اﻷوﻟﻰ‬ ‫اﻟﻮﺣﺪة‬:‫اﻟﺤﻘﯿﻘﯿﺔ‬ ‫اﻟﺪوال‬
‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
٢
‫ﻣﻼ‬‫ﺣﻈﺔ‬:‫ﺑﯿﺎﻧﯿﺎ‬ ‫داﻟﺔ‬ ‫ﺗﻜﻮن‬ ‫اﻟﻌﻼﻗﺔ‬)‫اﻟﺮأﺳﻰ‬ ‫اﻟﺨﻂ‬ ‫اﺧﺘﺒﺎر‬: (
‫اﻟﺮأﺳﻲ‬ ‫اﻟﺨﻂ‬ ‫ﻗﻄﻊ‬ ‫و‬ ‫ﻣﺘﻌﺎﻣﺪ‬ ‫اﺣﺪاﺛﻰ‬ ‫ﻣﺴﺘﻮى‬ ‫ﻓﻰ‬ ‫اﻟﻨﻘﺎط‬ ‫ﻣﻦ‬ ‫ﺑﻤﺠﻤﻮﻋﺔ‬ ‫ﻋﻼﻗﺔ‬ ‫ﻣﺜﻠﺚ‬ ‫إذا‬
‫داﻟﺔ‬ ‫ﺗﻤﺜﻞ‬ ‫اﻟﻌﻼﻗﺔ‬ ‫ھﺬه‬ ‫ﻓﺈن‬ ‫ﻓﻘﻂ‬ ‫ﻧﻘﻄﺔ‬ ‫ﻓﻰ‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫ﺗﻤﺜﯿﻠﯿﮭﻤﺎ‬ ‫اﻟﻤﺠﺎل‬ ‫ﻋﻨﺎﺻﺮ‬ ‫ﻣﻦ‬ ‫ﻋﻨﺼﺮ‬ ‫ﻛﻞ‬ ‫ﻋﻨﺪ‬
‫ﻣﺜﺎل‬:‫اﻵﺗﯿ‬ ‫اﻻﺷﻜﺎل‬ ‫ﻣﻦ‬ ‫أﯾﺎ‬‫؟‬ ‫ﻟﻤﺎذا‬ ‫و‬ ‫س‬ ‫ﻓﻰ‬ ‫داﻟﺔ‬ ‫ﯾﻤﺜﻞ‬ ‫ﺔ‬
-٢
]١[
-١ ١ ٢ ‫س‬
‫ص‬
٢
١
-١
-١ ١ ٢ ‫س‬
‫ص‬
٢
١
-١
-١ ١ ٢ ‫س‬
‫ص‬
٢
١
-١
-٢
-٢
-١ ١ ٢ ‫س‬
‫ص‬
٢
١
-١
-٢
-٢
-١ ١ ٢ ‫س‬
‫ص‬
٢
١
-١
-١ ١ ٢ ‫س‬
‫ص‬
٢
١
-١
-٢-٢ ]٢[]٣[
]٦[ ]٥[ ]٤[
‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
٣
‫اﻟﺤﻞ‬:
‫اﻟﺸﻜﻞ‬]١: [
‫ﺑﺎﻟﻨﻘﻄﺔ‬ ‫اﻟﻤﺎر‬ ‫اﻟﺮأﺳﻰ‬ ‫اﻟﺨﻂ‬ ‫ﻷن‬ ‫داﻟﺔ‬ ‫ﯾﻤﺜﻞ‬ ‫ﻻ‬)٠،٠(‫ﻧﻘﻄﺘﯿﻦ‬ ‫ﻓﻰ‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫اﻟﺸﻜﻞ‬ ‫ﯾﻘﻄﻊ‬
‫اﻟﺸﻜﻞ‬]٢: [
‫اﻟﺴﯿﻨﺎت‬ ‫ﻣﺤﻮر‬ ‫ﻋﻠﻰ‬ ‫ﻧﻘﻄﺔ‬ ‫ﻛﻞ‬ ‫ﻋﻨﺪ‬ ‫اﻟﺮأﺳﻲ‬ ‫اﻟﺨﻂ‬ ‫ﻷن‬ ‫داﻟﺔ‬ ‫ﺗﻤﺜﻞ‬)‫اﻟﻤﺠﺎل‬(‫ﻓﻰ‬ ‫اﻟﻤﻨﺤﻨﻰ‬ ‫ﯾﻘﻄﻊ‬
‫ﻓﻘﻂ‬ ‫واﺣﺪة‬ ‫ﻧﻘﻄﺔ‬.
‫اﻟﺸﻜﻞ‬]٣: [‫ﻧﻘﻄﺔ‬ ‫ﻣﻦ‬ ‫أﻛﺜﺮ‬ ‫ﻓﻰ‬ ‫اﻟﻤﻨﺤﻨﻰ‬ ‫ﯾﻘﻄﻊ‬ ‫رأﺳﻲ‬ ‫ﺧﻂ‬ ‫ﯾﻮﺟﺪ‬ ‫ﻷن‬ ‫داﻟﺔ‬ ‫ﯾﻤﺜﻞ‬ ‫ﻻ‬.
‫اﻻﺷﻜﺎل‬]٤،٥،٦: [‫داﻟﺔ‬ ‫ﺗﻤﺜﻞ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــ‬
*‫اﻟﻤﺠﺎل‬ ‫ﻟﺘﻌﯿﯿﻦ‬ ‫ھـــﺎﻣﺔ‬ ‫ﻗـﻮاﻋــــﺪ‬:
١(‫أى‬ ‫ﻣﺠﺎل‬‫اﻟﺤﺪود‬ ‫ﻛﺜﯿﺮة‬ ‫داﻟﺔ‬‫درﺟﺘﮭﺎ‬ ‫ﻛﺎن‬ ‫ﻣﮭﻤﺎ‬=‫ح‬.
‫ﻣﺜﻞ‬ ‫اﻟﻤﻘﺎم‬ ‫ﻓﻰ‬ ‫ﻣﺘﻐﯿﺮ‬ ‫ﻋﻠﻰ‬ ‫ﺗﺤﺘﻮى‬ ‫ﻻ‬ ‫اﻟﺘﻰ‬ ‫اﻟﺪاﻟﺔ‬ ‫ھﻰ‬ ‫اﻟﺤﺪود‬ ‫ﻛﺜﯿﺮة‬ ‫اﻟﺪاﻟﺔ‬:
‫د‬)‫س‬= (٥‫د‬ ،)‫س‬= (٣‫د‬ ، ‫س‬)‫س‬= (٢‫ــ‬ ‫س‬٥‫د‬ ،)‫س‬= (‫س‬٢
+‫س‬+١
‫د‬)‫س‬= (‫س‬٣
‫ــ‬٢‫س‬+٤‫د‬ ،)‫س‬= (
٢(‫ﻣﺠﺎل‬‫اﻟﻜﺴﺮﯾﺔ‬ ‫اﻟﺪاﻟﺔ‬=‫ح‬-‫اﻟﻤﻘــــــــﺎم‬ ‫أﺻﻔـــــــﺎر‬.
‫ﻣﺘﻐﯿﺮ‬ ‫ﻋﻠﻰ‬ ‫ﯾﺤﺘﻮى‬ ‫ﻣﻘﺎﻣﮭﺎ‬ ‫ﯾﻜﻮن‬ ‫اﻟﺘﻰ‬ ‫اﻟﺪاﻟﺔ‬ ‫ھﻰ‬ ‫اﻟﻜﺴﺮﯾﺔ‬ ‫اﻟﺪاﻟﺔ‬
‫ﻣﻠﺤﻮظﺔ‬:‫اﻟﻤﻘﺎم‬ ‫ﺗﺠﻌﻞ‬ ‫اﻟﺘﻰ‬ ‫س‬ ‫ﻗﯿﻢ‬ ‫ﻣﺠﻤﻮﻋﺔ‬ ‫ھﻰ‬ ‫اﻟﻤﻘﺎم‬ ‫أﺻﻔﺎر‬ ‫ﻣﺠﻤﻮﻋﺔ‬=‫ﺻﻔﺮ‬
‫اﻟﺪاﻟ‬ ‫ﻣﺠﺎل‬ ‫ﻟﻤﻌﺮﻓﺔ‬ ‫ﻣﺜﻼ‬‫د‬ ‫ﺔ‬)‫س‬= (‫اﻟﻤﻘﺎم‬ ‫أﺻﻔﺎر‬ ‫ﻧﻮﺟﺪ‬
‫س‬ ‫ﺑﻮﺿﻊ‬٢
‫ــ‬٩=٠B‫س‬٢
=٩B‫س‬=±٣B‫د‬ ‫ﻣﺠﺎل‬)‫س‬= (‫ــ‬ ‫ح‬}٣‫ــ‬ ،٣{
‫ﺧـــــﺎﺻﺔ‬ ‫ﺣـــﺎﻟﺔ‬:‫اﻟﻜﺴﺮﯾﺔ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﺠﺎل‬=‫اﻷﺗﯿﺔ‬ ‫اﻟﺤﺎﻻت‬ ‫ﻓﻰ‬ ‫ح‬:
*‫ﺛﺎﺑﺘﺔ‬ ‫داﻟﺔ‬ ‫اﻟﻤﻘﺎم‬.
*‫س‬ ‫اﻟﺼﻮرة‬ ‫ﻋﻠﻰ‬ ‫اﻟﻤﻘﺎم‬‫ن‬
+‫ن‬ ‫ﺣﯿﺚ‬ ‫أ‬←‫زوﺟﻰ‬،‫أ‬Э‫ح‬+
*‫س‬ ‫أ‬ ‫اﻟﺼﻮرة‬ ‫ﻋﻠﻰ‬ ‫اﻟﻤﻘﺎم‬٢
+‫س‬ ‫ب‬+‫ﺟـ‬:‫ﺳﺎﻟﺒﺎ‬ ‫ﯾﻜﻮن‬ ‫اﻟﻤﻤﯿﺰ‬ ‫ﺣﯿﺚ‬ً.
‫ﻣﺜﻼ‬:‫د‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﺠﺎل‬)‫س‬= (
‫س‬ ‫ﻧﻀﻊ‬٢
+٩=٠‫ﺣﯿﺚ‬‫ا‬=١،‫ب‬=٠،‫ج‬=٩
‫ــ‬ ‫س‬٣
٢
‫ــ‬ ‫س‬٢
‫س‬٢
‫ــ‬٩
‫ــ‬ ‫س‬٢
‫س‬٢
+٩
‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
٤
‫اﻟﻤﻤﯿﺰ‬=‫ب‬٢
‫ــ‬٤‫ج‬ ‫ا‬=)٠(٢
‫ــ‬٤×١×٩=‫ــ‬٣٦>٠)‫ﺳﺎﻟﺒﺔ‬ ‫ﻛﻤﯿﺔ‬(
B‫د‬ ‫ﻣﺠﺎل‬)‫س‬= (‫ح‬
٣(‫اﻟﺠﺬرﯾﺔ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﺠﺎل‬:
)‫اﻟﺘﺮﺑﯿﻌﻰ‬ ‫اﻟﺠﺬر‬ ‫ﻋﻠﻰ‬ ‫ﺗﺸﺘﻤﻞ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻗﺎﻋﺪة‬ ‫ﻛﺎﻧﺖ‬ ‫إذا‬ ‫ﺟﺬرﯾﺔ‬ ‫داﻟﺔ‬ ‫ﯾﻘﺎل‬(
‫أوﻻ‬:‫اﻟﺒﺴﻂ‬ ‫ﻓﻰ‬ ‫اﻟﺠﺬر‬ ‫ﻛﺎن‬ ‫إذا‬:‫اﻟﺠﺬر‬ ‫ﺗﺤﺖ‬ ‫ﻣﺎ‬ ‫اﻟﻔﺘﺮة‬ ‫ھﻮ‬ ‫اﻟﻤﺠﺎل‬X٠
‫ﺛﺎﻧﯿﺎ‬:‫اﻟﻤﻘﺎم‬ ‫ﻓﻰ‬ ‫اﻟﺠﺬر‬ ‫ﻛﺎن‬ ‫إذا‬:‫ﺗﺤﺖ‬ ‫ﻣﺎ‬ ‫اﻟﻔﺘﺮة‬ ‫ھﻮ‬ ‫اﻟﻤﺠﺎل‬‫اﻟﺠﺬر‬<٠
‫ﺧﺎﺻﺔ‬ ‫ﺣﺎﻟﺔ‬:
‫د‬ ‫اﻟﺪاﻟﺔ‬)‫س‬= (‫ن‬
‫؟‬‫ھـ‬)"‫س‬"("‫ﺣﯿﺚ‬‫ن‬g‫ﺻﺺ‬+‫ھـ‬ ،)‫س‬(‫ﺣﺪود‬ ‫ﻛﺜﯿﺮة‬
‫أوﻻ‬:‫ﻋﻨﺪﻣﺎ‬‫ن‬‫ﻓﺈن‬ ‫ﻓﺮدى‬ ‫ﻋﺪد‬:‫اﻟﺪاﻟﺔ‬ ‫ﻣﺠﺎل‬=‫ح‬،‫ن‬‫اﻟﺠﺬر‬ ‫دﻟﯿﻞ‬ ‫ﺗﺴﻤﻰ‬
‫ﺛﺎﻧﯿﺎ‬:‫ﻋﻨﺪﻣﺎ‬‫ن‬‫ﻓﺈن‬ ‫زوﺟﻰ‬ ‫ﻋﺪد‬:‫ھـ‬ ‫ﺗﺠﻌﻞ‬ ‫اﻟﺘﻰ‬ ‫س‬ ‫ﻗﯿﻢ‬ ‫ﻣﺠﻤﻮﻋﺔ‬ ‫ھﻮ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﺠﺎل‬)‫س‬(X٠
‫أوﻻ‬ً:‫ﻓــﺮدﯾﺎ‬ ‫اﻟﺠﺬر‬ ‫دﻟﯿﻞ‬ ‫ﯾﻜﻮن‬ ‫ﻋﻨﺪﻣﺎ‬ً:
‫ﻣﺜﻼ‬‫د‬)‫س‬= (←‫د‬ ‫ﻣﺠﺎل‬)‫س‬= (‫ح‬
‫ﺛﺎﻧﯿﺎ‬ً:‫زوﺟﯿﺎ‬ ‫اﻟﺠﺬر‬ ‫دﻟﯿﻞ‬ ‫ﯾﻜﻮن‬ ‫ﻋﻨﺪﻣﺎ‬:
‫ﻣﺜﻼ‬:‫د‬)‫س‬= (
˙.˙‫س‬‫ــ‬٥٠←‫س‬٥←‫د‬ ‫ﻣﺠﺎل‬)‫س‬] = (٥،]
‫ﻣﺜﺎل‬:‫ﻣﺠﺎل‬ ‫ﻋﯿﻦ‬‫د‬)‫س‬= (
‫اﻟﺤ‬‫ﻞ‬:
‫ﺑﻮﺿﻊ‬‫س‬٢
-‫س‬-١٢=٠
)‫س‬-٤)(‫س‬+٣= (٠
‫س‬-٤=٠‫س‬+٣=٠
‫س‬=٤‫س‬=-٣
٤-٣
‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
٥
˙.˙‫ﺳﺎﻟﺒﺔ‬ ‫ﻏﯿﺮ‬ ‫ﻛﻤﯿﺔ‬ ‫اﻟﺠﺬرﯾﺔ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﺠﺎل‬)٠(
.˙.‫د‬ ‫ﻣﺠﺎل‬)‫س‬] = (٤،]‫ﺑﻶ‬[-،-٣[
=‫ح‬-[‫ــ‬٣،٤]
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ﻣﺜﺎل‬:‫اﻵﺗﯿﺔ‬ ‫ﺑﺎﻟﻘﻮاﻋﺪ‬ ‫اﻟﻤﻌﺮﻓﺔ‬ ‫اﻟﺤﻘﯿﻘﯿﺔ‬ ‫اﻟﺪوال‬ ‫ﻣﻦ‬ ‫ﻛﻞ‬ ‫ﻣﺠﺎل‬ ‫ﻋﯿﻦ‬:
]١[‫د‬١)‫س‬= (‫؟‬‫س‬"+"٤"]٢[‫د‬٢)‫س‬= (‫؟‬‫س‬٢
"‫ــ‬"٩"
]٣[‫د‬٣)‫س‬] = (٤[‫د‬٤)‫س‬= (
]٥[‫د‬٥)‫س‬] = (٦[‫د‬٦)‫س‬= (٣
‫؟‬‫س‬"+"٣"
‫اﻟﺤ‬‫ﻞ‬:
]١[A‫زوﺟﻰ‬ ‫اﻟﺠﺬر‬ ‫دﻟﯿﻞ‬B‫س‬+٤X٠C‫س‬X–٤
B‫اﻟﻤﺠﺎل‬=‫ح‬–]-٤،‫ﺿﺾ‬]
]٢[A‫زوﺟﻰ‬ ‫اﻟﺠﺬر‬ ‫دﻟﯿﻞ‬B‫س‬٢
–٩X٠C‫س‬٢
X٩C‫س‬X±٣
B‫اﻟﻤﺠﺎل‬[ =-‫ﺿﺾ‬،-٣[‫ﺑﻶ‬]٣،‫ﺿﺾ‬= ]‫ح‬-[–٣،٣]
]٣[‫س‬ ‫ﻧﻀﻊ‬٢
‫ــ‬٣‫س‬+٢=٠B)‫س‬–٢)(‫س‬–١= (٠C‫س‬=٢،‫أ‬١
B‫اﻟﻤﺠﺎل‬=‫ح‬–}١،٢{
]٤[‫س‬ ‫ﻧﻀﻊ‬٢
+٩=٠‫ﺳﺎﻟﺒﺔ‬ ‫ﻛﻤﯿﺔ‬ ‫اﻟﻤﻤﯿﺰ‬ ‫ﻓﯿﻜﻮن‬B‫اﻟﻤﺠﺎل‬=‫ح‬
]٥[‫س‬ ‫ﻧﻀﻊ‬٢
–٩<٠B)‫س‬–٣)(‫س‬+٣= (٠C‫س‬=٣‫س‬ ،=-٣
A‫اﻟﺠﺬر‬ ‫ﺗﺤﺖ‬ ‫ﻣﺎ‬ ‫اﻟﻔﺘﺮة‬ ‫ھﻮ‬ ‫اﻟﻤﺠﺎل‬<٠B‫اﻟﻤﺠﺎل‬=‫ح‬–]-٣،٣[
]٦[A‫ﻓﺮدى‬ ‫اﻟﺠﺬر‬ ‫دﻟﯿﻞ‬B‫اﻟﻤﺠﺎل‬=‫ح‬
‫ــ‬ ‫س‬٢
‫س‬٢
+٩
٢‫س‬+٣
‫س‬٢
‫ــ‬٣‫س‬+٢
١
‫؟‬‫س‬٢
"‫ــ‬"٩"
‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
٦
‫اﻟــــــــﺪوال‬ ‫ﻋﻠﻰ‬ ‫اﻟﻌﻤﻠﯿﺎت‬
‫أن‬ ‫اﻟﺘﻌﺮﯾﻒ‬ ‫ھﺬا‬ ‫ﻣﻦ‬ ‫ﻧﻼﺣــﻆ‬:
‫أو‬ ‫ﻣﺠﻤﻮع‬‫ﺑﺸﺮط‬ ‫ﺟﺪﯾﺪة‬ ‫داﻟﺔ‬ ‫ھﻮ‬ ‫داﻟﺘﯿﻦ‬ ‫ﺿﺮب‬ ‫أو‬ ‫ﻓﺮق‬)‫م‬١∩‫م‬٢≠Z(‫اﻟﻤﺠﺎل‬ ‫ھﻮ‬ ‫ﻣﺠﺎﻟﮭﺎ‬ ‫ﺣﯿﺚ‬
‫د‬ ‫ﻟﻠﺪاﻟﺘﯿﻦ‬ ‫اﻟﻤﺸﺘﺮك‬١،‫د‬٢‫ﻣﺴﺘﺒﻌﺪا‬ ‫ﻟﻠﺪاﻟﺘﯿﻦ‬ ‫اﻟﻤﺸﺘﺮك‬ ‫اﻟﻤﺠﺎل‬ ‫ھﻮ‬ ‫داﻟﺘﯿﻦ‬ ‫ﻗﺴﻤﺔ‬ ‫ﺧﺎرج‬ ‫ﻣﺠﺎل‬ ‫أﻣﺎ‬
‫اﻟﻤﻘﺎم‬ ‫أﺻﻔﺎر‬ ‫ﻣﻨﮫ‬.
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــ‬
‫ﻣﺜﺎل‬:‫د‬ ‫ﻛﺎن‬ ‫إذا‬١)‫س‬(=‫؟‬‫س‬-"٢"،‫د‬٢)‫س‬= (‫س‬٢
-‫س‬–٦
*‫ﻣﺠﺎل‬ ‫أوﺟﺪ‬)‫د‬١.‫د‬٢()‫س‬(،)()‫س‬(،)‫د‬١+‫د‬٢) (‫س‬(
‫اﻟﺤ‬‫ﻞ‬:
‫د‬١)‫س‬= (‫؟‬‫س‬-"٢"B‫س‬-٢٠‫س‬٢
B‫م‬١=‫د‬ ‫ﻣﺠﺎل‬١)‫س‬] = (٢،]
،‫د‬٢)‫س‬= (‫س‬٢
-‫س‬-٦‫م‬٢=‫د‬ ‫ﻣﺠﺎل‬٢)‫س‬= (‫ح‬
)‫اﻟﻤﻘﺎم‬ ‫أﺻﻔﺎر‬(‫ف‬)‫د‬٢: (‫س‬٢
-‫س‬-٦)‫س‬-٣) (‫س‬+٢= (٠
.˙.‫س‬=٣&‫س‬=-٢.˙.‫ف‬)‫د‬٢= (}٣،-٢{
‫ﻣﺠﺎل‬)‫د‬١.‫د‬٢(‫س‬=‫م‬١∩‫م‬٢] =٢،]∩‫ح‬] =٢،]
( )
( )
( )
‫د‬١
‫د‬٢
‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
٧
.˙.‫ﻣﺠﺎل‬)(‫س‬=‫م‬١∩‫م‬٢-‫ف‬)‫د‬٢(
] =٢،]-}٣،-٢{] =٢،]-}٣{
)‫د‬١+‫د‬٢) (‫س‬= (‫؟‬‫س‬-"٢"+‫س‬٢
-‫س‬–٦
‫ﻣﺠﺎل‬)‫د‬١+‫د‬٢()‫س‬(=‫م‬١∩‫م‬٢] =٢،]∩‫ح‬] =٢،]
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
*‫ﻗﺎﻋﺪة‬ ‫ﻣﻦ‬ ‫ﺑﺄﻛﺜﺮ‬ ‫اﻟﻤﻌﺮﻓﺔ‬ ‫ﻟﻠﺪاﻟﺔ‬ ‫اﻟﻤﺪى‬ ‫و‬ ‫اﻟﻤﺠﺎل‬ ‫اﯾﺠﺎد‬:
‫ﻣ‬‫ﺜﺎل‬:‫ﻣﺪاھﺎ‬ ‫و‬ ‫ﻣﺠﺎﻟﮭﺎ‬ ‫اذﻛﺮ‬ ‫و‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﻨﺤﻨﻰ‬ ‫ارﺳﻢ‬
)‫أ‬(‫د‬)‫س‬) = (‫ب‬(‫د‬)‫س‬= (
‫اﻟﺤﻞ‬:
)‫أ‬(‫س‬ ‫ﻋﻨﺪ‬>٠‫ﻣﻦ‬ ‫ﯾﺒﺪأ‬ ‫و‬ ‫اﻟﺴﯿﻨﺎت‬ ‫ﻣﺤﻮر‬ ‫ﯾﻮازى‬ ‫ﺷﻌﺎع‬ ‫ﺗﻤﺜﻞ‬ ‫ﺛﺎﺑﺘﺔ‬ ‫داﻟﺔ‬)٠،-١(
‫س‬ ‫ﻋﻨﺪ‬<٠‫اﻟ‬ ‫ﻣﺤﻮر‬ ‫ﯾﻮازى‬ ‫ﺷﻌﺎع‬ ‫ﺗﻤﺜﻞ‬ ‫ﺛﺎﺑﺘﺔ‬ ‫داﻟﺔ‬‫ﻣﻦ‬ ‫ﯾﺒﺪأ‬ ‫و‬ ‫ﺴﯿﻨﺎت‬)٠،١(
‫اﻟﻤﺠﺎل‬=‫ــ‬ ‫ح‬}٠{
‫اﻟﻤﺪى‬=}١،-١{
‫ــ‬١‫س‬>٠
١‫س‬<٠
‫س‬+٢‫س‬X٠
‫س‬–٢‫س‬>٠

٣
-٢ -١ ١ ٢ ٣ 
١
-١
٢
‫د‬١
‫د‬٢
‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
٨
)‫ب‬(‫ﻗﺎﻋﺪة‬ ‫ﻟﻜﻞ‬ ‫ﺟﺪول‬ ‫ﻧﺮﺳﻢ‬
‫س‬>٠
‫س‬X٠
‫اﻟﻤﺠﺎل‬=‫اﻟﻤﺪ‬ ، ‫ح‬‫ى‬=‫ــ‬ ‫ح‬]-٢،٢]
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ﻣﺜﺎل‬:‫د‬ ‫ﻛﺎﻧﺖ‬ ‫إذا‬)‫س‬= (
‫اﺳﺘﻨﺘﺞ‬ ‫اﻟﺮﺳﻢ‬ ‫ﻣﻦ‬ ‫و‬ ‫ﻟﻠﺪاﻟﺔ‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫اﻟﺸﻜﻞ‬ ‫ارﺳﻢ‬‫اﻟﺪاﻟﺔ‬ ‫ﻣﺪى‬ ‫و‬ ‫ﻣﺠﺎل‬
‫اﻟﺤﻞ‬:
‫اﻟﺮﺳﻢ‬ ‫ﻣﻦ‬:‫اﻟﺪاﻟﺔ‬ ‫ﻣﺠﺎل‬] =-٢،∞]
‫اﻟﻤﺪى‬[ =-١،∞]
‫س‬
٠-١-٢
‫د‬)‫س‬(-٢-٣-٤
‫س‬
٠١٢
‫د‬)‫س‬(٢٣٤
‫س‬-٢-١٠٠١٢
‫د‬)‫س‬(٣٠-١١٢٣
-٢ -١ ١ ٢ ٣ ٤ 
٣
٢
١
-١
-٢
-٣

‫س‬٢
-١-٢Y‫س‬>٠
‫س‬+١‫س‬X٠
‫س‬٢
–١‫س‬+١
-٢ -١ ١ ٢ ٣ ٤ 
٤
٣
٢
١
-١
-٢

‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
٩
‫ﻣﺜﺎل‬:٣–‫ﻋﻨﺪﻣﺎ‬ ‫س‬-٢Y‫س‬>٢
‫د‬ ‫ﻛﺎﻧﺖ‬ ‫إذا‬)‫س‬= (
‫ﻋﻨﺪﻣﺎ‬ ‫س‬٢Y‫س‬Y٥
‫اﻟﺮﺳﻢ‬ ‫ﻣﻦ‬ ‫اﺳﺘﻨﺞ‬ ‫و‬ ‫ﻟﻠﺪاﻟﺔ‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫اﻟﺸﻜﻞ‬ ‫ارﺳﻢ‬
‫ﻣﺪاھﺎ‬ ‫و‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﺠﺎل‬
‫اﻟﺤﻞ‬:
‫اﻟﻤﺠﺎل‬] =-٢،٥[‫اﻟﻤﺪى‬ ،[ =١،٥[
‫ﻣﺜﺎل‬:‫د‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻛﺎﻧﺖ‬ ‫إذا‬] :-٢،٤[C‫ﺣﯿﺚ‬ ‫ح‬
٢‫س‬+٣‫ﻋﻨﺪﻣﺎ‬-٢Y‫س‬>٠
‫د‬)‫س‬= (
١‫ﻋﻨﺪﻣﺎ‬ ‫س‬ ‫ــ‬٠Y‫س‬Y٤
‫اﻟﺪاﻟﺔ‬ ‫ﻣﺪى‬ ‫و‬ ‫ﻣﺠﺎل‬ ‫اﺳﺘﻨﺞ‬ ‫اﻟﺮﺳﻢ‬ ‫ﻣﻦ‬ ‫و‬ ‫د‬ ‫ﻟﻠﺪاﻟﺔ‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫اﻟﺸﻜﻞ‬ ‫ارﺳﻢ‬
‫اﻟﺤﻞ‬:
-٢Y‫س‬>٠٠Y‫س‬Y٤
‫اﻟﻤﺠﺎل‬] =-٢،٤[
‫اﻟﻤﺪى‬] =-٣،٣]
‫س‬-٢-١٠٠١٤
‫ص‬-١١٣١٠-٣
٢-٢ -١ ١ ٣ ٤ -٣
٤
٣
٢
١
-١
-٢

-٣
-٤
‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
١٠
]١[‫داﻟﺔ‬ ‫ﺗﻤﺜﻞ‬ ‫ﻻ‬ ‫اﻵﺗﯿﺔ‬ ‫اﻟﻌﻼﻗﺎت‬ ‫ﻣﻦ‬ ‫اﯾﺎ‬:
]٢[‫اﻟﻌﻼﻗﺎت‬ ‫ﺟﻤﯿﻊ‬‫اﻟﻌﻼﻗﺔ‬ ‫ﻋﺪا‬ ‫ﻣﺎ‬ ‫ﻓﻰ‬ ‫داﻟﺔ‬ ‫ص‬ ‫ﻓﯿﮭﺎ‬ ‫ﺗﻜﻮن‬ ‫اﻵﺗﯿﺔ‬:
)١(‫ص‬=٢‫ــ‬ ‫س‬٣)٢(‫ص‬=‫س‬٢
‫ــ‬٤)٣(‫س‬=‫ص‬٢
–٢)٤(‫ص‬=‫س‬ ‫ﺣﺎ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــ‬
]٣[‫اﻻﺗﯿﺔ‬ ‫ﺑﺎﻟﻘﻮاﻋﺪ‬ ‫اﻟﻤﻌﺮﻓﺔ‬ ‫اﻟﺤﻘﯿﻘﯿﺔ‬ ‫اﻟﺪوال‬ ‫ﻣﻦ‬ ‫ﻛﻞ‬ ‫ﻣﺠﺎل‬ ‫ﻋﯿﻦ‬:
)١(‫د‬)‫س‬= (‫س‬٢
‫ــ‬٢‫س‬)٢(‫د‬)‫س‬= (‫ــ‬٥)٣(‫د‬)‫س‬= (‫؟‬٢‫س‬"‫ــ‬٣"
‫ﺗﻤﺎرﯾﻦ‬)١(
‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
١١
‫ــ‬٢‫س‬ ‫ﻋﻨﺪﻣﺎ‬>٢
٤‫س‬ ‫ﻋﻨﺪﻣﺎ‬ ‫س‬ ‫ـ‬X٢
)٤(‫د‬)‫س‬) = (٥(‫د‬)‫س‬= (‫؟‬٤‫ــ‬""‫س‬٢
"")٦(‫د‬)‫س‬= (
)٧(‫د‬)‫س‬) = (٨(‫د‬)‫س‬= (
)٩(‫د‬)‫س‬) = (١٠(‫د‬)‫س‬= (٣
‫؟‬‫س‬"
٢
+""‫س‬"-"٦"
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
]٤[‫ﻣﺪاھﺎ‬ ‫ﻋﯿﻦ‬ ‫و‬ ‫ﺑﯿﺎﻧﯿﺎ‬ ‫اﻻﺗﯿﺔ‬ ‫اﻟﺪوال‬ ‫ﻣﺜﻞ‬:
)١(‫د‬ ‫ﻛﺎﻧﺖ‬ ‫إذا‬] :-١،٥[C‫د‬ ، ‫ح‬)‫س‬= (
‫د‬ ‫ﻣﻦ‬ ‫ﻛﻼ‬ ‫ﻓﺄوﺟﺪ‬)-١(‫د‬ ،)٠(‫د‬ ،)١(‫د‬ ،)٢(‫د‬ ،)٣(‫د‬ ،)٤(‫د‬ ،)٥(
‫ا‬ ‫ﺛﻢ‬‫ﻣﺪاھﺎ‬ ‫اﻟﺮﺳﻢ‬ ‫ﻣﻦ‬ ‫اﺳﺘﻨﺘﺞ‬ ‫و‬ ‫ﻟﻠﺪاﻟﺔ‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫اﻟﺸﻜﻞ‬ ‫رﺳﻢ‬.
)٢(‫د‬ ‫ﻛﺎﻧﺖ‬ ‫إذا‬)‫س‬= (
‫د‬ ‫ﻣﻦ‬ ‫ﻛﻼ‬ ‫ﻓﺎوﺟﺪ‬)٢(‫د‬ ،)٣(‫د‬ ،)٤(‫د‬ ،)١(‫د‬ ،)٠(‫د‬ ،)-١(‫د‬ ،)-٤(
‫ﻣﺪاھﺎ‬ ‫اﻟﺮﺳﻢ‬ ‫ﻣﻦ‬ ‫اﺳﺘﻨﺘﺞ‬ ‫و‬ ‫ﻟﻠﺪاﻟﺔ‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫اﻟﺸﻜﻞ‬ ‫ارﺳﻢ‬ ‫ﺛﻢ‬.
)٣(‫د‬ ‫ﻛﺎﻧﺖ‬ ‫إذا‬] :-٣،٣[C‫ﺣﯿﺚ‬ ‫ح‬
‫د‬)‫س‬= (
‫اﻟﺪاﻟﺔ‬ ‫ھﺬه‬ ‫ﻣﺪى‬ ‫اﺳﺘﻨﺞ‬ ‫اﻟﺮﺳﻢ‬ ‫ﻣﻦ‬ ‫و‬ ‫ﻟﻠﺪاﻟﺔ‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫اﻟﺸﻜﻞ‬ ‫ارﺳﻢ‬
‫س‬٢
-٩
‫س‬–٣
٣‫س‬+٢
‫؟‬‫س‬"+"٢"
‫ــ‬ ‫س‬٢
‫س‬٢
‫ــ‬٥‫س‬+٦
‫؟‬‫ــ‬ ‫س‬"٢"
‫س‬٢
‫ــ‬١
٤-‫ﻋﻨﺪﻣﺎ‬ ‫س‬-١Y‫س‬>٢
‫ﻋﻨﺪﻣﺎ‬ ‫س‬٢Y‫س‬Y٥
٢‫س‬ ‫ﻋﻨﺪﻣﺎ‬ ‫س‬X٢
‫س‬+٢‫س‬ ‫ﻋﻨﺪﻣﺎ‬>٢
‫س‬٢
+١‫ﻋﻨﺪﻣﺎ‬-٣Y‫س‬>٠
‫س‬+٢‫ﻋﻨﺪﻣﺎ‬٠Y‫س‬Y٣
‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
١٢
‫اﻟﺪوال‬ ‫إطﺮاد‬:
)‫اﻟــﺪاﻟـــــــﺔ‬ ‫اطـــــــــﺮاد‬(
‫ﺗﺰاﯾﺪﯾﺔ‬‫ﺛﺎﺑﺘﺔ‬ ‫ﺗﻨﺎﻗﺼﯿﺔ‬
١-)‫اﻟﺘﺰاﯾﺪﯾﺔ‬ ‫اﻟﺪاﻟﺔ‬(‫اﻟﻔﺘﺮة‬ ‫ﻓﻰ‬ ‫ﺗﺰاﯾﺪﯾﺔ‬ ‫أﻧﮭﺎ‬ ‫ﻟﻠﺪاﻟﺔ‬ ‫ﯾﻘﺎل‬]‫ﺍ‬،‫ﺏ‬[
‫س‬ ‫ﻟﻜﻞ‬ ‫ﻛﺎن‬ ‫إذا‬١،‫س‬٢g]‫ﺍ‬،‫ﺏ‬[
‫اﻵﺗﻰ‬ ‫اﻟﺸﺮط‬ ‫ﯾﺘﺤﻘﻖ‬:
‫س‬ ‫ﻛﺎن‬ ‫إذا‬١<‫س‬٢‫د‬)‫س‬١(<‫د‬)‫س‬٢(
‫وﺑﺼﻔﺔ‬‫ﻋﺎﻣــــﺔ‬:‫د‬)‫س‬(‫ﻛﺎﻧﺖ‬ ‫إذا‬ ‫ﺗﺰاﯾﺪﯾﺔ‬ ‫ﺗﻜﻮن‬:
‫س‬ ‫ﻗﯿﻤﺔ‬ ‫ﺑﺈزدﯾﺎد‬ ‫ﺗﺘﺰاﯾﺪ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻗﯿﻤﺔ‬.
‫أﺧﺮى‬ ‫وﺑﻄﺮﯾﻘﺔ‬:‫د‬)‫س‬(‫ﻟﻤﻨﺤﻨﻰ‬ ‫اﻟﻤﻤﺎس‬ ‫ﻛﺎن‬ ‫إذا‬ ‫ﺗﺰاﯾﺪﯾﺔ‬ ‫ﺗﻜﻮن‬
‫اﻟﺴﯿﻨﺎت‬ ‫ﻟﻤﺤﻮر‬ ‫اﻟﻤﻮﺟﺐ‬ ‫اﻻﺗﺠﺎه‬ ‫ﻣﻊ‬ ‫ﺣﺎدة‬ ‫زاوﯾﺔ‬ ‫ﯾﺼﻨﻊ‬ ‫اﻟﺪاﻟﺔ‬.
٢-)‫اﻟﺘﻨﺎﻗ‬ ‫اﻟﺪاﻟﺔ‬‫ﺼﯿﺔ‬(‫اﻟﻔﺘﺮة‬ ‫ﻓﻰ‬ ‫ﺗﻨﺎﻗﺼﯿﺔ‬ ‫أﻧﮭﺎ‬ ‫ﻟﻠﺪاﻟﺔ‬ ‫ﯾﻘﺎل‬]‫ﺍ‬،‫ﺏ‬[
‫س‬ ‫ﻟﻜﻞ‬ ‫ﻛﺎن‬ ‫إذا‬١،‫س‬٢g]‫ﺍ‬،‫ﺏ‬[
‫اﻵﺗﻰ‬ ‫اﻟﺸﺮط‬ ‫ﯾﺘﺤﻘﻖ‬:
‫س‬ ‫ﻛﺎن‬ ‫إذا‬١<‫س‬٢‫د‬)‫س‬١(>‫د‬)‫س‬٢(
‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
١٣
‫ﻋﺎﻣــــﺔ‬ ‫وﺑﺼﻔﺔ‬:‫د‬)‫س‬(‫ﻛﺎﻧﺖ‬ ‫إذا‬ ‫ﺗﻨﺎﻗﺼﯿﺔ‬ ‫ﺗﻜﻮن‬:‫ﺑﺈزدﯾ‬ ‫ﺗﺘﻨﺎﻗﺺ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻗﯿﻤﺔ‬‫س‬ ‫ﻗﯿﻤﺔ‬ ‫ﺎد‬.
‫أﺧﺮى‬ ‫وﺑﻄﺮﯾﻘﺔ‬:‫د‬)‫س‬(‫اﻟﺪاﻟﺔ‬ ‫ﻟﻤﻨﺤﻨﻰ‬ ‫اﻟﻤﻤﺎس‬ ‫ﻛﺎن‬ ‫إذا‬ ‫ﺗﻨﺎﻗﺼﯿﺔ‬ ‫ﺗﻜﻮن‬
‫اﻟﺴﯿﻨﺎت‬ ‫ﻟﻤﺤﻮر‬ ‫اﻟﻤﻮﺟﺐ‬ ‫اﻻﺗﺠﺎه‬ ‫ﻣﻊ‬ ‫ﻣﻨﻔﺮﺟﺔ‬ ‫زاوﯾﺔ‬ ‫ﯾﺼﻨﻊ‬.
٣-)‫اﻟﺜﺎﺑﺘﮫ‬ ‫اﻟﺪاﻟﺔ‬(‫اﻟﻔﺘﺮة‬ ‫ﻓﻰ‬ ‫ﺛﺎﺑﺘﮫ‬ ‫أﻧﮭﺎ‬ ‫ﻟﻠﺪاﻟﺔ‬ ‫ﯾﻘﺎل‬]‫ﺍ‬،‫ﺏ‬[
‫س‬ ‫ﻟﻜﻞ‬ ‫ﻛﺎن‬ ‫إذا‬١،‫س‬٢g]‫ﺍ‬،‫ﺏ‬[
‫ﯾﺘ‬‫اﻵﺗﻰ‬ ‫اﻟﺸﺮط‬ ‫ﺤﻘﻖ‬:‫س‬ ‫ﻛﺎن‬ ‫إذا‬١<‫س‬٢‫د‬)‫س‬١= (‫د‬)‫س‬٢= (‫ﺍ‬
‫ﻋﺎﻣــــﺔ‬ ‫وﺑﺼﻔﺔ‬:‫د‬)‫س‬(‫س‬ ‫ﻗﯿﻤﺔ‬ ‫ﻛﺎﻧﺖ‬ ‫ﻣﮭﻤﺎ‬ ‫ﺛﺎﺑﺘﺔ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻗﯿﻤﺔ‬ ‫ﻛﺎﻧﺖ‬ ‫إذا‬ ‫ﺛﺎﺑﺘﺔ‬ ‫ﺗﻜﻮن‬.
‫ﺗﺬﻛﺮ‬‫أن‬:‫اﻟﺼﺎدات‬ ‫ﻣﺤﻮر‬ ‫ﻋﻠﻰ‬ ‫ﯾﻘﺮأ‬ ‫اﻟﻤﺪى‬ ‫أﻣﺎ‬ ‫اﻟﺴﯿﻨﺎت‬ ‫ﻣﺤﻮر‬ ‫ﻋﻠﻰ‬ ‫ﺗﻘﺮأ‬ ‫اﻻطﺮاد‬ ‫ﻓﺘﺮات‬ ‫و‬ ‫اﻟﻤﺠﺎل‬
‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
١٤
‫ﻣﺜﺎل‬:‫اﻟﻤﺪى‬ ‫ذﻛﺮ‬ ‫ﻣﻊ‬ ‫اﻻﺗﯿﺔ‬ ‫اﻟﺪوال‬ ‫ﻣﻦ‬ ‫ﻛﻼ‬ ‫اطﺮاد‬ ‫اﺑﺤﺚ‬:
‫اﻟﺸﻜﻞ‬)١(‫اﻟﺸﻜﻞ‬)٢(‫اﻟﺸﻜﻞ‬)٣(
‫اﻟﺤﻞ‬:
‫اﻟﺸﻜﻞ‬ ‫ﻓﻰ‬)١: (‫اﻟﻤﺪى‬] =٠،٢[
‫اﻻطﺮاد‬:‫ﻓﻰ‬ ‫ﻣﺘﺰاﯾﺪة‬ ‫اﻟﺪاﻟﺔ‬]-٢،٠[‫ﻓﻰ‬ ‫ﺛﺎﺑﺘﺔ‬ ،]٠،٣[‫ﻓﻰ‬ ‫ﻣﺘﻨﺎﻗﺼﺔ‬ ،]٣،٥[
‫اﻟﺸﻜﻞ‬ ‫ﻓﻰ‬)٢: (‫اﻟﻤﺪى‬] =-٢،∞]
‫اﻻطﺮاد‬:‫ﻓﻰ‬ ‫ﻣﺘﺰاﯾﺪة‬]١،∞]‫ﻓﻰ‬ ‫ﻣﺘﻨﺎﻗﺼﺔ‬ ،[-∞،١[
‫اﻟﺸﻜﻞ‬ ‫ﻓﻰ‬)٣: (‫اﻟﻤﺪى‬[ =–∞،٣[
‫اﻻطﺮاد‬:‫ﻓﻰ‬ ‫ﻣﺘﺰاﯾﺪة‬ ‫اﻟﺪاﻟﺔ‬[-∞،٠[‫ﻓﻰ‬ ‫ﻣﺘﻨﺎﻗﺼﺔ‬ ،]٣،∞]‫ﻓ‬ ‫ﺛﺎﺑﺘﺔ‬ ،‫ﻰ‬]٠،٣[
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
*‫اﻟﺪاﻟــــﺔ‬ ‫ﻧﻮع‬:
‫أوﻻ‬:‫اﻟﺰوﺟﯿﺔ‬ ‫اﻟﺪاﻟﺔ‬:
‫ﺟﺒﺮﯾﺎ‬:‫د‬ ‫اﻟﺪاﻟﺔ‬:‫س‬←‫ص‬‫زوﺟﯿﺔ‬ ‫ﺗﻜﻮن‬
‫ﻛﺎﻧﺖ‬ ‫إذا‬:‫د‬)-‫س‬= (‫د‬)‫س‬(‫س‬،-‫س‬g‫اﻟﻤﺠﺎل‬.]‫اﻟﺮﻣﺰ‬‫ﻟﻜﻞ‬ ‫ﯾﻘﺎل‬[
‫ﺑﯿﺎﻧﯿﺎ‬:‫اﻟﺼﺎدات‬ ‫ﺣﻮل‬ ‫ﻣﺘﻤﺎﺛﻼ‬ ‫ﻟﮭﺎ‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫اﻟﺸﻜﻞ‬ ‫ﻛﺎن‬ ‫إذا‬ ‫زوﺟﯿﺔ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﺗﻜﻮن‬.
‫اﻟﻨﻘﻄﺔ‬ ‫ﻛﺎﻧﺖ‬ ‫ﻓﺈذا‬)‫س‬،‫ص‬(g‫اﻟﻨﻘﻄﺔ‬ ‫ﻓﺈن‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﻨﺤﻨﻰ‬)-‫س‬،‫ص‬(g‫اﻟﺪاﻟﺔ‬ ‫ﻣﻨﺤﻨﻰ‬.
٥
٤
٣
٢
١
-١
-٢

-٢ -١ ٠ ١ ٢ ٣ ٤ ٥  -٢ -١ ٠ ١ ٢ ٣ ٤ ٥ 
٥
٤
٣
٢
١
-١
-٢

-٢ -١ ٠ ١ ٢ ٣ ٤ ٥ 
٥
٤
٣
٢
١
-١
-٢

‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
١٥
‫ﺛﺎﻧﯿﺎ‬ً:‫اﻟﻔﺮدﯾﺔ‬ ‫اﻟﺪاﻟﺔ‬:
‫ﺟﱪﻳﺎ‬:‫د‬ ‫اﻟﺪاﻟﺔ‬:‫س‬←‫ﻓﺮدﯾﺔ‬ ‫ﺗﻜﻮن‬ ‫ص‬
‫ﻛﺎﻧﺖ‬ ‫إذا‬:‫د‬)-‫س‬= (-‫د‬)‫س‬(
‫س‬،-‫س‬g‫اﻟﻤﺠﺎل‬.
‫ﺑﻴﺎﻧﻴﺎ‬:
‫اﻷﺻﻞ‬ ‫ﻧﻘﻄﺔ‬ ‫ﺣﻮل‬ ‫ﻣﺘﻤﺎﺛﻼ‬ ‫ﻟﮭﺎ‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫اﻟﺸﻜﻞ‬ ‫ﻛﺎن‬ ‫إذا‬ ‫ﻓﺮدﯾﺔ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﺗﻜﻮن‬.
‫ﻛﺎ‬ ‫ﻓﺈذا‬‫اﻟﻨﻘﻄﺔ‬ ‫ﻧﺖ‬)‫س‬،‫ص‬(‫اﻟﻨﻘﻄﺔ‬ ‫ﻓﺈن‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﻨﺤﻨﻰ‬ ‫ﻋﻠﻰ‬ ‫ﺗﻘﻊ‬)-‫س‬،-‫ص‬(‫أﯾﻀﺎ‬ ‫ﺗﻘﻊ‬
‫اﻟﺪاﻟﺔ‬ ‫ﻣﻨﺤﻨﻰ‬ ‫ﻋﻠﻰ‬.
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
)٣(‫د‬)‫س‬+ (‫د‬)-‫س‬= (٠
‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
١٦
‫ﻣﺜﺎل‬:‫ﺟﺒﺮﯾﺎ‬ ‫اﻵﺗﯿﺔ‬ ‫اﻟﺪوال‬ ‫ﻧﻮع‬ ‫اﺑﺤﺚ‬:
)١(‫د‬)‫س‬) = (٢(‫د‬)‫س‬= (
)٣(‫د‬)‫س‬) + = (٤(‫د‬)‫س‬= (
‫اﻟﺤﻞ‬:
)١(‫د‬)-‫س‬= (= =
=‫د‬)‫س‬(B‫زوﺟﯿﺔ‬ ‫اﻟﺪاﻟﺔ‬
)٢(‫د‬)-‫س‬= = = (‫د‬ ‫ــ‬)‫س‬(B‫ﻓﺮدﯾﺔ‬
)٣(‫د‬)‫س‬ ‫ــ‬+ = + = (
= + =‫د‬)‫س‬(B‫زوﺟﯿﺔ‬ ‫اﻟﺪاﻟﺔ‬
)٤(‫د‬)‫س‬ ‫ـ‬= = (=‫د‬)‫س‬(
B‫زوﺟﯿﺔ‬ ‫اﻟﺪاﻟﺔ‬
٥٥
‫س‬٣
‫ﺣﺎ‬٣‫س‬
١+‫س‬٤
‫س‬|‫س‬|
١+‫س‬ ‫ﺣﺎ‬ ‫س‬
‫س‬–١
‫س‬+١
‫س‬+١
‫س‬–١
‫ــ‬ ‫س‬٣C‫س‬<٠
‫ــ‬ ‫س‬ ‫ــ‬٣C‫س‬>٠
)‫س‬ ‫ــ‬(٣
‫ــ‬ ‫ﺣﺎ‬٣‫س‬
١) +‫س‬ ‫ــ‬(٤
‫س‬ ‫ــ‬٣
×‫ﺣﺎ‬ ‫ــ‬٣‫س‬
١+‫س‬٤
‫س‬٣
‫ﺣﺎ‬٣‫س‬
١+‫س‬٤
‫س‬ ‫ــ‬|‫س‬ ‫ــ‬|
١)+-‫س‬(‫ﺣﺎ‬)-‫س‬(
‫س‬ ‫ــ‬|‫س‬|
١+‫س‬ ‫ﺣﺎ‬ ‫س‬
٥٥
‫س‬ ‫ــ‬–١
‫س‬ ‫ــ‬+١
‫س‬ ‫ــ‬+١
‫س‬ ‫ــ‬–١
٥
‫ــ‬)‫س‬+١(
‫ــ‬)‫س‬-١(
‫ــ‬)‫س‬–١(
‫ــ‬)‫س‬+١(
٥
٥ ‫س‬+١
‫س‬–١
٥
‫س‬–١
‫س‬+١
-‫ــ‬ ‫س‬٣C-‫س‬<٠
‫ــ‬)-‫س‬(‫ــ‬٣C-‫س‬>٠
-‫ــ‬ ‫س‬٣C‫س‬>٠
‫ــ‬ ‫س‬٣C‫س‬<٠
‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
١٧
‫ﻣﺜﺎل‬:‫أو‬ ‫ﻓﺮدﯾﺔ‬ ‫أو‬ ‫زوﺟﯿﺔ‬ ‫اﻟﺪوال‬ ‫ﻣﻦ‬ ‫أى‬ ‫اﺑﺤﺚ‬ ‫و‬ ‫اﻵﺗﯿﺔ‬ ‫اﻟﺪوال‬ ‫ﻣﺜﻞ‬ ‫اﻟﺮﺳﻮﻣﯿﺔ‬ ‫اﻟﺒﺮاﻣﺞ‬ ‫ﺑﺎﺳﺘﺨﺪام‬
‫ﺟﺒﺮﯾﺎ‬ ‫اﺟﺎﺑﺘﻚ‬ ‫ﻣﻦ‬ ‫ﺗﺤﻘﻖ‬ ‫ﺛﻢ‬ ‫ذﻟﻚ‬ ‫ﻏﯿﺮ‬ً.
)١(‫د‬)‫س‬= (‫س‬٢
–٤‫س‬)٢(‫د‬)‫س‬= (‫س‬٣
+‫س‬)٣(‫د‬)‫س‬= (‫س‬ ‫ﺣﺎ‬ ‫س‬
‫اﻟﺤﻞ‬:
)١(‫اﻟﺠﺪول‬ ‫ﻧﻜﻮن‬:‫د‬)‫س‬= (‫س‬٢
–٤‫س‬
‫اﻟﺼﺎدات‬ ‫ﻣﺤﻮر‬ ‫ﺣﻮل‬ ‫ﻣﺘﻤﺎﺛﻼ‬ ‫ﻟﯿﺲ‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫اﻟﺸﻜﻞ‬
‫اﻷﺻﻞ‬ ‫ﻧﻘﻄﺔ‬ ‫ﺣﻮل‬ ‫ﻣﺘﻤﺎﺛﻼ‬ ‫ﻟﯿﺲ‬ ‫و‬
‫د‬)-‫س‬) = (-‫س‬(٢
–٤×)-‫س‬(
=‫س‬٢
+٤‫س‬}‫د‬ ‫ــ‬)‫س‬(
B‫ﻓﺮدﯾﺔ‬ ‫ﻻ‬ ‫و‬ ‫زوﺟﯿﺔ‬ ‫ﻻ‬ ‫اﻟﺪاﻟﺔ‬
)٢(‫د‬)‫س‬= (‫س‬٣
+‫س‬
‫اﻷﺻﻞ‬ ‫ﻧﻘﻄﺔ‬ ‫ﺣﻮل‬ ‫ﻣﺘﻤﺎﺛﻞ‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫اﻟﺸﻜﻞ‬
‫د‬ ،)-‫س‬) = (-‫س‬(٣
) +-‫س‬(
=-‫س‬٣
–‫س‬=-)‫س‬٣
+‫س‬(
=‫د‬ ‫ــ‬)‫س‬(
B‫ﻓﺮدﯾﺔ‬ ‫اﻟﺪاﻟﺔ‬
‫س‬-١٠١٢٣
‫د‬)‫س‬(٥٠-٣-٤-٣
‫س‬-٢-١٠١٢
‫د‬)‫س‬(-١٠-٢٠٢١٠

‫ﺳﺲ‬
‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
١٨
)٣(‫د‬)‫س‬= (‫س‬ ‫ﺣﺎ‬ ‫س‬
‫اﻟﺼﺎدات‬ ‫ﻣﺤﻮر‬ ‫ﺣﻮل‬ ‫ﻣﺘﻤﺎﺛﻼ‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫اﻟﺸﻜﻞ‬
A‫د‬)-‫س‬= (-‫ﺣﺎ‬ ‫س‬)-‫س‬= (‫س‬ ‫ﺣﺎ‬ ‫س‬=‫د‬)‫س‬(
B‫زوﺟﯿﺔ‬ ‫اﻟﺪاﻟﺔ‬.
‫ــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ﻣﺜﺎل‬:‫ﺣﯿﺚ‬ ‫د‬ ‫اﻟﺪاﻟﺔ‬ ‫ﺑﯿﺎﻧﯿﺎ‬ ‫ﻣﺜﻞ‬
‫د‬)‫س‬= (
‫ﺟﺒﺮﯾﺎ‬ ‫ذﻟﻚ‬ ‫ﻣﻦ‬ ‫ﺗﺤﻘﻖ‬ ‫و‬ ‫ذﻟﻚ‬ ‫ﻏﯿﺮ‬ ‫أم‬ ‫ﻓﺮدﯾﺔ‬ ‫أم‬ ‫زوﺟﯿﺔ‬ ‫اﻟﺪاﻟﺔ‬ ‫ھﻞ‬ ‫ﺑﯿﻦ‬ ‫ﺛﻢ‬.
‫اﻟﺤﻞ‬:‫س‬X–٢‫س‬>-٢
‫اﻟﺴﯿﻨﺎت‬ ‫ﻣﺤﻮر‬ ‫ﺣﻮل‬ ‫ﻣﺘﻤﺎﺛﻼ‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫اﻟﺸﻜﻞ‬
A‫د‬)-‫س‬= (
=
}-‫د‬)‫س‬(B‫ﻓﺮدﯾﺔ‬ ‫ﻻ‬ ‫و‬ ‫زوﺟﯿﺔ‬ ‫ﻟﯿﺴﺖ‬ ‫اﻟﺪاﻟﺔ‬
‫س‬-٢-١٠-٢-١-٣
‫ص‬‫ﺻﻔﺮ‬١٢٠-١١
‫س‬+٢C‫س‬X-٢
‫ــ‬ ‫س‬ ‫ــ‬٢C‫س‬>-٢
-‫س‬+٢C-‫س‬X-٢
‫ــ‬ ‫س‬٢C-‫س‬>-٢
-‫س‬+٢C-‫س‬Y٢
‫ــ‬ ‫س‬٢C‫س‬<-٢
‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
١٩
‫ﻣﺜﺎل‬:‫وﻣ‬ ‫اﻵﺗﯾﺔ‬ ‫اﻟداﻟﺔ‬ ‫ارﺳم‬‫واذﻛر‬ ‫اطرادھﺎ‬ ‫واﺑﺣث‬ ‫اﻟﻣدى‬ ‫اذﻛر‬ ‫اﻟرﺳم‬ ‫ن‬‫ﻛوﻧﮭﺎ‬ ‫ﺣﯾث‬ ‫ﻣن‬ ‫ﻧوﻋﮭﺎ‬
‫ذﻟك‬ ‫ﻏﯾر‬ ‫أو‬ ‫ﻓردﯾﺔ‬ ‫أو‬ ‫زوﺟﯾﺔ‬:
‫د‬)‫س‬(=
‫اﻟﺣل‬:
-١ ‫س‬ ١ ٠ ‫س‬
٣ ‫ص‬ ٣ ٢ ‫ص‬
‫اﻟﻣﺟﺎل‬=‫ح‬،‫اﻟﻣدى‬=]٢،∞]
‫ﻓﻰ‬ ‫ﻣﺗﻧﺎﻗﺻﺔ‬ ‫اﻟداﻟﺔ‬[-∞،٠]‫ﻓﻰ‬ ‫ﻣﺗزاﯾدة‬ ،]٠،∞]
‫داﻟﺔ‬ ‫وھﻰ‬‫اﻟﺻﺎدات‬ ‫ﻣﺣور‬ ‫ﺣول‬ ‫ﻣﺗﻣﺎﺛل‬ ‫ﻣﻧﺣﻧﺎھﺎ‬ ‫ﻷن‬ ‫زوﺟﯾﺔ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ﺗﺪرﯾﺐ‬:
‫ﻣﺜﺎل‬:‫ﻓﺮدﯾﺔ‬ ‫أو‬ ‫زوﺟﯿﺔ‬ ‫ﺣﯿﺚ‬ ‫ﻣﻦ‬ ‫اﻵﺗﯿﺔ‬ ‫اﻟﺪوال‬ ‫ﻧﻮع‬ ‫اﺑﺤﺚ‬‫ذﻟﻚ‬ ‫ﻏﯿﺮ‬ ‫أو‬) .ً ‫ﺟﺒﺮﯾﺎ‬(
]١[‫د‬)‫س‬= (٢–‫س‬٢
]٢[‫د‬)‫س‬= (٤‫؟‬‫س‬]٣[‫د‬)‫س‬= (
]٤[‫د‬)‫س‬] = (٥[‫د‬)‫س‬= (‫س‬٣
+‫س‬ ‫ﺣﺘﺎ‬
]٦[‫د‬)‫س‬= (‫؟‬‫س‬٢
"+"٦"]٧[‫د‬)‫س‬=(
]٨[‫د‬)‫س‬] = (٩[‫د‬)‫س‬= (
]١٠[‫د‬)‫س‬= (‫س‬٣
‫س‬ ‫ﺣﺘﺎ‬]١١[‫د‬)‫س‬] = (١٢[‫د‬)‫س‬= (‫س‬٣
+‫س‬ ‫ﺣﺘﺎ‬
‫ــ‬ ‫س‬٣C‫س‬<٠
‫ــ‬ ‫س‬ ‫ــ‬٣C‫س‬>٠
‫س‬٣
‫ﺣﺎ‬٣‫س‬
١+‫س‬٤
‫ــ‬ ‫س‬١C‫س‬X٠
٧‫س‬C‫س‬>٠
٠
٢
‫س‬+٣C‫س‬X٠
‫س‬ ‫ــ‬+٣C‫س‬>٠
)٠،٢(
‫س‬
‫ص‬
‫س‬′
‫ص‬′
٢‫س‬ ‫ﻋﻨﺪﻣﺎ‬ ‫س‬X٠
-٢‫س‬‫س‬ ‫ﻋﻨﺪﻣﺎ‬>٠
‫س‬-١‫س‬ ‫ﻋﻨﺪﻣﺎ‬X١
-‫س‬+١‫س‬ ‫ﻋﻨﺪﻣﺎ‬>١
‫س‬ ‫ظﺎ‬ ‫ــ‬ ‫س‬ ‫ﺣﺎ‬
‫س‬٣
‫ــ‬٣‫س‬
‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
٢٠
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫د‬ ‫ھﻰ‬ ‫اﻟﺜﺎﺑﺘﺔ‬ ‫ﻟﻠﺪاﻟﺔ‬ ‫اﻟﻌﺎﻣﺔ‬ ‫اﻟﺼﻮرة‬)‫س‬= (‫ا‬‫ﺣﯿﺚ‬‫ا‬‫س‬ ‫ﻟﻜﻞ‬ ‫ﺛﺎﺑﺖ‬g‫ح‬
‫اﻟﺴﯿﻨﺎت‬ ‫ﻣﺤﻮر‬ ‫ﯾﻮازى‬ ‫ﺑﻤﺴﺘﻘﯿﻢ‬ ‫ﺑﯿﺎﻧﯿﺎ‬ ‫ﺗﻤﺜﻞ‬ ‫و‬
‫اﻟﻨﻘﻄﺔ‬ ‫ﻓﻰ‬ ‫اﻟﺼﺎدات‬ ‫ﻣﺤﻮر‬ ‫ﯾﻘﻄﻊ‬ ‫و‬)٠،‫ا‬(
‫اﻟﻤﻮﺿﺢ‬ ‫اﻟﺸﻜﻞ‬ ‫ﻓﻰ‬ ‫ﻛﻤﺎ‬:
‫ﻣﺠﺎﻟﮭﺎ‬=‫ﻣﺪاھﺎ‬ ، ‫ح‬=}‫ا‬{‫زوﺟﯿﺔ‬ ‫اﻟﺪاﻟﺔ‬ ،
‫اﻟﻨﻘﺎط‬ ‫ﻣﻦ‬ ‫ﻣﺠﻤﻮﻋﺔ‬ ‫أو‬ ‫ﻧﻘﻄﺔ‬ ‫ﻣﺪاھﺎ‬ ‫اﻟﺘﻰ‬ ‫اﻟﻮﺣﯿﺪة‬ ‫اﻟﺪاﻟﺔ‬ ‫ھﻰ‬ ‫و‬
‫ﻣﻠﺤﻮظﺔ‬:‫ﻛﺎﻧﺖ‬ ‫إذا‬‫ا‬‫اﻟﺴﯿﻨﺎت‬ ‫ﻣﺤﻮر‬ ‫أﻋﻠﻰ‬ ‫ﯾﻜﻮن‬ ‫اﻟﻤﺴﺘﻘﯿﻢ‬ ‫ﻓﺈن‬ ‫ﻣﻮﺟﺒﺔ‬
‫ﻛﺎﻧﺖ‬ ‫إذا‬ ‫و‬ ،‫ا‬‫اﻟﺴﯿﻨﺎت‬ ‫ﻣﺤﻮر‬ ‫أﺳﻔﻞ‬ ‫ﯾﻜﻮن‬ ‫اﻟﻤﺴﺘﻘﯿﻢ‬ ‫ﻓﺈن‬ ‫ﺳﺎﻟﺒﺔ‬
‫أوﻻ‬:‫اﻟﺜﺎﺑﺘﺔ‬ ‫اﻟﺪاﻟﺔ‬
‫ﺻﺺ‬
‫ﺳﺲ‬
)٠،‫ا‬(
‫د‬)‫س‬= (‫ا‬
‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
٢١
-٢‫س‬ ‫ﻋﻨﺪﻣﺎ‬>٠
٢‫س‬ ‫ﻋﻨﺪﻣﺎ‬X٠
‫ﻣﺜﺎل‬:‫اﻟﺪاﻟ‬ ‫ارﺳﻢ‬‫د‬ ‫ﺣﯿﺚ‬ ‫د‬ ‫ﺔ‬)‫س‬= (٣‫اﻟﻨﻮع‬ ‫و‬ ‫اﻻطﺮاد‬ ‫و‬ ‫اﻟﻤﺪى‬ ‫ﻋﯿﻦ‬ ‫اﻟﺮﺳﻢ‬ ‫ﻣﻦ‬ ‫و‬
‫اﻟﺤﻞ‬:
‫اﻟﻤﺪى‬=}٣{
‫ﻣﺠﺎﻟﮭﺎ‬ ‫ﻋﻠﻰ‬ ‫ﺛﺎﺑﺘﺔ‬
‫اﻟﺼﺎدات‬ ‫ﻣﺤﻮر‬ ‫ﺣﻮل‬ ‫ﻟﺘﻤﺎﺛﻠﮭﺎ‬ ‫زوﺟﯿﺔ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــ‬
‫ﻣﺜﺎل‬:‫د‬ ‫اﻟﺪاﻟﺔ‬ ‫ارﺳﻢ‬)‫س‬= (
‫ﻧﻮﻋﮭﺎ‬ ‫ﺑﯿﻦ‬ ‫و‬ ‫اطﺮادھﺎ‬ ‫اﺑﺤﺚ‬ ‫و‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﺪى‬ ‫أوﺟﺪ‬ ‫اﻟﺮﺳﻢ‬ ‫ﻣﻦ‬ ‫و‬.
‫اﻟﺤﻞ‬:
‫ﻓﺘﺮﺗﯿﻦ‬ ‫ﻋﻠﻰ‬ ‫ﻣﻌﺮﻓﺔ‬ ‫اﻟﺪاﻟﺔ‬ ‫ھﺬه‬
‫اﻟﺪاﻟﺔ‬ ‫ﻣﺪى‬=}٢،-٢{
‫اﻟﻔﺘﺮﺗﯿﻦ‬ ‫ﻋﻠﻰ‬ ‫ﺛﺎﺑﺘﺔ‬ ‫اﻟﺪاﻟﺔ‬
]٠،∞]،[-∞،٠]
‫ﻟﯿﺴ‬ ‫اﻟﺪاﻟﺔ‬‫زوﺟﯿﺔ‬ ‫ﻟﯿﺴﺖ‬ ‫و‬ ‫ﻓﺮدﯾﺔ‬ ‫ﺖ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ﻣﺜﺎل‬:‫د‬ ‫اﻟﺪاﻟﺔ‬ ‫ﺑﯿﺎﻧﯿﺎ‬ ‫ﻣﺜﻞ‬] :-٣،٤[C‫ح‬
‫د‬ ‫ﺣﯿﺚ‬)‫س‬= (
‫اﻟﺤﻞ‬:
‫اﻟﻤﺠﺎل‬ ‫ﻋﻠﻰ‬ ‫ﺑﯿﺎﻧﯿﺎ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﺗﻤﺜﯿﻞ‬ ‫اﻟﻤﻘﺎﺑﻞ‬ ‫اﻟﺸﻜﻞ‬[–٣،٤[
‫د‬ ‫ﻣﺪى‬=}١،٠،-١{
-٣ -٢ -١ ١ ٢ ٣ ٤ 
٤
٣
٢
١
-١
-٢
-٣

-٣ -٢ -١ ١ ٢ ٣ ٤ 
٤
٣
٢
١
-١
-٢
-٣

١‫س‬ ،Y-٢
‫ﺻﻔﺮ‬،-٢>‫س‬>٢
-١‫س‬ ،X٢
-٣ -٢ -١ ١ ٢ ٣ ٤ 
٤
٣
٢
١
-١
-٢
-٣

‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
٢٢
‫اﻟﺜﻼث‬ ‫اﻟﻔﺘﺮات‬ ‫ﻣﻦ‬ ‫ﻛﻞ‬ ‫ﻋﻠﻰ‬ ‫ﺛﺎﺑﺘﺔ‬ ‫اﻟﺪاﻟﺔ‬]-٣،-٢[،[–٢،٢]،]٢،٤[
‫ﻓﺮدﯾﺔ‬ ‫اﻟﺪاﻟﺔ‬ ‫أن‬ ‫ﻧﺴﺘﻨﺘﺞ‬ ‫اﻻﺻﻞ‬ ‫ﻟﻨﻘﻄﺔ‬ ‫ﺑﺎﻟﻨﺴﺒﺔ‬ ‫ﻟﻠﺪاﻟﺔ‬ ‫اﻟﺒﯿﺎﻧﻰ‬ ‫اﻟﺸﻜﻞ‬ ‫ﺗﻤﺎﺛﻞ‬ ‫ﻣﻦ‬
‫ــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫د‬ ‫ھﻰ‬ ‫اﻟﺨﻄﯿﺔ‬ ‫ﻟﻠﺪاﻟﺔ‬ ‫اﻟﻌﺎﻣﺔ‬ ‫اﻟﺼﻮرة‬)‫س‬= (‫ا‬‫س‬+‫س‬ ‫ﻟﻜﻞ‬ ‫ب‬g‫ﺣﺢ‬،‫ا‬}٠
‫ﻣﯿﻠﮫ‬ ‫ﻣﺴﺘﻘﯿﻢ‬ ‫ﺑﺨﻂ‬ ‫ﺗﻤﺜﻞ‬ ‫و‬=‫ا‬‫ﻣﺤﻮ‬ ‫وﯾﻘﻄﻊ‬ ،‫اﻟﻨﻘﻄﺔ‬ ‫ﻓﻰ‬ ‫اﻟﺼﺎدات‬ ‫ر‬)٠‫ب‬ ،(‫ﻣﺤﻮر‬ ‫ﯾﻘﻄﻊ‬ ‫و‬
‫اﻟﻨﻘﻄﺔ‬ ‫ﻓﻰ‬ ‫اﻟﺴﯿﻨﺎت‬)،٠(
‫ﻣﺠﺎﻟﮭﺎ‬=‫ﻣﺪاھﺎ‬ ، ‫ح‬=‫ح‬
‫اطﺮادھﺎ‬:
‫ﻋﻨﺪﻣﺎ‬ ‫ﺗﺰاﯾﺪﯾﺔ‬ ‫اﻟﺪاﻟﺔ‬‫ا‬<٠)‫ﻣﻮﺟﺒﺔ‬(
‫ﻣﺜﻼ‬:‫د‬ ‫اﻟﺪاﻟﺔ‬)‫س‬= (٣‫س‬–٢‫ﻣﺘﺰاﯾﺪة‬
‫ﻋﻨﺪﻣﺎ‬ ‫ﺗﻨﺎﻗﺼﯿﺔ‬ ‫اﻟﺪاﻟﺔ‬‫ا‬>٠)‫ﺳﺎﻟﺒﺔ‬(
‫ﻣﺜﻼ‬:‫د‬ ‫اﻟﺪاﻟﺔ‬)‫س‬= (٢–٣‫ﻣﺘﻨﺎﻗﺼﺔ‬ ‫س‬
‫ﻧﻮﻋﮭﺎ‬:
‫ب‬ ‫ﻋﻨﺪﻣﺎ‬ ‫ﻓﺮدﯾﺔ‬ ‫ﻟﻜﻨﮭﺎ‬ ‫و‬ ‫ﻋﺎﻣﺔ‬ ‫ﺑﺼﻔﺔ‬ ‫ﻓﺮدﯾﺔ‬ ‫ﻟﯿﺴﺖ‬ ‫و‬ ‫زوﺟﯿﺔ‬ ‫ﻟﯿﺴﺖ‬ ‫اﻟﺪاﻟﺔ‬=٠
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــ‬
‫ﻣﺜﺎل‬:
‫د‬ ‫اﻟﺪاﻟﺔ‬ ‫ارﺳﻢ‬)‫س‬= (
‫ﻧﻮﻋﮭﺎ‬ ‫و‬ ‫اطﺮادھﺎ‬ ‫و‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﺪى‬ ‫اﺳﺘﻨﺘﺞ‬ ‫اﻟﺮﺳﻢ‬ ‫ﻣﻦ‬ ‫و‬.
‫اﻟﺤﻞ‬:
‫اﻟﻤﺠﺎل‬] =-٤،٤[‫اﻟﻤﺪى‬ ،] =٠،٢[
‫ﻓﻰ‬ ‫ﻣﺘﺰاﯾﺪة‬ ‫اﻟﺪاﻟﺔ‬]-٤،-٢[‫ﻓﻰ‬ ‫ﺛﺎﺑﺘﺔ‬ ،[–٢،٢[
‫ﺗﻨﺎﻗﺼﯿﺔ‬ ،‫ﻓﻰ‬[٢،٤[
‫اﻟﺼﺎدات‬ ‫ﻣﺤﻮر‬ ‫ﺣﻮل‬ ‫ﻣﺘﻤﺎﺛﻠﺔ‬ ‫ﻻﻧﮭﺎ‬ ‫زوﺟﯿﺔ‬ ‫اﻟﺪاﻟﺔ‬
‫ﺛﺎﻧﯿﺎ‬:‫أو‬ ‫اﻷوﻟﻰ‬ ‫اﻟﺪرﺟﺔ‬ ‫داﻟﺔ‬)‫اﻟﺨﻄﯿﺔ‬ ‫اﻟﺪاﻟﺔ‬
(
-‫ب‬
‫ا‬
)٠‫ب‬ ،(
)،٠(
-‫ب‬
‫ا‬
‫ﺳﺺ‬
‫ﺳﺲ‬
‫س‬+٤‫س‬ ،g]-٤،-٢[
٢‫س‬ ،g[–٢،٢[
٤–‫س‬ ، ‫س‬g]٠،٢[
-٤ -٣ -٢ -١ ١ ٢ ٣ ٤
٤
٣
٢
١
-١
-٢
-٣

‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
٢٣
‫ﻣﺜﺎل‬:
‫د‬ ‫ﻟﻠﺪاﻟﺔ‬ ‫اﻟﻤﻨﺤﻨﻰ‬ ‫ارﺳﻢ‬)‫س‬= (
‫ﻧﻮﻋﮭﺎ‬ ‫و‬ ‫اطﺮادھﺎ‬ ‫و‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﺪى‬ ‫اﺳﺘﻨﺘﺞ‬ ‫اﻟﺮﺳﻢ‬ ‫ﻣﻦ‬ ‫و‬
‫اﻟﺤﻞ‬:
‫س‬X٠‫س‬>٠
‫س‬٠١‫س‬٠-١
‫ص‬٢٣‫ص‬-٢-٣
‫اﻟﺪاﻟﺔ‬ ‫ﻣﺠﺎل‬=‫ح‬
‫اﻟﺪاﻟﺔ‬ ‫ﻣﺪى‬[ =-∞،-٢]‫ﺑﻶ‬]٢،∞]
‫ــ‬ ‫ح‬ ‫أو‬]-٢،٢]
‫ﻣﺠﺎﻟﮭﺎ‬ ‫ﻋﻠﻰ‬ ‫ﺗﺰاﯾﺪﯾﺔ‬ ‫اﻟﺪاﻟﺔ‬
‫زوﺟﯿﺔ‬ ‫ﻟﯿﺴﺖ‬ ‫و‬ ‫ﻓﺮدﯾﺔ‬ ‫ﻟﯿﺴﺖ‬ ‫اﻟﺪاﻟﺔ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ﻣﺜﺎل‬:‫د‬ ‫ﺣﯿﺚ‬ ‫د‬ ‫اﻟﺪاﻟﺔ‬ ‫ﺑﯿﺎﻧﯿﺎ‬ ‫ﻣﺜﻞ‬)‫س‬= (‫اﺑﺤﺚ‬ ‫و‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﺪى‬ ‫أوﺟﺪ‬ ‫اﻟﺮﺳﻢ‬ ‫ﻣﻦ‬ ‫و‬
‫ذﻟﻚ‬ ‫ﻏﯿﺮ‬ ‫أو‬ ‫ﻓﺮدﯾﺔ‬ ‫أو‬ ‫زوﺟﯿﺔ‬ ‫ﻛﻮﻧﮭﺎ‬ ‫ﺣﯿﺚ‬ ‫ﻣﻦ‬ ‫ﻧﻮﻋﮭﺎ‬ ‫ﺑﯿﻦ‬ ‫و‬ ‫اطﺮادھﺎ‬.
‫اﻟﺤﻞ‬:
‫اﻻوﻟﻰ‬ ‫اﻟﺪرﺟﺔ‬ ‫ﻣﻦ‬ ‫ﻟﯿﺴﺖ‬ ‫اﻟﺪاﻟﺔ‬ ‫ھﺬه‬‫ﯾﺄﺗﻰ‬ ‫ﻛﻤﺎ‬ ‫اﻻوﻟﻰ‬ ‫اﻟﺪرﺟﺔ‬ ‫ﻣﻦ‬ ‫داﻟﺔ‬ ‫اﻟﻰ‬ ‫ﺗﺤﻮﯾﻠﮭﺎ‬ ‫ﯾﻤﻜﻦ‬ ‫ﻟﻜﻦ‬ ‫و‬:
‫د‬)‫س‬= = (‫س‬+٣‫س‬ ،}٣
‫س‬ ‫ﻋﻨﺪ‬ ‫ﺛﻘﺐ‬ ‫ﺑﮫ‬ ‫ﻣﺴﺘﻘﯿﻢ‬ ‫ﺑﺨﻂ‬ ‫ﺑﯿﺎﻧﯿﺎ‬ ‫ﺗﻤﺜﯿﻠﮭﺎ‬ ‫ﯾﺘﻢ‬ ‫ﻟﺬﻟﻚ‬=٣
‫أن‬ ‫ﻧﻼﺣﻆ‬ ‫اﻟﺮﺳﻢ‬ ‫ﻣﻦ‬:
‫داﻟﺔ‬ ‫ﻣﺠﺎل‬=‫ــ‬ ‫ح‬}٣{
‫اﻟﺪاﻟﺔ‬ ‫ﻣﺪى‬=‫ــ‬ ‫ح‬}٩{
‫ﺗﺰاﯾ‬ ‫اﻟﺪاﻟﺔ‬‫ــ‬ ‫ح‬ ‫ﻣﺠﺎﻟﮭﺎ‬ ‫ﻋﻠﻰ‬ ‫ﺪﯾﺔ‬}٣{
‫س‬+٢‫س‬ ،X٠
‫ــ‬ ‫س‬٢‫س‬ ،>٠
-٣ -٢ -١ ١ ٢ ٣ ٤ 
٦
٥
٤
٣
٢
١
-١
-٢
-٣

‫س‬٢
-٩
‫س‬–٣
)‫س‬+٣)(‫ــ‬ ‫س‬٣(
)‫ــ‬ ‫س‬٣(
٣-٣
٩
‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
٢٤
‫ﻛﻞ‬ ‫ﻣﺪى‬ ‫و‬ ‫ﻣﺠﺎل‬ ‫أوﺟﺪ‬ ‫اﻟﺮﺳﻢ‬ ‫ﻣﻦ‬ ‫و‬ ‫اﻻﺗﯿﺔ‬ ‫ﺑﺎﻟﻘﻮاﻋﺪ‬ ‫اﻟﻤﻌﺮﻓﺔ‬ ‫اﻟﺪوال‬ ‫ﻣﻦ‬ ‫ﻛﻼ‬ ‫ﺑﯿﺎﻧﯿﺎ‬ ‫ﻣﺜﻞ‬
‫ذﻟﻚ‬ ‫ﻏﯿﺮ‬ ‫أو‬ ‫ﻓﺮدﯾﺔ‬ ‫أو‬ ‫زوﺟﯿﺔ‬ ‫ﻛﻮﻧﮭﺎ‬ ‫ﺣﯿﺚ‬ ‫ﻣﻦ‬ ‫ﻧﻮﻋﮭﺎ‬ ‫و‬ ‫اطﺮادھﺎ‬ ‫اﺑﺤﺚ‬ ‫و‬ ‫داﻟﺔ‬.
]١[‫د‬)‫س‬= (‫س‬]٢[‫د‬)‫س‬= (٢‫س‬+٣
]٣[‫د‬)‫س‬] = (٤[‫د‬)‫س‬= (
]٥[‫د‬)‫س‬] = (٦[‫د‬)‫س‬= (
]٧[‫د‬)‫س‬] = (٨[‫د‬)‫س‬= (
]٩[‫د‬)‫س‬= (]١٠[‫د‬)‫س‬= (
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ﻣﺜﺎل‬:‫ا‬ ‫اﻻﺟﺎﺑﺎت‬ ‫ﺑﯿﻦ‬ ‫ﻣﻦ‬ ‫اﻟﺼﺤﯿﺤﺔ‬ ‫اﻻﺟﺎﺑﺔ‬ ‫اﺧﺘﺮ‬‫ﻟﻤﻌﻄﺎة‬:
)١(‫اﻟﻤﻘﺎﺑﻞ‬ ‫ﺑﺎﻟﺸﻜﻞ‬ ‫اﻟﻤﻤﺜﻠﺔ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﺪى‬:‫ھﻮ‬..........
)‫أ‬(}١{)‫ب‬(}١،-١{)‫ﺟـ‬(}-١{)‫د‬(‫ح‬
)٢(‫د‬ ‫اﻟﺪاﻟﺔ‬:‫د‬)‫س‬= (٣–‫ﺗﻜﻮن‬ ‫س‬.................
)‫أ‬(‫ح‬ ‫ﻋﻠﻰ‬ ‫ﺗﺰاﯾﺪﯾﺔ‬)‫ب‬(‫ح‬ ‫ﻋﻠﻰ‬ ‫ﺗﻨﺎﻗﺼﯿﺔ‬
)‫ﺟـ‬(‫ﻓﻰ‬ ‫ﺗﺰاﯾﺪﯾﺔ‬[٣،∞) ]‫د‬(‫ﻓﻰ‬ ‫ﺗﻨﺎﻗﺼﯿﺔ‬]٣،∞]
‫ﺗﻤﺎرﯾﻦ‬)٢(‫ﻋ‬‫اﻟﺨﻄﯿﺔ‬ ‫و‬ ‫اﻟﺜﺎﺑﺘﺔ‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻠﻰ‬
٣‫س‬٢
‫ــ‬٣
‫س‬٢
–١
‫س‬٣
‫س‬ ‫ــ‬
‫س‬٢
–‫س‬
٢‫س‬ ،Y٠
‫ــ‬٢‫س‬ ،<٠
‫س‬ ، ‫س‬X٠
‫س‬ ، ‫س‬ ‫ــ‬>٠
٣‫س‬ ، ‫س‬g]٠،٢[
٦‫س‬ ،g[٢،٤]
‫س‬+٢‫س‬ ،g]٤،٦[
‫س‬+١‫س‬ ،>١
٢،١>‫س‬>٣
‫س‬ ، ‫س‬X٠
‫و‬
١
-١
‫س‬
‫ص‬
‫س‬+٢‫س‬ ،٠
-‫س‬+٢‫س‬ ،>٠
‫س‬+٣‫س‬ ،<٠
٣‫س‬ ،٠
‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
٢٥
*)‫اﻟﻤﻘﯿﺎس‬ ‫ﻣﻔﮭﻮم‬(‫ﺳﺎﻟﺐ‬ ‫ﻏﯿﺮ‬ ‫ﺣﻘﯿﻘﻰ‬ ‫ﻋﺪد‬ ‫ھﻮ‬)٠(
*)‫اﻟﻌــﺪد‬ ‫اﻟﻤﻘﯿﺎس‬(‫اﻟﻌﺪد‬ ‫ھﺬا‬ ‫ﻟﻤﺮﺑﻊ‬ ‫اﻟﻤﻮﺟﺐ‬ ‫اﻟﺘﺮﺑﯿﻌﻰ‬ ‫اﻟﺠﺬر‬ ‫ھﻮ‬.|‫س‬|=‫؟‬‫س‬٢
"
‫ﻣﺜﻼ‬:|-٥|=‫؟‬٢٥،|٣|=‫؟‬٩=٣،|٠|=٠،| |=
*‫اﻟﻤﻘﯿﺎس‬ ‫داﻟﺔ‬ ‫رﺳﻢ‬) :‫اﻟﻤﻘﯿﺎس‬ ‫داﻟﺔ‬ ‫ﺧﻮاص‬(
‫ھﻰ‬ ‫اﻟﻌﺎﻣﺔ‬ ‫اﻟﺼﻮرة‬:‫د‬)‫س‬= (‫ك‬|‫س‬-‫ا‬|+‫ب‬،‫ك‬=±١
‫اﻟﻨﻘﻄﺔ‬ ‫ﻣﻦ‬ ‫ﺑﺸﻌﺎﻋﯿﻦ‬ ‫ﺑﯿﺎﻧﯿﺎ‬ ‫ﺗﻤﺜﻞ‬)‫ا‬‫ب‬ ،(‫اﻟﻤﻨﺤﻨﻰ‬ ‫رأس‬ ‫ﻧﻘﻄﺔ‬ ‫ھﻰ‬)‫ا‬‫ب‬ ،(
‫ا‬=‫اﻟﺴﯿﻨﯿ‬ ‫اﻻزاﺣﺔ‬‫ب‬ ، ‫ﺔ‬=‫س‬ ‫ھﻮ‬ ‫اﻟﺘﻤﺎﺛﻞ‬ ‫ﻣﺤﻮر‬ ‫ﻣﻌﺎدﻟﺔ‬ ، ‫اﻟﺼﺎدﯾﺔ‬ ‫اﻻزاﺣﺔ‬=‫ا‬
‫اﻟﺪاﻟﺔ‬ ‫ﻣﺪى‬] =، ‫ب‬∞]‫اﻟﺪاﻟﺔ‬ ‫ﻣﺪى‬[ =-∞‫ب‬ ،[
‫ﻓﻰ‬ ‫ﺗﺰاﯾﺪﯾﺔ‬ ‫اﻟﺪاﻟﺔ‬]‫ا‬،∞]‫ﻓﻰ‬ ‫ﺗﺰاﯾﺪﯾﺔ‬ ‫اﻟﺪاﻟﺔ‬[-∞،‫ا‬[
‫ﻓﻰ‬ ‫ﺗﻨﺎﻗﺼﯿﺔ‬ ‫اﻟﺪاﻟﺔ‬[-∞،‫ا‬[‫ﻓﻰ‬ ‫ﺗﻨﺎﻗﺼﯿﺔ‬ ‫اﻟﺪاﻟﺔ‬]‫ا‬،∞]
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ﻣﺜﺎل‬:
‫ﺛﺎﻟﺜﺎ‬:‫اﻟﻤﻘـﯿﺎس‬ ‫داﻟــﺔ‬)‫اﻟﻤﻄﻠﻘﺔ‬ ‫اﻟﻘﯿﻤﺔ‬(
١
٢
١
٢
)‫ا‬‫ب‬ ،(
)‫ا‬‫ب‬ ،(
‫ك‬>٠)‫ﺳﺎﻟﺒﺔ‬
(
‫ك‬<٠)‫ﻣﻮﺟﺒﺔ‬(
‫ﺗﻨﺎﻗﺼﯿﺔ‬
‫ﺗﺰاﯾﺪﯾﺔ‬
‫ﺗﺰاﯾﺪﯾﺔ‬
‫ﺗﻨﺎﻗﺼﯿﺔ‬
‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
٢٦
‫ـــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ﻣﺜﺎل‬:‫د‬ ‫اﻟداﻟﺔ‬ ‫ﻣﻧﺣﻧﻰ‬ ‫ارﺳم‬)‫س‬= (-|‫س‬|‫واﻟﻣدى‬ ‫اﻟﻣﺟﺎل‬ ‫ذﻛر‬ ‫ﻣﻊ‬
‫أ‬ ‫زوﺟﯾﺔ‬ ‫ﻛوﻧﮭﺎ‬ ‫ﺣﯾث‬ ‫ﻣن‬ ‫ﻧوﻋﮭﺎ‬ ‫وﺑﯾن‬ ‫اطرادھﺎ‬ ‫اﺑﺣث‬‫ذﻟك‬ ‫ﻏﯾر‬ ‫أو‬ ‫ﻓردﯾﺔ‬ ‫و‬:
‫اﻟﺤﻞ‬:
‫اﻟﻤﻨﺤﻨﻰ‬ ‫رأس‬)٠،٠(
‫ح‬ ‫اﻟﻤﺠﺎل‬
‫اﻟﻤﺪى‬[ =-،٠[
‫ﻓﻰ‬ ‫ﻣﺘﺰاﯾﺪة‬ ‫د‬[-،٠]
‫ﻓﻰ‬ ‫ﻣﺘﻨﺎﻗﺼﺔ‬ ‫د‬]٠،]
‫اﻟﺻﺎدات‬ ‫ﻣﺣور‬ ‫ﺣول‬ ‫ﻣﺗﻣﺎﺛﻠﺔ‬ ‫ﻷﻧﮭﺎ‬ ‫زوﺟﯾﺔ‬ ‫د‬
‫اﻟرﺑﻊ‬ ‫ﻓﻰ‬ ‫اﻷﺻل‬ ‫ﻧﻘطﺔ‬ ‫ﺑداﯾﺗﮭﻣﺎ‬ ‫ﺷﻌﺎﻋﯾن‬ ‫ﺑﯾﺎﻧﯾﺎ‬ ‫ﺗﻣﺛل‬
‫ﯾﻧﺻﻔ‬ ‫و‬ ‫اﻟراﺑﻊ‬ ‫و‬ ‫اﻟﺛﺎﻟث‬‫اﻟﻣﺣورﯾن‬ ‫ﺑﯾن‬ ‫اﻟزاوﯾﺔ‬ ‫ﺎن‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـ‬
‫ﻣﺛﺎل‬:
)٠،٠(
‫س‬′
‫ص‬′
-٣ -٢ -١ ١ ٢ ٣ ٤
٢
١
-١
-٢

‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
٢٧
‫آﺧﺮ‬ ‫ﺣﻞ‬:‫ﻣﻨﺤﻨﻰ‬ ‫ﻧﻔﺲ‬ ‫اﻟﺪاﻟﺔ‬ ‫ھﺬه‬ ‫ﻣﻨﺤﻨﻰ‬|‫س‬|‫اﻟﻤﻮﺟﺐ‬ ‫اﻻﺗﺠﺎة‬ ‫ﻓﻰ‬ ‫وﺣﺪات‬ ‫ﺛﻼث‬ ‫ﺑﺎزاﺣﺔ‬ ‫ﻟﻜﻦ‬ ‫و‬
‫اﻟﺴﯿﻨﺎت‬ ‫ﻟﻤﺤﻮر‬.‫اﻟﺴﯿﻨﯿﺔ‬ ‫اﻻزاﺣﺔ‬=٣‫اﻟﺼﺎدﯾﺔ‬ ‫اﻻزاﺣﺔ‬ ‫و‬ ،=٠
‫ﺳﺒﻖ‬ ‫ﻛﻤﺎ‬ ‫اﻟﺤﻞ‬ ‫ﻧﻜﻤـــــﻞ‬ ‫ﺛﻢ‬.
‫ﻣﻠﺤﻮظﺔ‬:
‫اﻟﺴﯿﻨﺎت‬ ‫ﻣﺤﻮر‬ ‫ﻋﻠﻰ‬ ‫اﻻزاﺣﺔ‬=‫اﻟﻤﻘﯿﺎس‬ ‫ﺻﻔﺮ‬
‫اﻟﺼﺎدات‬ ‫ﻋﻠﻰ‬ ‫اﻻزاﺣﺔ‬=‫اﻟﻤﻘﯿﺎس‬ ‫ﺧﺎرج‬ ‫اﻟﻌﺪد‬)‫اﻟﻤﻘﯿﺎس‬ ‫اﻟﻰ‬ ‫اﻟﻤﻀﺎف‬ ‫اﻟﻌﺪد‬(
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻟﻤﻘﯿﺎس‬ ‫ﻟﺪاﻟﺔ‬ ‫اﻟﮭﻨﺪﺳﯿﺔ‬ ‫اﻟﺘﺤﻮﯾﻼت‬٠
‫اﻟﺮأﺳﯿﺔ‬ ‫اﻻزاﺣﺔ‬)‫اﻟﺼﺎدات‬ ‫ﻣﺤﻮر‬ ‫اﺗﺠﺎه‬ ‫ﻓﻰ‬(:
‫ﻣﺜﺎل‬:‫د‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﻨﺤﻨﻰ‬ ‫ارﺳﻢ‬)‫س‬= (|‫س‬|+٣‫واﻟﻤﺪى‬ ‫اﻟﻤﺠﺎل‬ ‫ذﻛﺮ‬ ‫ﻣﻊ‬
‫ﻓردﯾ‬ ‫أو‬ ‫زوﺟﯾﺔ‬ ‫ﻛوﻧﮭﺎ‬ ‫ﺣﯾث‬ ‫ﻣن‬ ‫ﻧوﻋﮭﺎ‬ ‫وﺑﯾن‬ ‫اطرادھﺎ‬ ‫اﺑﺣث‬‫ذﻟك‬ ‫ﻏﯾر‬ ‫أو‬ ‫ﺔ‬:
‫آﺧﺮ‬ ‫ﺣﻞ‬:‫اﻟﺴﯿﻨﯿﺔ‬ ‫اﻻزاﺣﺔ‬=٠‫اﻟﺼﺎدﯾﺔ‬ ‫اﻻزاﺣﺔ‬ ،=٣
B‫اﻟﺸﻌﺎﻋﯿﻦ‬ ‫ﻣﺒﺪا‬)٠،٣(‫اﻟﺤﻞ‬ ‫ﺑﻨﻔﺲ‬ ‫اﻟﺤﻞ‬ ‫ﻧﻜﻤﻞ‬ ‫ﻟﻠﻤﻨﺤﻨﻰ‬ ‫اﻟﺮأس‬ ‫ﻧﻘﻄﺔ‬ ‫ﺗﺴﻤﻰ‬
‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
٢٨
‫ﻣﺜﺎل‬:‫د‬ ‫اﻟداﻟﺔ‬ ‫ﻣﻧﺣﻧﻰ‬ ‫ارﺳم‬)‫س‬= (|‫س‬|-٢‫واﻟﻣدى‬ ‫اﻟﻣﺟﺎل‬ ‫ذﻛر‬ ‫ﻣﻊ‬
‫وﺑﯾن‬ ‫اطرادھﺎ‬ ‫اﺑﺣث‬‫ذﻟك‬ ‫ﻏﯾر‬ ‫أو‬ ‫ﻓردﯾﺔ‬ ‫أو‬ ‫زوﺟﯾﺔ‬ ‫ﻛوﻧﮭﺎ‬ ‫ﺣﯾث‬ ‫ﻣن‬ ‫ﻧوﻋﮭﺎ‬:
‫اﻟﺣل‬:
‫اﻟﺮأس‬ ‫ﻧﻘﻄﺔ‬)٠،-٢(
‫ح‬ ‫اﻟﻤﺠﺎل‬
‫اﻟﻤﺪى‬] =-٢،]
‫ﻓﻰ‬ ‫ﻣﺘﻨﺎﻗﺼﺔ‬ ‫د‬[-،٠]
‫ﻓﻰ‬ ‫ﻣﺘﺰاﯾﺪة‬ ‫د‬]٠،]
‫اﻟﺼﺎدات‬ ‫ﻣﺤﻮر‬ ‫ﺣﻮل‬ ‫ﻣﺘﻤﺎﺛﻠﺔ‬ ‫ﻷﻧﮭﺎ‬ ‫زوﺟﯿﺔ‬ ‫د‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ﻣﺜﺎل‬:‫د‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﻨﺤﻨﻰ‬ ‫ارﺳﻢ‬)‫س‬= (٢‫ــ‬|‫س‬|‫اﻟﺪاﻟﺔ‬ ‫ﻣﺪى‬ ‫و‬ ‫ﻣﺠﺎل‬ ‫ذﻛﺮ‬ ‫ﻣﻊ‬.
‫ذﻟك‬ ‫ﻏﯾر‬ ‫أو‬ ‫ﻓردﯾﺔ‬ ‫أو‬ ‫زوﺟﯾﺔ‬ ‫ﻛوﻧﮭﺎ‬ ‫ﺣﯾث‬ ‫ﻣن‬ ‫ﻧوﻋﮭﺎ‬ ‫وﺑﯾن‬ ‫اطرادھﺎ‬ ‫اﺑﺣث‬:
‫اﻟﺤﻞ‬:
‫ح‬ ‫اﻟﻤﺠﺎل‬
‫ا‬‫ﻟﻤﺪى‬[ =-،٢[
‫ﻓﻰ‬ ‫ﻣﺘﺰاﯾﺪة‬ ‫د‬[-،٠]
‫ﻓﻰ‬ ‫ﻣﺘﻨﺎﻗﺼﺔ‬ ‫د‬]٠،]
‫اﻟﺻﺎدات‬ ‫ﻣﺣور‬ ‫ﺣول‬ ‫ﻣﺗﻣﺎﺛﻠﺔ‬ ‫ﻷﻧﮭﺎ‬ ‫زوﺟﯾﺔ‬ ‫د‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ﻣﺜﺎل‬:‫د‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﻨﺤﻨﻰ‬ ‫ارﺳﻢ‬)‫س‬= (-|‫س‬|-٢‫واﻟﻤﺪى‬ ‫اﻟﻤﺠﺎل‬ ‫ذﻛﺮ‬ ‫ﻣﻊ‬
‫ذﻟك‬ ‫ﻏﯾر‬ ‫أو‬ ‫ﻓردﯾﺔ‬ ‫أو‬ ‫زوﺟﯾﺔ‬ ‫ﻛوﻧﮭﺎ‬ ‫ﺣﯾث‬ ‫ﻣن‬ ‫ﻧوﻋﮭﺎ‬ ‫وﺑﯾن‬ ‫اطرادھﺎ‬ ‫اﺑﺣث‬:
‫اﻟﺤﻞ‬:
‫ح‬ ‫اﻟﻤﺠﺎل‬
‫اﻟﻤﺪى‬[ =-،-٢[
‫ﻓﻰ‬ ‫ﻣﺘﺰاﯾﺪة‬ ‫د‬[-،٠]
‫ﻓﻰ‬ ‫ﻣﺘﻨﺎﻗﺼﺔ‬ ‫د‬]٠،]
‫اﻟﺼﺎدات‬ ‫ﻣﺤﻮر‬ ‫ﺣﻮل‬ ‫ﻣﺘﻤﺎﺛﻠﺔ‬ ‫ﻷﻧﮭﺎ‬ ‫زوﺟﯿﺔ‬ ‫د‬
)٠،-٢(
‫س‬‫س‬′
‫ص‬′
‫ص‬
)٢،٠()-٢،٠(
)٢،٠(
‫ص‬′
‫س‬‫س‬′
‫ص‬
)٠،٢(
)-٢،٠(
)٠،-٢(
‫س‬′
‫ص‬′
‫ص‬
‫س‬
‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
٢٩
*‫اﻷﻓﻘﯿﺔ‬ ‫اﻻزاﺣﺔ‬)‫اﻟﺴﯿﻨﺎت‬ ‫ﻣﺤﻮر‬ ‫اﺗﺠﺎه‬ ‫ﻓﻰ‬:(
‫ﻣﺜﺎل‬:‫د‬ ‫اﻟداﻟﺔ‬ ‫ﻣﻧﺣﻧﻰ‬ ‫ارﺳم‬)‫س‬= (|‫س‬–٢|‫واﻟﻣدى‬ ‫اﻟﻣﺟﺎل‬ ‫ذﻛر‬ ‫ﻣﻊ‬
‫ذﻟك‬ ‫ﻏﯾر‬ ‫أو‬ ‫ﻓردﯾﺔ‬ ‫أو‬ ‫زوﺟﯾﺔ‬ ‫ﻛوﻧﮭﺎ‬ ‫ﺣﯾث‬ ‫ﻣن‬ ‫ﻧوﻋﮭﺎ‬ ‫وﺑﯾن‬ ‫اطرادھﺎ‬ ‫اﺑﺣث‬:
)‫اﻟﺤﻞ‬(
‫اﻟﺴﯿﻨﯿﺔ‬ ‫اﻻزاﺣﺔ‬=٢‫اﻟﺼﺎدﯾﺔ‬ ،=٠B‫اﻟﻤﻨﺤﻨﻰ‬ ‫راس‬)٢،٠(
‫ح‬ ‫اﻟﻤﺠﺎل‬
‫اﻟﻤﺪى‬] =٠،]
‫ﻓﻰ‬ ‫ﻣﺘﻨﺎﻗﺼﺔ‬ ‫د‬[-،٢]
‫ﻓﻰ‬ ‫ﻣﺘﺰاﯾﺪة‬ ‫د‬]٢،]
‫وﻻﻓﺮدﯾﺔ‬ ‫ﻻزوﺟﯿﺔ‬ ‫د‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــ‬
‫ﻣﺜﺎل‬:‫ارﺳﻢ‬‫د‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﻨﺤﻨﻰ‬)‫س‬= (|‫س‬+٢|‫واﻟﻤﺪى‬ ‫اﻟﻤﺠﺎل‬ ‫ذﻛﺮ‬ ‫ﻣﻊ‬
‫ذﻟك‬ ‫ﻏﯾر‬ ‫أو‬ ‫ﻓردﯾﺔ‬ ‫أو‬ ‫زوﺟﯾﺔ‬ ‫ﻛوﻧﮭﺎ‬ ‫ﺣﯾث‬ ‫ﻣن‬ ‫ﻧوﻋﮭﺎ‬ ‫وﺑﯾن‬ ‫اطرادھﺎ‬ ‫اﺑﺣث‬:
)‫اﻟﺤﻞ‬(
‫اﻟﺴﯿﻨﯿﺔ‬ ‫اﻻزاﺣﺔ‬=-٢‫اﻟﺼﺎدﯾﺔ‬ ،=٠‫اﻟﻤﻨﺤﻨﻰ‬ ‫راس‬ ،)-٢،٠(
‫ح‬ ‫اﻟﻤﺠﺎل‬
‫اﻟﻤﺪى‬] =٠،]
‫ﻓﻰ‬ ‫ﻣﺘﻨﺎﻗﺼﺔ‬ ‫د‬[-،-٢]
‫ﻣﺘ‬ ‫د‬‫ﻓﻰ‬ ‫ﺰاﯾﺪة‬]-٢،]
‫وﻻﻓردﯾﺔ‬ ‫ﻻزوﺟﯾﺔ‬ ‫د‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ﻣﺜﺎل‬:‫د‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﻨﺤﻨﻰ‬ ‫ارﺳﻢ‬)‫س‬= (‫ــ‬|‫س‬–٢|‫واﻟﻤﺪ‬ ‫اﻟﻤﺠﺎل‬ ‫ذﻛﺮ‬ ‫ﻣﻊ‬‫ى‬
‫ذﻟك‬ ‫ﻏﯾر‬ ‫أو‬ ‫ﻓردﯾﺔ‬ ‫أو‬ ‫زوﺟﯾﺔ‬ ‫ﻛوﻧﮭﺎ‬ ‫ﺣﯾث‬ ‫ﻣن‬ ‫ﻧوﻋﮭﺎ‬ ‫وﺑﯾن‬ ‫اطرادھﺎ‬ ‫اﺑﺣث‬:
)‫اﻟﺤﻞ‬(
‫اﻟﻤﻨﺤﻨﻰ‬ ‫رأس‬ ‫ﻧﻘﻄﺔ‬)٢،٠(
‫ح‬ ‫اﻟﻤﺠﺎل‬،‫اﻟﻤﺪى‬[ =-،٠[
‫ﻓﻰ‬ ‫ﻣﺘﺰاﯾﺪة‬ ‫د‬[-،٢]،‫ﻓﻰ‬ ‫ﻣﺘﻨﺎﻗﺼﺔ‬ ‫د‬]٢،]
‫وﻻﻓﺮدﯾﺔ‬ ‫ﻻزوﺟﯿﺔ‬ ‫د‬
)٢،٠(
‫س‬‫س‬′
‫ص‬
‫ص‬′
)٠،٢(
)-٢،٠(
‫س‬‫س‬′
‫ص‬
‫ص‬′
)٠،٢(
)٠،-٢(
‫س‬′ ‫س‬
‫ص‬
‫ص‬′
)٢،٠(
‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
٣٠
‫ﻣﺜﺎل‬:‫د‬ ‫اﻟداﻟﺔ‬ ‫ﻣﻧﺣﻧﻰ‬ ‫ارﺳم‬)‫س‬= (-|‫س‬+٢|‫واﻟﻣدى‬ ‫اﻟﻣﺟﺎل‬ ‫ذﻛر‬ ‫ﻣﻊ‬
‫ذﻟك‬ ‫ﻏﯾر‬ ‫أو‬ ‫ﻓردﯾﺔ‬ ‫أو‬ ‫زوﺟﯾﺔ‬ ‫ﻛوﻧﮭﺎ‬ ‫ﺣﯾث‬ ‫ﻣن‬ ‫ﻧوﻋﮭﺎ‬ ‫وﺑﯾن‬ ‫اطرادھﺎ‬ ‫اﺑﺣث‬:
)‫اﻟﺤﻞ‬(
‫اﻟﻤﻨﺤﻨﻰ‬ ‫راس‬ ‫ﻧﻘﻄﺔ‬)-٢،٠(
‫ح‬ ‫اﻟﻤﺠﺎل‬
‫اﻟﻤﺪى‬[ =-،٠[
‫ﻓﻰ‬ ‫ﻣﺘﺰاﯾﺪة‬ ‫د‬[-،-٢]
‫ﻓﻰ‬ ‫ﻣﺘﻨﺎﻗﺼﺔ‬ ‫د‬]-٢،]
‫وﻻﻓردﯾﺔ‬ ‫ﻻزوﺟﯾﺔ‬ ‫د‬
‫ـــــــــــــــــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــ‬
‫اﻟﺮأﺳﯿﺔ‬ ‫و‬ ‫اﻷﻓﻘﯿﺔ‬ ‫اﻻزاﺣﺔ‬)‫اﺗﺠﺎھ‬ ‫ﻓﻰ‬‫ﻰ‬‫اﻻﺣﺪاﺛﯿﺎت‬ ‫ﻣﺤﻮرى‬(:
‫ﻣﺜﺎل‬:‫د‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﻨﺤﻨﻰ‬ ‫ارﺳﻢ‬)‫س‬= (-|‫س‬+٢|+٣‫اﻟﻤﺠﺎل‬ ‫ذﻛﺮ‬ ‫ﻣﻊ‬‫واﻟﻤﺪى‬
‫ذﻟك‬ ‫ﻏﯾر‬ ‫أو‬ ‫ﻓردﯾﺔ‬ ‫أو‬ ‫زوﺟﯾﺔ‬ ‫ﻛوﻧﮭﺎ‬ ‫ﺣﯾث‬ ‫ﻣن‬ ‫ﻧوﻋﮭﺎ‬ ‫وﺑﯾن‬ ‫اطرادھﺎ‬ ‫اﺑﺣث‬:
)‫اﻟﺤﻞ‬(
‫اﻟﺴﯿﻨﯿﺔ‬ ‫اﻻزاﺣﺔ‬=-٢‫اﻟﺼﺎدﯾﺔ‬ ‫اﻻزاﺣﺔ‬ ،=٣
‫ح‬ ‫اﻟﻤﺠﺎل‬
‫اﻟﻤﺪى‬[ =-،٣[
‫ﻓﻰ‬ ‫ﻣﺘﺰاﯾﺪة‬ ‫د‬[-،-٢]
‫ﻓﻰ‬ ‫ﻣﺘﻨﺎﻗﺼﺔ‬ ‫د‬]-٢،]
‫وﻻﻓردﯾﺔ‬ ‫ﻻزوﺟﯾﺔ‬ ‫د‬
‫ـــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ﻣﺜﺎل‬:
)٠،-٢(
‫س‬′ ‫س‬
‫ص‬
‫ص‬′
)-٢،٠(
)٠،١(
‫س‬′ ‫س‬
‫ص‬
‫ص‬′
)-٢،٣(
‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
٣١
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻟﻤﻘﯿﺎس‬ ‫داﻟﺔ‬ ‫اﻧﻌﻜﺎس‬:
‫ر‬ ‫ﺣﯿﺚ‬ ‫ر‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﻨﺤﻨﻰ‬)‫س‬= (‫ــ‬|‫س‬|
‫د‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻟﻤﻨﺤﻨﻰ‬ ‫اﻧﻌﻜﺎس‬ ‫ھﻮ‬)‫س‬(
‫د‬ ‫ﺣﯿﺚ‬)‫س‬= (|‫س‬|‫اﻟﺴﯿﻨﺎت‬ ‫ﻣﺤﻮر‬ ‫ﻋﻠﻰ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ﻣﺜﺎل‬:‫د‬ ‫ﺣﯿﺚ‬ ‫د‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﻨﺤﻨﻰ‬ ‫اﺳﺘﺨﺪم‬)‫س‬= (|‫س‬|‫ﺣﯿﺚ‬ ‫ع‬ ، ‫ر‬ ‫اﻟﺪاﻟﺘﯿﻦ‬ ‫ﻣﻦ‬ ‫ﻛﻞ‬ ‫ﻟﺘﻤﺜﯿﻞ‬:
)‫أ‬(‫ر‬)‫س‬= (‫ــ‬|‫س‬–١|-٢)‫ب‬(‫ع‬)‫س‬= (٢-|‫س‬+٣|
‫اﻟﺤﻞ‬:
)‫أ‬(
)‫ب‬(
‫اﻟﺮﯾﺎﺿﯿﺎت‬)‫ﺟﺒﺮ‬(‫اﻟﺜﺎﻧﻮى‬ ‫اﻟﺜﺎﻧﻰ‬ ‫اﻟﺼﻒ‬)‫ادﺑﻰ‬(
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫اﻻﺳﺘﺎذ‬ ‫اﻋﺪاد‬/‫اﻟﻤﻨﻔﻠﻮطﻰ‬ ‫ﺧﺎﻟﺪ‬‫ت‬ ‫رﯾﺎﺿﯿﺎت‬ ‫ﺧﺒﯿﺮ‬ ‫ﻣﻌﻠﻢ‬/٠١١٥٤٨٠٢٨١١
٣٢
‫ﺗﺪرﯾﺐ‬‫اﻟﻤﻘﯿﺎس‬ ‫داﻟﺔ‬ ‫ﻋﻠﻰ‬:
]١[‫داﻟﺔ‬ ‫ﻛﻞ‬ ‫ﻣﺪى‬ ‫و‬ ‫ﻣﺠﺎل‬ ‫أوﺟﺪ‬ ‫اﻟﺮﺳﻢ‬ ‫ﻣﻦ‬ ‫و‬ ‫اﻻﺗﯿﺔ‬ ‫ﺑﺎﻟﻘﻮاﻋﺪ‬ ‫اﻟﻤﻌﺮﻓﺔ‬ ‫اﻟﺪوال‬ ‫ﻣﻦ‬ ‫ﻛﻼ‬ ‫ﺑﯿﺎﻧﯿﺎ‬ ‫ﻣﺜﻞ‬
‫ذﻟﻚ‬ ‫ﻏﯿﺮ‬ ‫أو‬ ‫ﻓﺮدﯾﺔ‬ ‫أو‬ ‫زوﺟﯿﺔ‬ ‫ﻛﻮﻧﮭﺎ‬ ‫ﺣﯿﺚ‬ ‫ﻣﻦ‬ ‫ﻧﻮﻋﮭﺎ‬ ‫و‬ ‫اطﺮادھﺎ‬ ‫اﺑﺤﺚ‬ ‫و‬.
‫وﺟﺪ‬ ‫إن‬ ‫اﻟﺘﻤﺎﺛﻞ‬ ‫ﻣﺤﻮر‬ ‫ﻣﻌﺎدﻟﺔ‬ ‫اذﻛﺮ‬ ‫و‬.
)١(‫د‬)‫س‬= (|‫س‬|+٤)٢(‫د‬)‫س‬= (|‫س‬–٣|
)٣(‫ر‬)‫س‬= (|‫س‬|+‫س‬)٤(‫ر‬)‫س‬= (|٢‫س‬+٣|+٣‫س‬–١
)٥(‫د‬)‫س‬= (|‫س‬+٣|)٦(‫د‬)‫س‬= (|‫س‬–٢|+٣
)٧(‫د‬)‫س‬= (١‫ــ‬|‫س‬–٢|)٨(‫د‬)‫س‬= (|٤‫س‬–٢‫س‬|‫ــ‬٣
)٩(‫د‬)‫س‬= (‫ــ‬ ‫س‬|‫ــ‬ ‫س‬٣|)١٠(‫د‬)‫س‬= (٢‫ــ‬|‫س‬|
]٢[‫د‬ ‫ﺣﯿﺚ‬ ‫د‬ ‫اﻟﺪاﻟﺔ‬ ‫ﻣﻨﺤﻨﻰ‬ ‫اﺳﺘﺨﺪم‬)‫س‬= (|‫س‬|‫ع‬ ، ‫ر‬ ‫اﻟﺪاﻟﺘﯿﻦ‬ ‫ﻣﻦ‬ ‫ﻛﻞ‬ ‫ﻟﺘﻤﺜﯿﻞ‬:
)‫أ‬(‫ر‬)‫س‬= (|‫س‬+٤|)‫ب‬(‫ع‬)‫س‬= (|‫س‬–٢|
)‫ﺣـ‬(‫ر‬)‫س‬= (|‫س‬|-٥)‫ء‬(‫ع‬)‫س‬= (|‫س‬|+٦
)‫ھـ‬(‫ر‬)‫س‬(=|‫س‬+٣|-١)‫و‬(‫ع‬)‫س‬= (|‫س‬–٢|+٤
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــ‬‫ــــــ‬‫ـ‬
*‫ﺗﺬﻛ‬‫ـــــــــ‬‫أن‬ ‫ﺮ‬:
‫اﻟﺪاﻟﺔ‬ ‫ﻣﻨﺤﻨﻰ‬ ‫رأس‬ ‫ﻧﻘﻄﺔ‬‫اﻟﺘﺮﺑﯿﻌﯿﺔ‬‫ص‬=‫ﺍ‬‫س‬٢
+‫س‬ ‫ب‬+، ‫ﺣـ‬‫ﺍ‬}٠
‫ﻰ‬‫ﻫ‬‫ھﻰ‬)‫د‬ ،(( )
-‫ﺏ‬
٢‫ﺍ‬
-‫ﺏ‬
٢‫ﺍ‬
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي
ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي

More Related Content

More from ملزمتي

لغة عربية للصف الثاني الإعدادي 2017 - موقع ملزمتي
لغة عربية للصف الثاني الإعدادي 2017 - موقع ملزمتيلغة عربية للصف الثاني الإعدادي 2017 - موقع ملزمتي
لغة عربية للصف الثاني الإعدادي 2017 - موقع ملزمتي
ملزمتي
 
لغة عربية للصف الأول الإعدادي الترم الأول 2017 - موقع ملزمتي
لغة عربية للصف الأول الإعدادي الترم الأول 2017 - موقع ملزمتيلغة عربية للصف الأول الإعدادي الترم الأول 2017 - موقع ملزمتي
لغة عربية للصف الأول الإعدادي الترم الأول 2017 - موقع ملزمتي
ملزمتي
 
لغة عربية للصف الثالث الإعدادي 2017 - موقع ملزمتي
لغة عربية للصف الثالث الإعدادي 2017 - موقع ملزمتيلغة عربية للصف الثالث الإعدادي 2017 - موقع ملزمتي
لغة عربية للصف الثالث الإعدادي 2017 - موقع ملزمتي
ملزمتي
 
رياضيات للصف الاول الثانوى الترم الاول 2017 - موقع ملزمتي
رياضيات للصف الاول الثانوى الترم الاول 2017 - موقع ملزمتيرياضيات للصف الاول الثانوى الترم الاول 2017 - موقع ملزمتي
رياضيات للصف الاول الثانوى الترم الاول 2017 - موقع ملزمتي
ملزمتي
 
تاريخ للصف الثالث الثانوي 2017 - موقع ملزمتي
 تاريخ للصف الثالث الثانوي 2017 - موقع ملزمتي تاريخ للصف الثالث الثانوي 2017 - موقع ملزمتي
تاريخ للصف الثالث الثانوي 2017 - موقع ملزمتي
ملزمتي
 
حاسب الألي للصف الثالث الإعدادي 2017 - موقع ملزمتي
حاسب الألي للصف الثالث الإعدادي 2017 - موقع ملزمتيحاسب الألي للصف الثالث الإعدادي 2017 - موقع ملزمتي
حاسب الألي للصف الثالث الإعدادي 2017 - موقع ملزمتي
ملزمتي
 
رياضيات للصف الثاني الإعدادي الترم الأول 2017 - موقع ملزمتي
رياضيات للصف الثاني الإعدادي الترم الأول 2017 - موقع ملزمتيرياضيات للصف الثاني الإعدادي الترم الأول 2017 - موقع ملزمتي
رياضيات للصف الثاني الإعدادي الترم الأول 2017 - موقع ملزمتي
ملزمتي
 
رياضيات للصف الأول الإعدادي الترم الأول 2017 - موقع ملزمتي
رياضيات للصف الأول الإعدادي الترم الأول 2017 - موقع ملزمتيرياضيات للصف الأول الإعدادي الترم الأول 2017 - موقع ملزمتي
رياضيات للصف الأول الإعدادي الترم الأول 2017 - موقع ملزمتي
ملزمتي
 
جبر للصف الثاني الثانوي الترم الأول علمي 2017 - موقع ملزمتي
جبر للصف الثاني الثانوي الترم الأول علمي 2017 - موقع ملزمتيجبر للصف الثاني الثانوي الترم الأول علمي 2017 - موقع ملزمتي
جبر للصف الثاني الثانوي الترم الأول علمي 2017 - موقع ملزمتي
ملزمتي
 
رياضيات للصف الثالث الإعدادى الترم الأول 2017 - موقع ملزمتي
رياضيات للصف الثالث الإعدادى الترم الأول 2017 - موقع ملزمتيرياضيات للصف الثالث الإعدادى الترم الأول 2017 - موقع ملزمتي
رياضيات للصف الثالث الإعدادى الترم الأول 2017 - موقع ملزمتي
ملزمتي
 
تفاضل وتكامل للصف الثاني الثانوي الترم الأول علمي 2017 - موقع ملزمتي
تفاضل وتكامل للصف الثاني الثانوي الترم الأول علمي 2017 - موقع ملزمتيتفاضل وتكامل للصف الثاني الثانوي الترم الأول علمي 2017 - موقع ملزمتي
تفاضل وتكامل للصف الثاني الثانوي الترم الأول علمي 2017 - موقع ملزمتي
ملزمتي
 
تاريخ للصف الثاني الثانوي 2017 - موقع ملزمتي
تاريخ للصف الثاني الثانوي 2017 - موقع ملزمتيتاريخ للصف الثاني الثانوي 2017 - موقع ملزمتي
تاريخ للصف الثاني الثانوي 2017 - موقع ملزمتي
ملزمتي
 
هندسة للشهادة الإعدادية الترم الأول 2017 - موقع ملزمتي
هندسة للشهادة الإعدادية الترم الأول 2017 - موقع ملزمتيهندسة للشهادة الإعدادية الترم الأول 2017 - موقع ملزمتي
هندسة للشهادة الإعدادية الترم الأول 2017 - موقع ملزمتي
ملزمتي
 
فيزياء للصف الثاني الثانوي 2017 - موقع ملزمتي
فيزياء للصف الثاني الثانوي 2017 - موقع ملزمتيفيزياء للصف الثاني الثانوي 2017 - موقع ملزمتي
فيزياء للصف الثاني الثانوي 2017 - موقع ملزمتي
ملزمتي
 
إنجليزي للصف الثاني الثانوي الترم الأول 2017 - موقع ملزمتي
إنجليزي للصف الثاني الثانوي الترم الأول 2017 - موقع ملزمتيإنجليزي للصف الثاني الثانوي الترم الأول 2017 - موقع ملزمتي
إنجليزي للصف الثاني الثانوي الترم الأول 2017 - موقع ملزمتي
ملزمتي
 
شرح الكيمياء للصف الثالث الثانوي 2017 - موقع ملزمتي
شرح الكيمياء للصف الثالث الثانوي 2017 - موقع ملزمتيشرح الكيمياء للصف الثالث الثانوي 2017 - موقع ملزمتي
شرح الكيمياء للصف الثالث الثانوي 2017 - موقع ملزمتي
ملزمتي
 
مذكرة انجليزي + القصة للصف الأول الإعدادي الترم الأول 2017 - موقع ملزمتي
مذكرة انجليزي + القصة للصف الأول الإعدادي الترم الأول 2017 - موقع ملزمتيمذكرة انجليزي + القصة للصف الأول الإعدادي الترم الأول 2017 - موقع ملزمتي
مذكرة انجليزي + القصة للصف الأول الإعدادي الترم الأول 2017 - موقع ملزمتي
ملزمتي
 
كتاب براعم اللغة الانجليزية للاطفال - موقع ملزمتي
كتاب براعم اللغة الانجليزية للاطفال - موقع ملزمتيكتاب براعم اللغة الانجليزية للاطفال - موقع ملزمتي
كتاب براعم اللغة الانجليزية للاطفال - موقع ملزمتي
ملزمتي
 
انجليزي أولى إبتدائي الفصل الدراسي الأول 2017 - موقع ملزمتي
انجليزي أولى إبتدائي الفصل الدراسي الأول 2017 - موقع ملزمتيانجليزي أولى إبتدائي الفصل الدراسي الأول 2017 - موقع ملزمتي
انجليزي أولى إبتدائي الفصل الدراسي الأول 2017 - موقع ملزمتي
ملزمتي
 
كتاب براعم الحساب للاطفال - موقع ملزمتي
كتاب براعم الحساب للاطفال - موقع ملزمتيكتاب براعم الحساب للاطفال - موقع ملزمتي
كتاب براعم الحساب للاطفال - موقع ملزمتي
ملزمتي
 

More from ملزمتي (20)

لغة عربية للصف الثاني الإعدادي 2017 - موقع ملزمتي
لغة عربية للصف الثاني الإعدادي 2017 - موقع ملزمتيلغة عربية للصف الثاني الإعدادي 2017 - موقع ملزمتي
لغة عربية للصف الثاني الإعدادي 2017 - موقع ملزمتي
 
لغة عربية للصف الأول الإعدادي الترم الأول 2017 - موقع ملزمتي
لغة عربية للصف الأول الإعدادي الترم الأول 2017 - موقع ملزمتيلغة عربية للصف الأول الإعدادي الترم الأول 2017 - موقع ملزمتي
لغة عربية للصف الأول الإعدادي الترم الأول 2017 - موقع ملزمتي
 
لغة عربية للصف الثالث الإعدادي 2017 - موقع ملزمتي
لغة عربية للصف الثالث الإعدادي 2017 - موقع ملزمتيلغة عربية للصف الثالث الإعدادي 2017 - موقع ملزمتي
لغة عربية للصف الثالث الإعدادي 2017 - موقع ملزمتي
 
رياضيات للصف الاول الثانوى الترم الاول 2017 - موقع ملزمتي
رياضيات للصف الاول الثانوى الترم الاول 2017 - موقع ملزمتيرياضيات للصف الاول الثانوى الترم الاول 2017 - موقع ملزمتي
رياضيات للصف الاول الثانوى الترم الاول 2017 - موقع ملزمتي
 
تاريخ للصف الثالث الثانوي 2017 - موقع ملزمتي
 تاريخ للصف الثالث الثانوي 2017 - موقع ملزمتي تاريخ للصف الثالث الثانوي 2017 - موقع ملزمتي
تاريخ للصف الثالث الثانوي 2017 - موقع ملزمتي
 
حاسب الألي للصف الثالث الإعدادي 2017 - موقع ملزمتي
حاسب الألي للصف الثالث الإعدادي 2017 - موقع ملزمتيحاسب الألي للصف الثالث الإعدادي 2017 - موقع ملزمتي
حاسب الألي للصف الثالث الإعدادي 2017 - موقع ملزمتي
 
رياضيات للصف الثاني الإعدادي الترم الأول 2017 - موقع ملزمتي
رياضيات للصف الثاني الإعدادي الترم الأول 2017 - موقع ملزمتيرياضيات للصف الثاني الإعدادي الترم الأول 2017 - موقع ملزمتي
رياضيات للصف الثاني الإعدادي الترم الأول 2017 - موقع ملزمتي
 
رياضيات للصف الأول الإعدادي الترم الأول 2017 - موقع ملزمتي
رياضيات للصف الأول الإعدادي الترم الأول 2017 - موقع ملزمتيرياضيات للصف الأول الإعدادي الترم الأول 2017 - موقع ملزمتي
رياضيات للصف الأول الإعدادي الترم الأول 2017 - موقع ملزمتي
 
جبر للصف الثاني الثانوي الترم الأول علمي 2017 - موقع ملزمتي
جبر للصف الثاني الثانوي الترم الأول علمي 2017 - موقع ملزمتيجبر للصف الثاني الثانوي الترم الأول علمي 2017 - موقع ملزمتي
جبر للصف الثاني الثانوي الترم الأول علمي 2017 - موقع ملزمتي
 
رياضيات للصف الثالث الإعدادى الترم الأول 2017 - موقع ملزمتي
رياضيات للصف الثالث الإعدادى الترم الأول 2017 - موقع ملزمتيرياضيات للصف الثالث الإعدادى الترم الأول 2017 - موقع ملزمتي
رياضيات للصف الثالث الإعدادى الترم الأول 2017 - موقع ملزمتي
 
تفاضل وتكامل للصف الثاني الثانوي الترم الأول علمي 2017 - موقع ملزمتي
تفاضل وتكامل للصف الثاني الثانوي الترم الأول علمي 2017 - موقع ملزمتيتفاضل وتكامل للصف الثاني الثانوي الترم الأول علمي 2017 - موقع ملزمتي
تفاضل وتكامل للصف الثاني الثانوي الترم الأول علمي 2017 - موقع ملزمتي
 
تاريخ للصف الثاني الثانوي 2017 - موقع ملزمتي
تاريخ للصف الثاني الثانوي 2017 - موقع ملزمتيتاريخ للصف الثاني الثانوي 2017 - موقع ملزمتي
تاريخ للصف الثاني الثانوي 2017 - موقع ملزمتي
 
هندسة للشهادة الإعدادية الترم الأول 2017 - موقع ملزمتي
هندسة للشهادة الإعدادية الترم الأول 2017 - موقع ملزمتيهندسة للشهادة الإعدادية الترم الأول 2017 - موقع ملزمتي
هندسة للشهادة الإعدادية الترم الأول 2017 - موقع ملزمتي
 
فيزياء للصف الثاني الثانوي 2017 - موقع ملزمتي
فيزياء للصف الثاني الثانوي 2017 - موقع ملزمتيفيزياء للصف الثاني الثانوي 2017 - موقع ملزمتي
فيزياء للصف الثاني الثانوي 2017 - موقع ملزمتي
 
إنجليزي للصف الثاني الثانوي الترم الأول 2017 - موقع ملزمتي
إنجليزي للصف الثاني الثانوي الترم الأول 2017 - موقع ملزمتيإنجليزي للصف الثاني الثانوي الترم الأول 2017 - موقع ملزمتي
إنجليزي للصف الثاني الثانوي الترم الأول 2017 - موقع ملزمتي
 
شرح الكيمياء للصف الثالث الثانوي 2017 - موقع ملزمتي
شرح الكيمياء للصف الثالث الثانوي 2017 - موقع ملزمتيشرح الكيمياء للصف الثالث الثانوي 2017 - موقع ملزمتي
شرح الكيمياء للصف الثالث الثانوي 2017 - موقع ملزمتي
 
مذكرة انجليزي + القصة للصف الأول الإعدادي الترم الأول 2017 - موقع ملزمتي
مذكرة انجليزي + القصة للصف الأول الإعدادي الترم الأول 2017 - موقع ملزمتيمذكرة انجليزي + القصة للصف الأول الإعدادي الترم الأول 2017 - موقع ملزمتي
مذكرة انجليزي + القصة للصف الأول الإعدادي الترم الأول 2017 - موقع ملزمتي
 
كتاب براعم اللغة الانجليزية للاطفال - موقع ملزمتي
كتاب براعم اللغة الانجليزية للاطفال - موقع ملزمتيكتاب براعم اللغة الانجليزية للاطفال - موقع ملزمتي
كتاب براعم اللغة الانجليزية للاطفال - موقع ملزمتي
 
انجليزي أولى إبتدائي الفصل الدراسي الأول 2017 - موقع ملزمتي
انجليزي أولى إبتدائي الفصل الدراسي الأول 2017 - موقع ملزمتيانجليزي أولى إبتدائي الفصل الدراسي الأول 2017 - موقع ملزمتي
انجليزي أولى إبتدائي الفصل الدراسي الأول 2017 - موقع ملزمتي
 
كتاب براعم الحساب للاطفال - موقع ملزمتي
كتاب براعم الحساب للاطفال - موقع ملزمتيكتاب براعم الحساب للاطفال - موقع ملزمتي
كتاب براعم الحساب للاطفال - موقع ملزمتي
 

ملزمة جبر للصف الثاني الثانوي الترم الأول أدبي 2017 - موقع ملزمتي