Microalgas para la producción de biocombustibles, alimentos y productos químicos

2,616 views

Published on

En el marco de la jornada Microalgas, ¿una fuente de petróleo verde?, organizada con IMDEA y celebrada el 8 de abril en EOI, Escuela de Organización Industrial, René H. Wijffels, profesor de la Universidad de Wageningen en Holanda, presenta su trabajo sobre biodiesel producido por microalgas, la factibilidad de este estudio y la biorafinería de las microalgas. Finalmente concluye con la presentación de las diversas fases de investigación hasta llegar a la producción de biocombustibles, alimentos y productos químicos.

  • Be the first to comment

Microalgas para la producción de biocombustibles, alimentos y productos químicos

  1. 1. Microalgae for production of biofuels, food and chemicals<br />René H. Wijffels<br />www.algae.wur.nl<br />
  2. 2. Contents<br />Biodiesel from microalgae<br />Feasibility study<br />Biorefinery of microalgae<br />Research agenda<br />
  3. 3. Biodiesel from microalgae<br />Botryococcus<br />Alkanes (C34) <br />High concentrations (40-70%)<br />Other algae<br />20-60% lipids<br />High productivity<br />Palm oil: 6,000 l/ha/year<br />Algae: 20,000-80,000 l/ha/year<br />No competition with food<br />Salt water<br />
  4. 4. Feasibility study Delta nv<br />Raceway ponds<br />Horizontal tubes<br />Flat panels<br />
  5. 5. Biomass production cost<br />1 ha<br />10.62 € / kg biomass<br />Labor 28%<br />Power 22%<br />100 ha<br />Power 42%<br />4.02 € / kg biomass<br />89% decrease<br />potential<br />0.4 € / kg biomass<br />15 €/GJ<br />
  6. 6. Economical Viability: biorefinery of microalgae <br />Bulk chemicals and biofuels in 1,000 kg microalgae<br />400 kg lipids<br />100 kg as feedstock chemical industry (2 €/kg lipids)<br />300 kg as transport fuel (0.50 €/kg lipids)<br />500 kg proteins<br />100 kg for food (5 €/kg protein)<br />400 kg for feed (0.75 €/kg protein)<br />100 kg polysaccharides<br />1 €/kg polysaccharides<br />70 kg of N removed<br />2 €/kg nitrogen<br />1,600 kg oxygen produced<br />0.16 €/kg oxygen<br />Production costs: 0.40 €/kg biomass<br />Value: 1.65 €/kg biomass<br />
  7. 7. Wageningen research agenda<br />Photobioreactor design<br />O2 removal and CO2 supply<br />Biofilms for post-treatment wastewater<br />Control of primary metabolism<br />Harvesting and Oil extraction<br />Biorefinery<br />Design scenarios<br />AlgaePARC<br />
  8. 8. Photobioreactor design<br />Closed photobioreactors<br />Maximization of photosynthetic efficiency/productivity<br />High light intensity/shading<br />High biomass density<br />Energy input<br />Shear effects<br />Growth inhibition<br />Light guides<br />Flashing light effect<br />Variations in light intensity<br />
  9. 9. Real productivity?<br />Light saturation?<br />Nutrient limitations? CO2<br />Inhibition? O2, light<br />9.0 %<br />reflection on PBR x 0.96<br />8.6 %<br />night biomass loss x 0.90<br />7.8 %<br />maintenance x 0.95<br />What’s left ?... 7.4%<br />Process design<br />Practice?... 3 - 4%<br />
  10. 10. Light dilution in the lab<br />Dilution of light<br />By vertical flat panels<br />Imitation of day/night cycles<br />Model system: Chlorella sorokiniana<br />1.4 cm panel reactor<br />
  11. 11. Light dilution in the lab<br />PE = 4.2 %<br />PE = 6.5 %<br />
  12. 12. Light dilution in practice<br />Vertical panels<br />Submerged (SolixBiofuels)<br />Inflatable bags (Proviron<br />
  13. 13. Control primary metabolism<br />Objective: control metabolism<br />High yield on light<br />Production of lipids<br />Production of colorants<br />Metabolic network model and flux calculations to predict rates in primary metabolism<br />Research reactor to apply wide range of cultivation conditions<br />On-line monitoring of production and consumption rates (CO2, O2, N, biomass)<br />
  14. 14. Building a metabolic model<br />Model organism: Chlamydomonas reinhardtii<br />A metabolic model was built<br />About 300 enzymatic reactions were modeled<br />Lumping linear pathways<br />159 reactions and 161 metabolites<br />35 enzymes were not annotated<br />28 were retrieved in the C. reinhardtii genomewith sequences of related organisms<br />7 remain missing<br />Checked by comparing Photosynthetic Quotient (O2 production rate/CO2 uptake rate, Quantum Requirement (mol light quanta needed per mol O2 produced) and Biomass yield (g biomass/mol photons)<br />
  15. 15. Projects<br />Genome based metabolic flux model for Chlamydomonas (Annette Kliphuis)<br />Metabolic flux models and lipid accumulation in green algae (Anne Klok)<br />Metabolic flux models and lipid accumulation in diatoms (Packo Lamers)<br />Metabolic flux models and colorant production (Kim Mulders)<br />Metabolic flux models and alkane accumulation in Botryococcus (contract negotiation)<br />
  16. 16. Design scenarios - Ellen Slegers<br />Objective<br />Develop scenarios for production of energy carriers at very large scale<br />Why<br />Logistics: complexity and energy use of supply of materials<br />Research issues<br />Sustainability<br />Scale<br />Location<br />
  17. 17. AlgaePARC<br />Algae Production And Research Centre<br />
  18. 18. Algae PARC: Objectives<br />Build up an international , open and independent centre for applied research<br />Translate research towards applications <br />Acquire Information for design of full scale plants<br />Develop competitive technology (economic viability and positive energy balance) <br />Cradle to Cradle: Closing material loops - CO2, N, P<br />To be applied in and outside the Netherlands<br />Defined Research Programme (5 years) & Contract research<br />Production of algal biomass for bulk chemicals, food and feed ingredients and biofuels<br />Pilot as intermediate between lab and demo<br />
  19. 19. Translate research towards applications<br />Stage 1 R&D<br />Stage 3 Scale-up<br />Stage 2 test & pilot<br />Fundamental<br />Research<br />Demos<br />25 000 m2<br />25 m2<br />2.5 m2<br />Encountered problems are to be rethought and solved at previous stages <br />Industrial partners<br />WUR / WETSUS<br />AlgaePARC<br />
  20. 20. AlgaePARC: Algae Production and Research Center<br /><ul><li>Development of a process chain
  21. 21. Experience with systems
  22. 22. Information for design of full scale plants
  23. 23. Comparison of systems
  24. 24. Comparison of strains
  25. 25. Comparison of feeds (nutrients, CO2, sunlight…)
  26. 26. Supply of biomass for </li></ul> further processing<br /><ul><li>Further processing</li></li></ul><li>Algae PARC<br />Main Features<br />Uniqueness - 4 different systems that can run in parallel (minimum)<br />Fundamental aspects for successful operation and scale up of photobioreactors to commercial plants<br />Control Units: accurate online measurements and control of a wide range of metabolic and environmental parameters <br />Flexibility: The reactors should be easily changeable to allow fast testing of different systems <br />
  27. 27. Budget & Time plan<br />Q2-Q3 2010<br />engineering and building<br />Q4 2010<br />Test runs<br />Facilities 2010 (2.8 M€)<br />Research Programme 2010 -2014 (4 M€, 14 Industrial partners)<br /><ul><li>Q2 2010 consortium agreement</li></li></ul><li>What we aim at…<br />AlgaePARC : the European test centre for microalgae technology<br />
  28. 28. Conclusions<br />Systems<br />Biology<br />Design<br />Application<br />development<br />Systems <br />Design<br />Metabolic<br />Modelling<br />Strain <br />Development<br />Product<br />processing<br />Chains<br />Fermentation<br />technology<br />Bioprocess<br />Engineering<br />Analytics<br />Scale-up<br />Biorefinery<br />We are developing a new technology for cost-effective production of fuels, foods and chemicals from algae<br />Requires a multidisciplinary approach<br />We are active in all these disciplines<br />4 examples were shown: reactor technology, metabolic modelling, system design and AlgaePARC<br />
  29. 29. Alg: taaie rakker die zich niet zo maar laat kraken<br />Dagblad van het Noorden<br />22 oktober 2009<br />Is er een groenere bron van brandstof denkbaar dan de alg? Wie er in slaagt op grote schaal olie en biogas te winnen uit dit welig tierende micro-organisme, boort een onuitputtelijke energievoorraad aan. Het bedrijf Proces-Groningen is daar dichtbij. Maar naarmate het doel meer in zicht komt, groeit de twijfel.<br />“…. Al die stappen zijn "vreselijk moeilijk", weet Banning na vier maanden experimenteren… Persoonlijk geloof ik dan ook niet in algen als de nieuwe groene biobrandstof."<br />
  30. 30. www.algae.wur.nl<br />

×