SlideShare a Scribd company logo
∆ηµήτρης Ψούνης – ΠΛΗ20, Επανάληψη 7 1
ΠΛΗ20 – ΕΠΑΝΑΛΗΨΗ 7
Θεωρία Κατηγορηµατικής Λογικής
Ο∆ΗΓΙΕΣ ΓΙΑ ΤΗΝ ΕΠΑΝΑΛΗΨΗ
Επαναλάβετε τα µαθήµατα:
• Κατηγορηµατική Λογική – Μάθηµα 3.1: Εισαγωγή στην Κατηγορηµατική Λογική
• Κατηγορηµατική Λογική – Μάθηµα 3.5: Νόµοι Κατηγορηµατικής Λογικής
• Κατηγορηµατική Λογική – Μάθηµα 3.6: Θεωρία Κατηγορηµατικής Λογικής
• Κατηγορηµατική Λογική – Μάθηµα 3.8: Η γλώσσα των µη κατευθυνόµενων γραφηµάτων
Ο∆ΗΓΙΕΣ ΓΙΑ ΤΟΝ ΧΡΟΝΟ ΕΠΙΛΥΣΗΣ ΑΣΚΗΣΕΩΝ:
Τα µαθήµατα που πέφτουν σχεδόν σε κάθε εξεταστική, είναι τα µαθήµατα 3.7 και 3.8. ∆ώστε ιδιαίτερη
έµφαση στον ορισµό του λογικά έγκυρου τύπου από το µάθηµα 3.6.
Κάθε οµάδα ερωτήσεων (Σ/Λ) πρέπει να έχει απαντηθεί εντός 7’ και όλες οι ασκήσεις εντός του
συνιστώµενου χρόνου. Έπειτα συµβουλευτείτε τις αντίστοιχες ηχογραφήσεις για να δείτε
ολοκλήρωµένα τις λύσεις των ασκήσεων.
Συνιστώµενοι Χρόνοι για την επανάληψη:
Χρόνος Μελέτης των Μαθηµάτων: 1.00’
Χρόνος Απάντησης Ερωτήσεων : 42’
Χρόνος Απάντησης Ασκήσεων: 2.30’
Ηχογραφήσεις Ασκήσεων: 2.30’
∆ηµήτρης Ψούνης – ΠΛΗ20, Επανάληψη 7 2
Ερωτήσεις
Ερωτήσεις 1
Εξετάστε ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λάθος.
1. Αν ο τύπος ϕ είναι έγκυρος τότε και ο xϕ∀ είναι έγκυρος.
2. Αν ο τύπος xϕ∀ είναι έγκυρος τότε και ο ϕ είναι έγκυρος.
3. Αν ο τύπος xϕ∃ είναι έγκυρος τότε και ο ϕ είναι έγκυρος.
4. Αν ο τύπος ϕ είναι έγκυρος τότε και ο xϕ∃ είναι έγκυρος.
Ερωτήσεις 2
Εξετάστε ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λάθος.
1. Ο τύπος ∃x P(x) → P(c) είναι έγκυρος.
2. Ο τύπος P(c) → ∃x P(x) είναι έγκυρος.
3. Ο τύπος ∀x P(x) → P(c) είναι έγκυρος.
4. Ο τύπος P(c) → ∀x P(x) είναι έγκυρος.
Ερωτήσεις 3
Απαντήστε µε Σωστό/Λάθος ανάλογα µε το αν ο αντίστοιχος τύπος είναι έγκυρος ή όχι.
1. ( ) ( )xP x xP x∀ → ∃
2. ( ( ) ( )) ( ( ) ( ))xP x x Q x x P x Q x¬∃ ∧ ∀ ¬ → ∃ ∧
3. ( , ) ( , )xP x x x yP x y∃ → ∀ ∃
4. [ ( , ) ( , ) ( , )]x y z P x y P y z P x z∀ ∀ ∀ ∧ →
Ερωτήσεις 4
Ποιες από τις παρακάτω προτάσεις αληθεύουν;
1. Η µεταβλητή x εµφανίζεται δεσµευµένη στον τύπο ( )( , ) ( , ) ( , )x z P x y Q x y yP x y∀ ∀ ∨ ∨ ∃ .
2. Ο τύπος ( )( , ) ( , ) ( , )x y P x y Q x y xQ x x∃ ∃ ∧ ¬ → ∀ είναι πρόταση.
3. Οι τύποι ( )( , ) ( , )x P x x Q x x∃ ∧ και ( , ) ( , )xP x x xQ x x∃ ∧ ∃ είναι λογικά ισοδύναµοι.
4. Οι τύποι ( )( , ) ( , )x P x y Q x y∃ → και ( , ) ( , )xP x y Q x y∀ → είναι λογικά ισοδύναµοι.
Ερωτήσεις 5
Ποιες από τις παρακάτω προτάσεις αληθεύουν και ποιες όχι (P/2 είναι κατηγορηµατικό σύµβολο, f/1 είναι συναρτησιακό
σύµβολο);
1. Η έκφραση ∀xP(x, x) είναι πρόταση
2. Η έκφραση x ≈ ݂(‫)ݕ‬ είναι ατοµικός τύπος
3. Η έκφραση ܲ(݂ሺ‫ݕ‬ሻ, ݂൫݂ሺ‫ݔ‬ሻ൯) είναι µη ατοµικός τύπος
4. Η έκφραση ܲ ቀ݂ሺ‫ݕ‬ሻ, ݂൫݂ሺ‫ݔ‬ሻ൯ቁ ≈ ܲ(‫,ݔ‬ ݂ሺ‫ݔ‬ሻ) είναι ατοµικός τύπος
Ερωτήσεις 6
Ποιες από τις παρακάτω προτάσεις αληθεύουν και ποιες όχι (P/2, Q/2 είναι κατηγορηµατικό σύµβολο, f/1 είναι
συναρτησιακό σύµβολο);
1. Η έκφραση ∀xP(x, x) → ܳ(‫,ݔ‬ ‫)ݔ‬ είναι πρόταση
2. Η έκφραση P(Pሺx, xሻ, Qሺx, xሻ) είναι ατοµικός τύπος
3. Η έκφραση ∀x∀y[f(x) ≈ f(y)] είναι µη ατοµικός τύπος και πρόταση.
4. Η έκφραση ݂(݂ሺ‫ݔ‬ሻ) είναι όρος
∆ηµήτρης Ψούνης – ΠΛΗ20, Επανάληψη 7 3
Ασκήσεις
Άσκηση 1
Βρείτε την κανονική ποσοδεικτική µορφή των τύπων:
),(),(.3
)()(.2
)()(.1
yxQxyyPx
xPxxQ
xPxxQ
∨¬∃∀
∧∃
→∀
Άσκηση 2
Εξετάστε αν τα παρακάτω σύνολα τύπων είναι ικανοποιήσιµα:
)},()(),()({
)},(),(),,(),,({
)},(),,(),,({
)}(),),((),({
)]},([),,(),,({
5
4
3
2
1
dcPcMdMcMT
ccQccQcyyPxcxPT
yxyPxxxPxxxxPT
yxyxcxxxPxccPT
yxPyxyxyxyPxyxyPxT
→∧=
¬→∀∃=
∀∃¬∃∃=
≈∀∃≈→∀∧=
∧≠∃∃∃∀∀∃=
Άσκηση 3
Εξετάστε αν οι παρακάτω τύποι είναι λογικά έγκυροι.
)]()([)()(.4
),(),(.3
))(),(()(.2
)]()([)()(.1
zQzPzyyQxxP
yxyQxdcQ
xxPxzxQzxxP
zQzPzyyQxxP
∧∃→∀∧∃
∃∃→
∃→∃∀→∃
∧∃→∃∧∃
Αν είναι λογικά έγκυροι, να κάνετε τυπική απόδειξη µε χρήση του ορισµού του Tarski. Αν δεν είναι έγκυροι αποδείξτε το
επιλέγοντας ένα κατάλληλο αντιπαράδειγµα.
Άσκηση 4
Ερώτηµα 1
∆ίνονται οι προτάσεις φ και ψ:
φ ≡ ∀x (Q(x) ∨ P(x)) → ( ∃x Q(x) ∨ ∀x P(x))
ψ ≡ ( ∃x Q(x) ∨ ∀x P(x)) → ∀x (Q(x) ∨ P(x))
όπου Q(x) και P(x) µονοµελή κατηγορηµατικά σύµβολα. Η µία από τις παραπάνω προτάσεις είναι λογικά έγκυρη ενώ η
άλλη όχι.
α) Ποια πρόταση δεν είναι λογικά έγκυρη; Να αποδείξετε τον ισχυρισµό σας διατυπώνοντας µια ερµηνεία (δοµή) στην
οποία αυτή η πρόταση δεν αληθεύει.
β) Να δείξετε ότι η άλλη πρόταση είναι λογικά έγκυρη χρησιµοποιώντας τον ορισµό αλήθειας του Tarski. Υπόδειξη:
Μπορείτε να δείξετε πως δεν µπορεί να αληθεύει η υπόθεση του τύπου και να µην αληθεύει το συµπέρασµά του.
∆ηµήτρης Ψούνης – ΠΛΗ20, Επανάληψη 7 4
Ερώτηµα 2
∆ίνονται οι προτάσεις φ και ψ:
φ ≡ ∃x ∀y P(x,y) → ∀x ∃y P(x,y)
ψ ≡ ∃x ∀y P(x,y) → ∀x ∃y P(y,x)
όπου P(x,y) διµελές κατηγορηµατικό σύµβολο. Η µία από τις παραπάνω προτάσεις είναι λογικά έγκυρη ενώ η άλλη όχι.
α) Ποια πρόταση δεν είναι λογικά έγκυρη; Να αποδείξετε τον ισχυρισµό σας διατυπώνοντας µια ερµηνεία (δοµή) στην
οποία αυτή η πρόταση δεν αληθεύει.
β) Να δείξετε ότι η άλλη πρόταση είναι λογικά έγκυρη χρησιµοποιώντας τον ορισµό αλήθειας του Tarski. Υπόδειξη:
Μπορείτε να δείξετε πως δεν µπορεί να αληθεύει η υπόθεση του τύπου και να µην αληθεύει το συµπέρασµά του.
Άσκηση 5
Εξετάστε αν ισχύουν οι ακόλουθες λογικές συνεπαγωγές:
))()((|))}()(()),()()(({.4
))()((|))}()((),({.3
),(|))},(),((),,({.2
),(|)),(),((),,({.1
xRxSxxSxPxxRxQxPx
xQxRxxQxRxxxR
yxyQxyxyQxxQxxxQx
yxyRxyxyRxxQxyxyQx
∧∃=∧∃∧→∀
∧∃=→∀∃
∃∀=∃→∀¬∃
∃∃=∃→∀∀∃
Άσκηση 6
Έστω πρωτοβάθµια γλώσσα που ερµηνεύεται σε δοµές που είναι απλά µη κατευθυνόµενα γραφήµατα και το διµελές
κατηγόρηµα P, ερµηνεύεται µε την σχέση όλων των ζευγαριών κορυφών x,y τα οποία συνδέονται µε ακµή.
Γράψτε προτάσεις κατηγορηµατικής λογικής που εκφράζουν τις εξής δηλώσεις:
1. Το γράφηµα έχει 2 κορυφές µε βαθµό 1
2. Το γράφηµα έχει 3 αποµονωµένες κορυφές
3. Το γράφηµα έχει 1 κορυφή µε βαθµό το πολύ 2
4. Το γράφηµα περιέχει το K3 ως υπογράφηµα
5. Το γράφηµα περιέχει το P3 ως επαγόµενο υπογράφηµα.

More Related Content

What's hot

ΠΛΗ20 ΜΑΘΗΜΑ 1.2
ΠΛΗ20 ΜΑΘΗΜΑ 1.2ΠΛΗ20 ΜΑΘΗΜΑ 1.2
ΠΛΗ20 ΜΑΘΗΜΑ 1.2
Dimitris Psounis
 
ΠΛΗ20 ΜΑΘΗΜΑ 3.3
ΠΛΗ20 ΜΑΘΗΜΑ 3.3ΠΛΗ20 ΜΑΘΗΜΑ 3.3
ΠΛΗ20 ΜΑΘΗΜΑ 3.3
Dimitris Psounis
 
ΠΛΗ20 ΜΑΘΗΜΑ 3.4
ΠΛΗ20 ΜΑΘΗΜΑ 3.4ΠΛΗ20 ΜΑΘΗΜΑ 3.4
ΠΛΗ20 ΜΑΘΗΜΑ 3.4
Dimitris Psounis
 
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.5
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.5ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.5
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.5
Dimitris Psounis
 
ΠΛΗ20 ΜΑΘΗΜΑ 3.1
ΠΛΗ20 ΜΑΘΗΜΑ 3.1ΠΛΗ20 ΜΑΘΗΜΑ 3.1
ΠΛΗ20 ΜΑΘΗΜΑ 3.1
Dimitris Psounis
 
ΠΛΗ20 ΜΑΘΗΜΑ 1.6
ΠΛΗ20 ΜΑΘΗΜΑ 1.6ΠΛΗ20 ΜΑΘΗΜΑ 1.6
ΠΛΗ20 ΜΑΘΗΜΑ 1.6
Dimitris Psounis
 
ΠΛΗ20 ΤΕΣΤ 6
ΠΛΗ20 ΤΕΣΤ 6ΠΛΗ20 ΤΕΣΤ 6
ΠΛΗ20 ΤΕΣΤ 6
Dimitris Psounis
 
ΠΛΗ20 ΜΑΘΗΜΑ 2.3
ΠΛΗ20 ΜΑΘΗΜΑ 2.3ΠΛΗ20 ΜΑΘΗΜΑ 2.3
ΠΛΗ20 ΜΑΘΗΜΑ 2.3
Dimitris Psounis
 
ΠΛΗ20 ΜΑΘΗΜΑ 0.3
ΠΛΗ20 ΜΑΘΗΜΑ 0.3ΠΛΗ20 ΜΑΘΗΜΑ 0.3
ΠΛΗ20 ΜΑΘΗΜΑ 0.3
Dimitris Psounis
 
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
Dimitris Psounis
 
ΠΛΗ20 ΜΑΘΗΜΑ 2.2
ΠΛΗ20 ΜΑΘΗΜΑ 2.2ΠΛΗ20 ΜΑΘΗΜΑ 2.2
ΠΛΗ20 ΜΑΘΗΜΑ 2.2
Dimitris Psounis
 
ΠΛΗ20 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 3
ΠΛΗ20 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 3ΠΛΗ20 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 3
ΠΛΗ20 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 3
Dimitris Psounis
 
ΠΛΗ20 ΜΑΘΗΜΑ 1.7
ΠΛΗ20 ΜΑΘΗΜΑ 1.7ΠΛΗ20 ΜΑΘΗΜΑ 1.7
ΠΛΗ20 ΜΑΘΗΜΑ 1.7
Dimitris Psounis
 
ΠΛΗ20 ΜΑΘΗΜΑ 3.2
ΠΛΗ20 ΜΑΘΗΜΑ 3.2ΠΛΗ20 ΜΑΘΗΜΑ 3.2
ΠΛΗ20 ΜΑΘΗΜΑ 3.2
Dimitris Psounis
 
ΠΛΗ20 ΜΑΘΗΜΑ 0.1
ΠΛΗ20 ΜΑΘΗΜΑ 0.1ΠΛΗ20 ΜΑΘΗΜΑ 0.1
ΠΛΗ20 ΜΑΘΗΜΑ 0.1
Dimitris Psounis
 
ΠΛΗ20 ΜΑΘΗΜΑ 3.5 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ20 ΜΑΘΗΜΑ 3.5 (ΕΚΤΥΠΩΣΗ)ΠΛΗ20 ΜΑΘΗΜΑ 3.5 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ20 ΜΑΘΗΜΑ 3.5 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΠΛΗ20 ΜΑΘΗΜΑ 5.1
ΠΛΗ20 ΜΑΘΗΜΑ 5.1ΠΛΗ20 ΜΑΘΗΜΑ 5.1
ΠΛΗ20 ΜΑΘΗΜΑ 5.1
Dimitris Psounis
 
ΠΛΗ20 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.4
ΠΛΗ20 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.4 ΠΛΗ20 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.4
ΠΛΗ20 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.4
Dimitris Psounis
 
ΠΛΗ20 ΜΑΘΗΜΑ 1.1
ΠΛΗ20 ΜΑΘΗΜΑ 1.1ΠΛΗ20 ΜΑΘΗΜΑ 1.1
ΠΛΗ20 ΜΑΘΗΜΑ 1.1
Dimitris Psounis
 
ΠΛΗ20 ΜΑΘΗΜΑ 1.3
ΠΛΗ20 ΜΑΘΗΜΑ 1.3ΠΛΗ20 ΜΑΘΗΜΑ 1.3
ΠΛΗ20 ΜΑΘΗΜΑ 1.3
Dimitris Psounis
 

What's hot (20)

ΠΛΗ20 ΜΑΘΗΜΑ 1.2
ΠΛΗ20 ΜΑΘΗΜΑ 1.2ΠΛΗ20 ΜΑΘΗΜΑ 1.2
ΠΛΗ20 ΜΑΘΗΜΑ 1.2
 
ΠΛΗ20 ΜΑΘΗΜΑ 3.3
ΠΛΗ20 ΜΑΘΗΜΑ 3.3ΠΛΗ20 ΜΑΘΗΜΑ 3.3
ΠΛΗ20 ΜΑΘΗΜΑ 3.3
 
ΠΛΗ20 ΜΑΘΗΜΑ 3.4
ΠΛΗ20 ΜΑΘΗΜΑ 3.4ΠΛΗ20 ΜΑΘΗΜΑ 3.4
ΠΛΗ20 ΜΑΘΗΜΑ 3.4
 
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.5
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.5ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.5
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.5
 
ΠΛΗ20 ΜΑΘΗΜΑ 3.1
ΠΛΗ20 ΜΑΘΗΜΑ 3.1ΠΛΗ20 ΜΑΘΗΜΑ 3.1
ΠΛΗ20 ΜΑΘΗΜΑ 3.1
 
ΠΛΗ20 ΜΑΘΗΜΑ 1.6
ΠΛΗ20 ΜΑΘΗΜΑ 1.6ΠΛΗ20 ΜΑΘΗΜΑ 1.6
ΠΛΗ20 ΜΑΘΗΜΑ 1.6
 
ΠΛΗ20 ΤΕΣΤ 6
ΠΛΗ20 ΤΕΣΤ 6ΠΛΗ20 ΤΕΣΤ 6
ΠΛΗ20 ΤΕΣΤ 6
 
ΠΛΗ20 ΜΑΘΗΜΑ 2.3
ΠΛΗ20 ΜΑΘΗΜΑ 2.3ΠΛΗ20 ΜΑΘΗΜΑ 2.3
ΠΛΗ20 ΜΑΘΗΜΑ 2.3
 
ΠΛΗ20 ΜΑΘΗΜΑ 0.3
ΠΛΗ20 ΜΑΘΗΜΑ 0.3ΠΛΗ20 ΜΑΘΗΜΑ 0.3
ΠΛΗ20 ΜΑΘΗΜΑ 0.3
 
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
 
ΠΛΗ20 ΜΑΘΗΜΑ 2.2
ΠΛΗ20 ΜΑΘΗΜΑ 2.2ΠΛΗ20 ΜΑΘΗΜΑ 2.2
ΠΛΗ20 ΜΑΘΗΜΑ 2.2
 
ΠΛΗ20 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 3
ΠΛΗ20 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 3ΠΛΗ20 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 3
ΠΛΗ20 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 3
 
ΠΛΗ20 ΜΑΘΗΜΑ 1.7
ΠΛΗ20 ΜΑΘΗΜΑ 1.7ΠΛΗ20 ΜΑΘΗΜΑ 1.7
ΠΛΗ20 ΜΑΘΗΜΑ 1.7
 
ΠΛΗ20 ΜΑΘΗΜΑ 3.2
ΠΛΗ20 ΜΑΘΗΜΑ 3.2ΠΛΗ20 ΜΑΘΗΜΑ 3.2
ΠΛΗ20 ΜΑΘΗΜΑ 3.2
 
ΠΛΗ20 ΜΑΘΗΜΑ 0.1
ΠΛΗ20 ΜΑΘΗΜΑ 0.1ΠΛΗ20 ΜΑΘΗΜΑ 0.1
ΠΛΗ20 ΜΑΘΗΜΑ 0.1
 
ΠΛΗ20 ΜΑΘΗΜΑ 3.5 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ20 ΜΑΘΗΜΑ 3.5 (ΕΚΤΥΠΩΣΗ)ΠΛΗ20 ΜΑΘΗΜΑ 3.5 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ20 ΜΑΘΗΜΑ 3.5 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ20 ΜΑΘΗΜΑ 5.1
ΠΛΗ20 ΜΑΘΗΜΑ 5.1ΠΛΗ20 ΜΑΘΗΜΑ 5.1
ΠΛΗ20 ΜΑΘΗΜΑ 5.1
 
ΠΛΗ20 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.4
ΠΛΗ20 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.4 ΠΛΗ20 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.4
ΠΛΗ20 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.4
 
ΠΛΗ20 ΜΑΘΗΜΑ 1.1
ΠΛΗ20 ΜΑΘΗΜΑ 1.1ΠΛΗ20 ΜΑΘΗΜΑ 1.1
ΠΛΗ20 ΜΑΘΗΜΑ 1.1
 
ΠΛΗ20 ΜΑΘΗΜΑ 1.3
ΠΛΗ20 ΜΑΘΗΜΑ 1.3ΠΛΗ20 ΜΑΘΗΜΑ 1.3
ΠΛΗ20 ΜΑΘΗΜΑ 1.3
 

Viewers also liked

ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 8
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 8ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 8
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 8
Dimitris Psounis
 
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 10
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 10ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 10
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 10
Dimitris Psounis
 
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 6
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 6ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 6
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 6
Dimitris Psounis
 
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 3
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 3ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 3
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 3
Dimitris Psounis
 
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 9
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 9ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 9
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 9
Dimitris Psounis
 
ΠΛΗ20 ΜΑΘΗΜΑ 5.4 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ20 ΜΑΘΗΜΑ 5.4 (ΕΚΤΥΠΩΣΗ)ΠΛΗ20 ΜΑΘΗΜΑ 5.4 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ20 ΜΑΘΗΜΑ 5.4 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 5.4
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 5.4ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 5.4
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 5.4
Dimitris Psounis
 
ΠΛΗ20 ΜΑΘΗΜΑ 5.4
ΠΛΗ20 ΜΑΘΗΜΑ 5.4ΠΛΗ20 ΜΑΘΗΜΑ 5.4
ΠΛΗ20 ΜΑΘΗΜΑ 5.4
Dimitris Psounis
 
ΠΛΗ20 ΜΑΘΗΜΑ 6.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ20 ΜΑΘΗΜΑ 6.2 (ΕΚΤΥΠΩΣΗ)ΠΛΗ20 ΜΑΘΗΜΑ 6.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ20 ΜΑΘΗΜΑ 6.2 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.1
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.1 ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.1
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.1
Dimitris Psounis
 
ΠΛΗ20 ΜΑΘΗΜΑ 6.3 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ20 ΜΑΘΗΜΑ 6.3 (ΕΚΤΥΠΩΣΗ)ΠΛΗ20 ΜΑΘΗΜΑ 6.3 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ20 ΜΑΘΗΜΑ 6.3 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΠΛΗ20 ΜΑΘΗΜΑ 6.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ20 ΜΑΘΗΜΑ 6.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ20 ΜΑΘΗΜΑ 6.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ20 ΜΑΘΗΜΑ 6.1 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΠΛΗ20 ΜΑΘΗΜΑ 6.3
ΠΛΗ20 ΜΑΘΗΜΑ 6.3ΠΛΗ20 ΜΑΘΗΜΑ 6.3
ΠΛΗ20 ΜΑΘΗΜΑ 6.3
Dimitris Psounis
 
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.3
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.3ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.3
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.3
Dimitris Psounis
 
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.3 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.3 (ΕΚΤΥΠΩΣΗ)ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.3 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.3 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.2
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.2ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.2
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.2
Dimitris Psounis
 
ΠΛΗ20 ΜΑΘΗΜΑ 6.1
ΠΛΗ20 ΜΑΘΗΜΑ 6.1ΠΛΗ20 ΜΑΘΗΜΑ 6.1
ΠΛΗ20 ΜΑΘΗΜΑ 6.1
Dimitris Psounis
 
ΠΛΗ20 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 5
ΠΛΗ20 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 5ΠΛΗ20 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 5
ΠΛΗ20 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 5
Dimitris Psounis
 
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.1 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 

Viewers also liked (19)

ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 8
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 8ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 8
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 8
 
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 10
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 10ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 10
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 10
 
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 6
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 6ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 6
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 6
 
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 3
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 3ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 3
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 3
 
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 9
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 9ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 9
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 9
 
ΠΛΗ20 ΜΑΘΗΜΑ 5.4 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ20 ΜΑΘΗΜΑ 5.4 (ΕΚΤΥΠΩΣΗ)ΠΛΗ20 ΜΑΘΗΜΑ 5.4 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ20 ΜΑΘΗΜΑ 5.4 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 5.4
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 5.4ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 5.4
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 5.4
 
ΠΛΗ20 ΜΑΘΗΜΑ 5.4
ΠΛΗ20 ΜΑΘΗΜΑ 5.4ΠΛΗ20 ΜΑΘΗΜΑ 5.4
ΠΛΗ20 ΜΑΘΗΜΑ 5.4
 
ΠΛΗ20 ΜΑΘΗΜΑ 6.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ20 ΜΑΘΗΜΑ 6.2 (ΕΚΤΥΠΩΣΗ)ΠΛΗ20 ΜΑΘΗΜΑ 6.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ20 ΜΑΘΗΜΑ 6.2 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.1
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.1 ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.1
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.1
 
ΠΛΗ20 ΜΑΘΗΜΑ 6.3 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ20 ΜΑΘΗΜΑ 6.3 (ΕΚΤΥΠΩΣΗ)ΠΛΗ20 ΜΑΘΗΜΑ 6.3 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ20 ΜΑΘΗΜΑ 6.3 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ20 ΜΑΘΗΜΑ 6.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ20 ΜΑΘΗΜΑ 6.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ20 ΜΑΘΗΜΑ 6.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ20 ΜΑΘΗΜΑ 6.1 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ20 ΜΑΘΗΜΑ 6.3
ΠΛΗ20 ΜΑΘΗΜΑ 6.3ΠΛΗ20 ΜΑΘΗΜΑ 6.3
ΠΛΗ20 ΜΑΘΗΜΑ 6.3
 
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.3
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.3ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.3
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.3
 
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.3 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.3 (ΕΚΤΥΠΩΣΗ)ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.3 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.3 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.2
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.2ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.2
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.2
 
ΠΛΗ20 ΜΑΘΗΜΑ 6.1
ΠΛΗ20 ΜΑΘΗΜΑ 6.1ΠΛΗ20 ΜΑΘΗΜΑ 6.1
ΠΛΗ20 ΜΑΘΗΜΑ 6.1
 
ΠΛΗ20 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 5
ΠΛΗ20 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 5ΠΛΗ20 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 5
ΠΛΗ20 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 5
 
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 6.1 (ΕΚΤΥΠΩΣΗ)
 

Similar to ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 7

ΠΛΗ20 ΜΑΘΗΜΑ 3.5
ΠΛΗ20 ΜΑΘΗΜΑ 3.5ΠΛΗ20 ΜΑΘΗΜΑ 3.5
ΠΛΗ20 ΜΑΘΗΜΑ 3.5
Dimitris Psounis
 
ΠΛΗ20 ΤΕΣΤ 17
ΠΛΗ20 ΤΕΣΤ 17ΠΛΗ20 ΤΕΣΤ 17
ΠΛΗ20 ΤΕΣΤ 17
Dimitris Psounis
 
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 4
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 4ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 4
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 4
Dimitris Psounis
 
ΠΛΗ31 ΤΕΣΤ 8
ΠΛΗ31 ΤΕΣΤ 8ΠΛΗ31 ΤΕΣΤ 8
ΠΛΗ31 ΤΕΣΤ 8
Dimitris Psounis
 
ΠΛΗ31 ΜΑΘΗΜΑ 2.1
ΠΛΗ31 ΜΑΘΗΜΑ 2.1ΠΛΗ31 ΜΑΘΗΜΑ 2.1
ΠΛΗ31 ΜΑΘΗΜΑ 2.1
Dimitris Psounis
 
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4
Dimitris Psounis
 
104 ερωτήσεις θεωρίας
104 ερωτήσεις θεωρίας104 ερωτήσεις θεωρίας
104 ερωτήσεις θεωρίας
Μάκης Χατζόπουλος
 
Mg ed1 ed4_ekf_plus_lys
Mg ed1 ed4_ekf_plus_lysMg ed1 ed4_ekf_plus_lys
Mg ed1 ed4_ekf_plus_lys
Christos Loizos
 
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 3
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 3ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 3
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 3
Dimitris Psounis
 
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 8
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 8ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 8
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 8
Dimitris Psounis
 
ΠΛΗ20 ΜΑΘΗΜΑ 3.6
ΠΛΗ20 ΜΑΘΗΜΑ 3.6ΠΛΗ20 ΜΑΘΗΜΑ 3.6
ΠΛΗ20 ΜΑΘΗΜΑ 3.6
Dimitris Psounis
 
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.6
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.6 ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.6
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.6
Dimitris Psounis
 
ΠΛΗ20 ΤΕΣΤ 28
ΠΛΗ20 ΤΕΣΤ 28ΠΛΗ20 ΤΕΣΤ 28
ΠΛΗ20 ΤΕΣΤ 28
Dimitris Psounis
 
Συναρτήσεις καλοκαιρινή προετοιμασία μαθηματικά θετικών σπουδών,οικονομίας κ...
Συναρτήσεις καλοκαιρινή προετοιμασία μαθηματικά θετικών σπουδών,οικονομίας  κ...Συναρτήσεις καλοκαιρινή προετοιμασία μαθηματικά θετικών σπουδών,οικονομίας  κ...
Συναρτήσεις καλοκαιρινή προετοιμασία μαθηματικά θετικών σπουδών,οικονομίας κ...
Θανάσης Δρούγας
 
Σχολικο Βοήθημα Άλγεβρας Α΄ Λυκείου - Χρήστος Κουστέρης
Σχολικο Βοήθημα Άλγεβρας Α΄ Λυκείου - Χρήστος ΚουστέρηςΣχολικο Βοήθημα Άλγεβρας Α΄ Λυκείου - Χρήστος Κουστέρης
Σχολικο Βοήθημα Άλγεβρας Α΄ Λυκείου - Χρήστος Κουστέρης
Μάκης Χατζόπουλος
 
σχολικο βοήθημα άλγεβρας α λυκείου κουστέρης
σχολικο βοήθημα άλγεβρας  α λυκείου   κουστέρηςσχολικο βοήθημα άλγεβρας  α λυκείου   κουστέρης
σχολικο βοήθημα άλγεβρας α λυκείου κουστέρης
Christos Loizos
 
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
Dimitris Psounis
 
Οι ασκήσεις του σχολικού βιβλίου στη συνάρτηση Ολοκλήρωμα με την νέα ύλη (18/...
Οι ασκήσεις του σχολικού βιβλίου στη συνάρτηση Ολοκλήρωμα με την νέα ύλη (18/...Οι ασκήσεις του σχολικού βιβλίου στη συνάρτηση Ολοκλήρωμα με την νέα ύλη (18/...
Οι ασκήσεις του σχολικού βιβλίου στη συνάρτηση Ολοκλήρωμα με την νέα ύλη (18/...
Μάκης Χατζόπουλος
 
ΠΛΗ20 ΤΕΣΤ 24
ΠΛΗ20 ΤΕΣΤ 24ΠΛΗ20 ΤΕΣΤ 24
ΠΛΗ20 ΤΕΣΤ 24
Dimitris Psounis
 

Similar to ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 7 (20)

ΠΛΗ20 ΜΑΘΗΜΑ 3.5
ΠΛΗ20 ΜΑΘΗΜΑ 3.5ΠΛΗ20 ΜΑΘΗΜΑ 3.5
ΠΛΗ20 ΜΑΘΗΜΑ 3.5
 
ΠΛΗ20 ΤΕΣΤ 17
ΠΛΗ20 ΤΕΣΤ 17ΠΛΗ20 ΤΕΣΤ 17
ΠΛΗ20 ΤΕΣΤ 17
 
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 4
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 4ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 4
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 4
 
ΠΛΗ31 ΤΕΣΤ 8
ΠΛΗ31 ΤΕΣΤ 8ΠΛΗ31 ΤΕΣΤ 8
ΠΛΗ31 ΤΕΣΤ 8
 
ΠΛΗ31 ΜΑΘΗΜΑ 2.1
ΠΛΗ31 ΜΑΘΗΜΑ 2.1ΠΛΗ31 ΜΑΘΗΜΑ 2.1
ΠΛΗ31 ΜΑΘΗΜΑ 2.1
 
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4
 
104 ερωτήσεις θεωρίας
104 ερωτήσεις θεωρίας104 ερωτήσεις θεωρίας
104 ερωτήσεις θεωρίας
 
Plh20 test 21
Plh20 test 21Plh20 test 21
Plh20 test 21
 
Mg ed1 ed4_ekf_plus_lys
Mg ed1 ed4_ekf_plus_lysMg ed1 ed4_ekf_plus_lys
Mg ed1 ed4_ekf_plus_lys
 
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 3
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 3ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 3
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 3
 
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 8
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 8ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 8
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 8
 
ΠΛΗ20 ΜΑΘΗΜΑ 3.6
ΠΛΗ20 ΜΑΘΗΜΑ 3.6ΠΛΗ20 ΜΑΘΗΜΑ 3.6
ΠΛΗ20 ΜΑΘΗΜΑ 3.6
 
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.6
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.6 ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.6
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.6
 
ΠΛΗ20 ΤΕΣΤ 28
ΠΛΗ20 ΤΕΣΤ 28ΠΛΗ20 ΤΕΣΤ 28
ΠΛΗ20 ΤΕΣΤ 28
 
Συναρτήσεις καλοκαιρινή προετοιμασία μαθηματικά θετικών σπουδών,οικονομίας κ...
Συναρτήσεις καλοκαιρινή προετοιμασία μαθηματικά θετικών σπουδών,οικονομίας  κ...Συναρτήσεις καλοκαιρινή προετοιμασία μαθηματικά θετικών σπουδών,οικονομίας  κ...
Συναρτήσεις καλοκαιρινή προετοιμασία μαθηματικά θετικών σπουδών,οικονομίας κ...
 
Σχολικο Βοήθημα Άλγεβρας Α΄ Λυκείου - Χρήστος Κουστέρης
Σχολικο Βοήθημα Άλγεβρας Α΄ Λυκείου - Χρήστος ΚουστέρηςΣχολικο Βοήθημα Άλγεβρας Α΄ Λυκείου - Χρήστος Κουστέρης
Σχολικο Βοήθημα Άλγεβρας Α΄ Λυκείου - Χρήστος Κουστέρης
 
σχολικο βοήθημα άλγεβρας α λυκείου κουστέρης
σχολικο βοήθημα άλγεβρας  α λυκείου   κουστέρηςσχολικο βοήθημα άλγεβρας  α λυκείου   κουστέρης
σχολικο βοήθημα άλγεβρας α λυκείου κουστέρης
 
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
 
Οι ασκήσεις του σχολικού βιβλίου στη συνάρτηση Ολοκλήρωμα με την νέα ύλη (18/...
Οι ασκήσεις του σχολικού βιβλίου στη συνάρτηση Ολοκλήρωμα με την νέα ύλη (18/...Οι ασκήσεις του σχολικού βιβλίου στη συνάρτηση Ολοκλήρωμα με την νέα ύλη (18/...
Οι ασκήσεις του σχολικού βιβλίου στη συνάρτηση Ολοκλήρωμα με την νέα ύλη (18/...
 
ΠΛΗ20 ΤΕΣΤ 24
ΠΛΗ20 ΤΕΣΤ 24ΠΛΗ20 ΤΕΣΤ 24
ΠΛΗ20 ΤΕΣΤ 24
 

More from Dimitris Psounis

Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Dimitris Psounis
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Dimitris Psounis
 
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
Dimitris Psounis
 
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
Dimitris Psounis
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Dimitris Psounis
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Dimitris Psounis
 
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ CC++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
Dimitris Psounis
 
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
Dimitris Psounis
 
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
Dimitris Psounis
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
Dimitris Psounis
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 

More from Dimitris Psounis (20)

Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
 
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
 
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
 
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ CC++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
 
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
 
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ31 - ΤΕΣΤ 33
ΠΛΗ31 - ΤΕΣΤ 33ΠΛΗ31 - ΤΕΣΤ 33
ΠΛΗ31 - ΤΕΣΤ 33
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ)
 

ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 7

  • 1. ∆ηµήτρης Ψούνης – ΠΛΗ20, Επανάληψη 7 1 ΠΛΗ20 – ΕΠΑΝΑΛΗΨΗ 7 Θεωρία Κατηγορηµατικής Λογικής Ο∆ΗΓΙΕΣ ΓΙΑ ΤΗΝ ΕΠΑΝΑΛΗΨΗ Επαναλάβετε τα µαθήµατα: • Κατηγορηµατική Λογική – Μάθηµα 3.1: Εισαγωγή στην Κατηγορηµατική Λογική • Κατηγορηµατική Λογική – Μάθηµα 3.5: Νόµοι Κατηγορηµατικής Λογικής • Κατηγορηµατική Λογική – Μάθηµα 3.6: Θεωρία Κατηγορηµατικής Λογικής • Κατηγορηµατική Λογική – Μάθηµα 3.8: Η γλώσσα των µη κατευθυνόµενων γραφηµάτων Ο∆ΗΓΙΕΣ ΓΙΑ ΤΟΝ ΧΡΟΝΟ ΕΠΙΛΥΣΗΣ ΑΣΚΗΣΕΩΝ: Τα µαθήµατα που πέφτουν σχεδόν σε κάθε εξεταστική, είναι τα µαθήµατα 3.7 και 3.8. ∆ώστε ιδιαίτερη έµφαση στον ορισµό του λογικά έγκυρου τύπου από το µάθηµα 3.6. Κάθε οµάδα ερωτήσεων (Σ/Λ) πρέπει να έχει απαντηθεί εντός 7’ και όλες οι ασκήσεις εντός του συνιστώµενου χρόνου. Έπειτα συµβουλευτείτε τις αντίστοιχες ηχογραφήσεις για να δείτε ολοκλήρωµένα τις λύσεις των ασκήσεων. Συνιστώµενοι Χρόνοι για την επανάληψη: Χρόνος Μελέτης των Μαθηµάτων: 1.00’ Χρόνος Απάντησης Ερωτήσεων : 42’ Χρόνος Απάντησης Ασκήσεων: 2.30’ Ηχογραφήσεις Ασκήσεων: 2.30’
  • 2. ∆ηµήτρης Ψούνης – ΠΛΗ20, Επανάληψη 7 2 Ερωτήσεις Ερωτήσεις 1 Εξετάστε ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λάθος. 1. Αν ο τύπος ϕ είναι έγκυρος τότε και ο xϕ∀ είναι έγκυρος. 2. Αν ο τύπος xϕ∀ είναι έγκυρος τότε και ο ϕ είναι έγκυρος. 3. Αν ο τύπος xϕ∃ είναι έγκυρος τότε και ο ϕ είναι έγκυρος. 4. Αν ο τύπος ϕ είναι έγκυρος τότε και ο xϕ∃ είναι έγκυρος. Ερωτήσεις 2 Εξετάστε ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λάθος. 1. Ο τύπος ∃x P(x) → P(c) είναι έγκυρος. 2. Ο τύπος P(c) → ∃x P(x) είναι έγκυρος. 3. Ο τύπος ∀x P(x) → P(c) είναι έγκυρος. 4. Ο τύπος P(c) → ∀x P(x) είναι έγκυρος. Ερωτήσεις 3 Απαντήστε µε Σωστό/Λάθος ανάλογα µε το αν ο αντίστοιχος τύπος είναι έγκυρος ή όχι. 1. ( ) ( )xP x xP x∀ → ∃ 2. ( ( ) ( )) ( ( ) ( ))xP x x Q x x P x Q x¬∃ ∧ ∀ ¬ → ∃ ∧ 3. ( , ) ( , )xP x x x yP x y∃ → ∀ ∃ 4. [ ( , ) ( , ) ( , )]x y z P x y P y z P x z∀ ∀ ∀ ∧ → Ερωτήσεις 4 Ποιες από τις παρακάτω προτάσεις αληθεύουν; 1. Η µεταβλητή x εµφανίζεται δεσµευµένη στον τύπο ( )( , ) ( , ) ( , )x z P x y Q x y yP x y∀ ∀ ∨ ∨ ∃ . 2. Ο τύπος ( )( , ) ( , ) ( , )x y P x y Q x y xQ x x∃ ∃ ∧ ¬ → ∀ είναι πρόταση. 3. Οι τύποι ( )( , ) ( , )x P x x Q x x∃ ∧ και ( , ) ( , )xP x x xQ x x∃ ∧ ∃ είναι λογικά ισοδύναµοι. 4. Οι τύποι ( )( , ) ( , )x P x y Q x y∃ → και ( , ) ( , )xP x y Q x y∀ → είναι λογικά ισοδύναµοι. Ερωτήσεις 5 Ποιες από τις παρακάτω προτάσεις αληθεύουν και ποιες όχι (P/2 είναι κατηγορηµατικό σύµβολο, f/1 είναι συναρτησιακό σύµβολο); 1. Η έκφραση ∀xP(x, x) είναι πρόταση 2. Η έκφραση x ≈ ݂(‫)ݕ‬ είναι ατοµικός τύπος 3. Η έκφραση ܲ(݂ሺ‫ݕ‬ሻ, ݂൫݂ሺ‫ݔ‬ሻ൯) είναι µη ατοµικός τύπος 4. Η έκφραση ܲ ቀ݂ሺ‫ݕ‬ሻ, ݂൫݂ሺ‫ݔ‬ሻ൯ቁ ≈ ܲ(‫,ݔ‬ ݂ሺ‫ݔ‬ሻ) είναι ατοµικός τύπος Ερωτήσεις 6 Ποιες από τις παρακάτω προτάσεις αληθεύουν και ποιες όχι (P/2, Q/2 είναι κατηγορηµατικό σύµβολο, f/1 είναι συναρτησιακό σύµβολο); 1. Η έκφραση ∀xP(x, x) → ܳ(‫,ݔ‬ ‫)ݔ‬ είναι πρόταση 2. Η έκφραση P(Pሺx, xሻ, Qሺx, xሻ) είναι ατοµικός τύπος 3. Η έκφραση ∀x∀y[f(x) ≈ f(y)] είναι µη ατοµικός τύπος και πρόταση. 4. Η έκφραση ݂(݂ሺ‫ݔ‬ሻ) είναι όρος
  • 3. ∆ηµήτρης Ψούνης – ΠΛΗ20, Επανάληψη 7 3 Ασκήσεις Άσκηση 1 Βρείτε την κανονική ποσοδεικτική µορφή των τύπων: ),(),(.3 )()(.2 )()(.1 yxQxyyPx xPxxQ xPxxQ ∨¬∃∀ ∧∃ →∀ Άσκηση 2 Εξετάστε αν τα παρακάτω σύνολα τύπων είναι ικανοποιήσιµα: )},()(),()({ )},(),(),,(),,({ )},(),,(),,({ )}(),),((),({ )]},([),,(),,({ 5 4 3 2 1 dcPcMdMcMT ccQccQcyyPxcxPT yxyPxxxPxxxxPT yxyxcxxxPxccPT yxPyxyxyxyPxyxyPxT →∧= ¬→∀∃= ∀∃¬∃∃= ≈∀∃≈→∀∧= ∧≠∃∃∃∀∀∃= Άσκηση 3 Εξετάστε αν οι παρακάτω τύποι είναι λογικά έγκυροι. )]()([)()(.4 ),(),(.3 ))(),(()(.2 )]()([)()(.1 zQzPzyyQxxP yxyQxdcQ xxPxzxQzxxP zQzPzyyQxxP ∧∃→∀∧∃ ∃∃→ ∃→∃∀→∃ ∧∃→∃∧∃ Αν είναι λογικά έγκυροι, να κάνετε τυπική απόδειξη µε χρήση του ορισµού του Tarski. Αν δεν είναι έγκυροι αποδείξτε το επιλέγοντας ένα κατάλληλο αντιπαράδειγµα. Άσκηση 4 Ερώτηµα 1 ∆ίνονται οι προτάσεις φ και ψ: φ ≡ ∀x (Q(x) ∨ P(x)) → ( ∃x Q(x) ∨ ∀x P(x)) ψ ≡ ( ∃x Q(x) ∨ ∀x P(x)) → ∀x (Q(x) ∨ P(x)) όπου Q(x) και P(x) µονοµελή κατηγορηµατικά σύµβολα. Η µία από τις παραπάνω προτάσεις είναι λογικά έγκυρη ενώ η άλλη όχι. α) Ποια πρόταση δεν είναι λογικά έγκυρη; Να αποδείξετε τον ισχυρισµό σας διατυπώνοντας µια ερµηνεία (δοµή) στην οποία αυτή η πρόταση δεν αληθεύει. β) Να δείξετε ότι η άλλη πρόταση είναι λογικά έγκυρη χρησιµοποιώντας τον ορισµό αλήθειας του Tarski. Υπόδειξη: Μπορείτε να δείξετε πως δεν µπορεί να αληθεύει η υπόθεση του τύπου και να µην αληθεύει το συµπέρασµά του.
  • 4. ∆ηµήτρης Ψούνης – ΠΛΗ20, Επανάληψη 7 4 Ερώτηµα 2 ∆ίνονται οι προτάσεις φ και ψ: φ ≡ ∃x ∀y P(x,y) → ∀x ∃y P(x,y) ψ ≡ ∃x ∀y P(x,y) → ∀x ∃y P(y,x) όπου P(x,y) διµελές κατηγορηµατικό σύµβολο. Η µία από τις παραπάνω προτάσεις είναι λογικά έγκυρη ενώ η άλλη όχι. α) Ποια πρόταση δεν είναι λογικά έγκυρη; Να αποδείξετε τον ισχυρισµό σας διατυπώνοντας µια ερµηνεία (δοµή) στην οποία αυτή η πρόταση δεν αληθεύει. β) Να δείξετε ότι η άλλη πρόταση είναι λογικά έγκυρη χρησιµοποιώντας τον ορισµό αλήθειας του Tarski. Υπόδειξη: Μπορείτε να δείξετε πως δεν µπορεί να αληθεύει η υπόθεση του τύπου και να µην αληθεύει το συµπέρασµά του. Άσκηση 5 Εξετάστε αν ισχύουν οι ακόλουθες λογικές συνεπαγωγές: ))()((|))}()(()),()()(({.4 ))()((|))}()((),({.3 ),(|))},(),((),,({.2 ),(|)),(),((),,({.1 xRxSxxSxPxxRxQxPx xQxRxxQxRxxxR yxyQxyxyQxxQxxxQx yxyRxyxyRxxQxyxyQx ∧∃=∧∃∧→∀ ∧∃=→∀∃ ∃∀=∃→∀¬∃ ∃∃=∃→∀∀∃ Άσκηση 6 Έστω πρωτοβάθµια γλώσσα που ερµηνεύεται σε δοµές που είναι απλά µη κατευθυνόµενα γραφήµατα και το διµελές κατηγόρηµα P, ερµηνεύεται µε την σχέση όλων των ζευγαριών κορυφών x,y τα οποία συνδέονται µε ακµή. Γράψτε προτάσεις κατηγορηµατικής λογικής που εκφράζουν τις εξής δηλώσεις: 1. Το γράφηµα έχει 2 κορυφές µε βαθµό 1 2. Το γράφηµα έχει 3 αποµονωµένες κορυφές 3. Το γράφηµα έχει 1 κορυφή µε βαθµό το πολύ 2 4. Το γράφηµα περιέχει το K3 ως υπογράφηµα 5. Το γράφηµα περιέχει το P3 ως επαγόµενο υπογράφηµα.