Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis

Simen Li
Network Analysis
Chapter 2 e, Phasor, and
Sinusoidal Steady-State Analysis
Chien-Jung Li
Department of Electronic Engineering
National Taipei University of Technology
Department of Electronic Engineering, NTUT
Compound Interest
• 複利公式: 本金P, 年利率r, 一年複利n次,
t年後本金加利息之總和為
 
= + 
 
1
nt
r
S P
n
• Let P=1, r=1, and t=1
 
= + 
 
1
1
n
S
n
When n goes to infinite, S converges to 2.718… (= e)
Let P=10萬, r/n=10%/12, t=1 S=11,0471
Let P=10萬, r/n=10%, and n=36, t=1 S=3,091,268
2/33
Department of Electronic Engineering, NTUT
Development of Logarithm
• Michael Stifel (1487-1567)
• John Napier (1550-1617)
• 利用對數而將乘法變成加法的特性,刻卜勒成功
計算了火星繞日的軌道。
( )+
∗ = =
2 52 5 7
m m m m
( )−
= =
7 7 4 3
4
m m m
m
( )− −
= = =
2 2 3 1
3
1m m m
mm
− − −
=⋯ ⋯3 2 1 0 1 2 3
, , , , 1, , , ,m m m m m m m
3/33
Department of Electronic Engineering, NTUT
Definition of dB (分貝)
• , where
• Power gain
• Voltage gain
• Power (dBW)
• Power (dBm)
• Voltage (dBV)
• Voltage (dBuV)
( )= ⋅10 logdB G ( )= aG
b
 = ⋅  
 
2
1
10 log
P
P
 = ⋅  
 
2
1
20 log
V
V
( )= ⋅10 log
1-W
P
( )= ⋅10 log
1-mW
P
( )= ⋅20 log
1-Volt
V
( )µ
= ⋅20 log
1- V
V
相對量 ((((比例,,,, 比值,,,, 無單位, dB), dB), dB), dB)
絕對量 ((((因相對於一絕對單位,,,,
因此可表示一絕對量.... 有單位,,,,
單位即為dBWdBWdBWdBW,,,, dBmdBmdBmdBm,,,, dBVdBVdBVdBV…)…)…)…)
4/33
Department of Electronic Engineering, NTUT
In some textbooks, phasor may be
represented as
Euler’s Formula
• Euler’s Formula cos sinjx
e x j x= +
( ) ( ) ( )
{ } { }ω φ φ ω
ω φ +
= ⋅ + = ⋅ = ⋅cos Re Re
j t j j t
p p pv t V t V e V e e
φ
φ= ⋅ = ∠
def
j
p pV V e V
• Phasor (相量)
Don’t be confused with VectorVectorVectorVector (向量) which is commonly
denoted as A
(How it comes?)
取實部 (即cosine部分) phasor
A real sinusoidal signal v(t) that can be represented as:
V
V
5/33
Department of Electronic Engineering, NTUT
Definition of e
lim 1
n
x
n
x
e
n→∞
 
= + 
 
2 3
lim 1 1
1! 2! 3!
n
x
n
x x x x
e
n→∞
 
= + = + + + + 
 
…
x jx=
( ) ( )
2 3
1
1! 2! 3!
jx jx jxjx
e = + + + +…
• Euler played a trick let , where 1j = −
1
lim 1
n
n
e
n→∞
 
= + 
 
6/33
Department of Electronic Engineering, NTUT
• Since , , ,
How It Comes…
1j = − 2
1j = − 3
1j = − − 4
1j =
   
= − + − + + − + − +   
   
… …
2 4 3 5
1
2! 4! 3! 5!
x x x x
j x
2 4
cos 1
2! 4!
x x
x = − + − +…
3 5
sin
3! 5!
x x
x x= − + − +…
cos sinjx
e x j x= +
cos sinjx
e x j x−
= −
cos
2
jx jx
e e
x
−
+
=
−
−
=sin
2
jx jx
e e
x
j
( ) ( )= + + + +…
2 3
1
1! 2! 3!
jx jx jxjx
e
• Use and
we have
(姊妹式)
7/33
Department of Electronic Engineering, NTUT
Coordinate Systems
x-axis
y-axis
x-axis
y-axis
P(r,θ)
θ
r
P(x,y)
2 2
r x y= +
1
tan
y
x
θ −
=
cosx r θ=
siny r θ=
Cartesian Coordinate System
(笛卡兒座標系, 直角座標系)
Polar Coordinate System
(極坐標系)
(x,0)
(0,y)
( )cos ,0r θ
( )0, sinr θ
Projection
on x-axis
Projection
on y-axis
8/33
Department of Electronic Engineering, NTUT
Sine Waveform
x-axis
y-axis
P(x,y)
x
y
r
θ θθ
y
θ
0 π/2 π 3π/2 2π
Go along the circle, the projection on y-axis results in a sine wave.
9/33
Department of Electronic Engineering, NTUT
x
θ
0
π/2
π
3π/2
Cosine Waveform
x-axis
y-axis
θ
Go along the circle, the projection
on x-axis results in a cosine wave.
Sinusoidal waves relate to a CircleCircleCircleCircle
very closely.
Complete going along the circle to
finish a cycle, and the angle θ
rotates with 2π rads and you are
back to the original starting-point
and. Complete another cycle
again, sinusoidal waveform in one
period repeats again. Keep going
along the circle, the waveform will
periodically appear.
10/33
Department of Electronic Engineering, NTUT
Complex Plan (I)
It seems to be the same thing with x-y plan, right?
• Carl Friedrich Gauss (1777-1855) defined the complex plan.
He defined the unit length on ImImImIm-axis is equal to “j”.
A complex Z=x+jy can be denoted as (x, yj) on the complex plan.
(sometimes, ‘j’ may be written as ‘i’ which represent imaginary)
Re-axis
Im-axis
Re-axis
Im-axis
P(r,θ)
θ
r
P(x,yj)
2 2
r x y= +
1
tan
y
x
θ −
=
cosx r θ=
siny r θ=
(x,0j)
(0,yj)
( )cos ,0r θ
( )0, sinr θ
( )1j = −
11/33
Department of Electronic Engineering, NTUT
Complex Plan (II)
Re-axis
Im-axis
1
Every time you multiply something by j, that thing will rotate
90 degrees.
1j = − 2
1j = − 3
1j = − − 4
1j =
1*j=j
j
j*j=-1
-1
-j
-1*j=-j -j*j=1
(0.5,0.2j)
(-0.2, 0.5j)
(-0.5, -0.2j)
(0.2, -0.5j)
• Multiplying j by j and so on:
12/33
Department of Electronic Engineering, NTUT
Sine Waveform
Re-axis
Im-axis
P(x,y)
x
y
r
θ θθ
y=rsinθ
θ
0 π/2 π 3π/2 2π
To see the cosine waveform, the same operation can be applied
to trace out the projection on ReReReRe-axis.
13/33
Department of Electronic Engineering, NTUT
Phasor Representation (I) – Sine Basis
( ) ( ) { } { }φ ω φ θ
ω φ= + = =sin Im Imj j t j j
sv t A t Ae e Ae e
Re-axis
Im-axis
P(A,ф)
y=Asin ф
θ
0 π/2 π 3π/2 2π
ф
tθ ω=
Given the phasor denoted as a point on the complex-plan, you
should know it represents a sinusoidal signal. Keep this in
mind, it is very very important!
time-domain waveform
14/33
Department of Electronic Engineering, NTUT
Phasor Representation (II) – Cosine Basis
( ) ( ) { } { }φ ω φ θ
ω φ= + = =cos Re Rej j t j j
sv t A t Ae e Ae e
Re-axis
Im-axis
P(A,ф)
y=Acos ф
θ
0 π/2 π 3π/2 2π
ф
tθ ω=
time-domain waveform
15/33
Department of Electronic Engineering, NTUT
Phasor Representation (III)
( ) ( ) { }φ ω
ω φ= + = 1
1 1 1 1sin Im j j t
v t A t A e e
Re-axis
Im-axis
P(A1,ф1)
ф1
P(A2,ф2)
P(A3,ф3)
θ
0 π/2 π 3π/2 2π
tθ ω=
A1sin ф1
( ) ( ) { }φ ω
ω φ= + = 2
2 2 2 2sin Im j j t
v t A t A e e
( ) ( ) { }φ ω
ω φ= + = 3
3 3 3 3sin Im j j t
v t A t A e e
A2sin ф2
A3sin ф3
16/33
Department of Electronic Engineering, NTUT
Mathematical Operation
j t
j tde
j e
dt
ω
ω
ω= ⋅
1j t j t
e dt e
j
ω ω
ω
= ⋅∫
( ) ( )0
1 t
v t i t dt
C
= ∫
ω
= = ⋅
1
CV I Z I
j C
( )
( )di t
v t L
dt
=
ω= ⋅ = ⋅LV j L I Z I
ω
= =
1 1
CZ
j C sC
ω= =LZ j L sL
• LLLL and CCCC: from time-domain to phasor-domain analysis
(s is the Laplace operator)
( )σ ω σ= + =, here let 0s j
17/33
Department of Electronic Engineering, NTUT
Phasor Everywhere
• 電路學、電子學: Phasor 常見為一個固定值 (亦可為變量)
• 電磁學、微波工程: Phasor 常見為變動量, 隨傳播方向變化
• 通訊系統: Phasor 常見為變動量, 隨時間變化
此變動的phasor也經常被稱作複數波包(complex envelope)、波包
(envelope),或帶通訊號的等效低通訊號(equivalent lowpass signal of
the bandpass signal)。Phasor如果被拆成正交兩成分,常稱作I/Q訊
號,而在數位通訊裡表示I/Q訊號的複數平面(座標系)也被稱為星座
圖(constellation)。
• You will see “Phasor” many times in your E.E. life. It just
appears with different names, and it is just a representation
or an analysis technique.
• Keep in mind that a phasor represents a signal, it’s like a
head on your body.
18/33
Department of Electronic Engineering, NTUT
Simple Relation Between Sine and Cosine
• Sine CosineSine CosineSine CosineSine Cosine
π/2 π 3π/2 2π
sinθ
θ
0
cosθ
• Negative sine or cosineNegative sine or cosineNegative sine or cosineNegative sine or cosine
( )θ θ= +cos sin 90
( )θ θ= −sin cos 90
( )θ θ− = +cos cos 180
( )θ θ− = +sin sin 180
Try to transform into sine-form:θ−cos
( ) ( ) ( )θ θ θ θ− = − + = + = −cos sin 90 sin 270 sin 90
19/33
Department of Electronic Engineering, NTUT
Cosine as a Basis
( ) { }ω
ω= =cos Re j t
pv t V t Ve
= ∠0pV V
( ) { }ωπ
ω ω
 
= = − = 
 
sin cos Re
2
j t
p pv t V t V t Ve
= ∠ − 90pV V
( ) ( ) { }ω
ω ω π= − = + =cos cos Re j t
p pv t V t V t Ve
= ∠180pV V
( ) { }ωπ
ω ω
 
= − = + = 
 
sin cos Re
2
j t
p pv t V t V t Ve
= ∠90pV V
cosinecosinecosinecosine
sinesinesinesine
negative cosinenegative cosinenegative cosinenegative cosine
negative sinenegative sinenegative sinenegative sine
Phasor
Phasor
Phasor
Phasor
20/33
Department of Electronic Engineering, NTUT
Sine as a Basis
( ) { }ω
ω= =sin Im j t
pv t V t Ve
= ∠0pV V
( ) { }ωπ
ω ω
 
= = + = 
 
cos sin Im
2
j t
p pv t V t V t Ve
= ∠90pV V
( ) ( ) { }ω
ω ω π= − = + =sin sin Im j t
p pv t V t V t Ve
= ∠180pV V
( ) { }ωπ
ω ω
 
= − = − = 
 
cos sin Im
2
j t
p pv t V t V t Ve
= ∠ − 90pV V
Phasor
Phasor
Phasor
Phasor
cosinecosinecosinecosine
sinesinesinesine
negative cosinenegative cosinenegative cosinenegative cosine
negative sinenegative sinenegative sinenegative sine
21/33
Department of Electronic Engineering, NTUT
Addition of Sinusoidal
A basic property of sinusoidal functions is that the sum of an arbitrary
number of sinusoids of the same frequency is equivalent to a single
sinusoid of the given frequency. It must be emphasized that all sinusoids
must be of the same frequency.
( ) ( )ω θ= +sinpv t V t
θ= ∠1 1 1pV V
θ= ∠2 2 2pV V
θ= ∠n pn nV V
= + + +⋯1 2 nV V V V
( ) ( ) ( ) ( )ω θ ω θ ω θ= + + + + + +⋯1 1 2 2sin sin sinp p pn nv t V t V t V t
( )1v t ( )2v t ( )nv t
22/33
Department of Electronic Engineering, NTUT
Example
( ) ( ) ( )= +0 1 2v t v t v t
( ) ( )= −1 20cos 100 120v t t ( ) ( )= − +2 15sin 100 60v t t
= ∠ − = −1 20 30 17.3205 10V j
= ∠ − = − −2 15 120 7.5 12.9904V j
( ) ( )= − + − −0 17.3205 10 7.5 12.9904V j j
( ) ( )= −0 25sin 100 66.87v t t
= − = ∠ −9.8205 22.9904 25 66.87j
= ∠ − = − −1 20 120 10 17.321V j
= ∠ = − +2 15 150 12.9904 7.5V j
( ) ( )= − − + − +0 10 17.321 12.9904 7.5V j j
= − − = ∠22.9904 9.8205 25 203.13j
( ) ( )= +0 25cos 100 203.13v t t
( )= −25sin 100 66.87t
Choose the basis you like, and the results are identical.
andFor
calculate
use sine function as a basis use cosine function as a basis
23/33
Department of Electronic Engineering, NTUT
Steady-state Impedance
= = +
V
Z R jX
I
• Steady-state impedance
resistance
reactance
= = +
I
Y G jB
Z
• Steady-state admittance
conductance
susceptance
= +30 40Z j
= Ω30R
= Ω40X
= = −
+
1
0.012 0.016
30 40
Y j
j
= 0.012G S
= −0.016X S
24/33
Department of Electronic Engineering, NTUT
Conversion to Phasor-domain
( )i t
( )v t V
I
RR
( )i t
( )v t
( )i t
( )v t
C
L
ω
1
j C
V
I
ωj LV
I
= ⋅V R I
ω
= ⋅
1
V I
j C
ω= ⋅V j L I
V
I
V
I
V
I
V and I are in-phase
V lags I by 90o
V leads I by 90o
R
C
L
25/33
Department of Electronic Engineering, NTUT
Frequency Response
Frequency-independent
All pass
Frequency-dependent
High-pass
Frequency-dependent
Low-pass
V
I
R
ω
1
j C
V
I
ωj LV
I
= + =Z R jX R
ω
= + =
1
Z R jX
C
ω π= 2 f
ω π= 2 f
ω π= 2 f
ω= + =Z R jX L
26/33
Department of Electronic Engineering, NTUT
Calculate the Impedance (I)
ω
1
j C
V
• Calculate the impedance of a 0.01-uF capacitor at (a) f=50Hz
(b) 1kHz (c) 1MHz
( )π −
= + = + = − Ω
⋅ × 6
1
0 318.309 k
2 50 0.01 10
Z R jX j
j
= − Ω318.309 kX = Ω318.309 kZ
I
(a) f = 50 Hz
( )π −
= + = + = − Ω
× ⋅ ×3 6
1
0 15.92 k
2 1 10 0.01 10
Z R jX j
j
= − Ω15.92 kX = Ω15.92 kZ
(b) f = 1 kHz
( )π −
= + = + = − Ω
× ⋅ ×6 6
1
0 15.92
2 1 10 0.01 10
Z R jX j
j
= − Ω15.92X = Ω15.92Z
(c) f = 1 MHz
= 0.01 µFC
27/33
Department of Electronic Engineering, NTUT
Calculate the Impedance (II)
• Calculate the impedance of a 100-mH inductor at (a) f=50Hz
(b) 1kHz (c) 1MHz
( )π −
= + = + ⋅ × = Ω3
0 2 50 100 10 31.42Z R jX j j
= Ω31.42X = Ω31.42Z
(a) f = 50 Hz
( )π −
= + = + × ⋅ × = Ω3 3
0 2 1 10 100 10 628.32Z R jX j j
= Ω628.32X = Ω628.32Z
(b) f = 1 kHz
( )π −
= + = + × ⋅ × = Ω6 3
0 2 1 10 100 10 628.32 kZ R jX j j
= Ω628.32 kX = Ω628.32 kZ
(c) f = 1 MHz
ωj LV
I
= 100 mHL
28/33
Department of Electronic Engineering, NTUT
Calculate the Impedance (III)
• Calculate the impedance of following circuit at (a) f=50Hz
(b) 1kHz (c) 1MHz
( )
( )
π −
= + = + = − Ω
⋅ × 6
1
200 0.2 318.309 k
2 50 0.01 10
Z R jX j
j
= Ω318.309 kZ
(a) f = 50 Hz
( )
( )
π −
= + = + = − Ω
× ⋅ ×3 6
1
200 0.2 15.92 k
2 1 10 0.01 10
Z R jX j
j
= Ω15.92 kZ
(b) f = 1 kHz
( )
( )
π −
= + = + = − Ω
× ⋅ ×6 6
1
200 200 15.92
2 1 10 0.01 10
Z R jX j
j
= Ω200.63Z
(c) f = 1 MHz
ω
1
j C
= 0.01 µFC
R
= Ω200R
= ∠ − Ω318.309k 89.96Z
= ∠ − Ω15.92k 89.26Z
= ∠ Ω200.63 -4.55Z
29/33
Department of Electronic Engineering, NTUT
Calculate the Impedance (IV)
• Calculate the impedance of following circuit at (a) f=50Hz
(b) 1kHz (c) 1MHz
( ) ( )π −
= + = + ⋅ × = + Ω3
200 2 50 100 10 200 31.42Z R jX j j
= Ω202.45Z
(a) f = 50 Hz
( ) ( )π −
= + = + × ⋅ × = + Ω3 3
200 2 1 10 100 10 200 628.32Z R jX j j
= Ω659.38Z
(b) f = 1 kHz
( ) ( )π −
= + = + × ⋅ × = + Ω6 3
200 2 1 10 100 10 0.2 628.32 kZ R jX j j
= Ω628.32 kZ
(c) f = 1 MHz
ωj L
= 100 mHL
R
= Ω200R
= ∠ Ω202.45 8.93Z
= ∠ Ω659.38 72.34Z
= ∠ Ω628.32 k 89.98Z
30/33
Department of Electronic Engineering, NTUT
Power in AC Circuits
( ) ( )ω φ= +sinpi t I t
( ) ( )ω φ θ= + +sinpv t V t
Instantaneous power absorbed by the circuit:
( ) ( ) ( ) ( ) ( )ω φ θ ω φ= = + + +sin sinp pp t v t i t V I t t
( ) ( ) ( )= =∫ ∫0 0
1 1T T
P p t dt v t i t dt
T T
Average power:
( ) ( )= − − +
1 1
sin sin cos cos
2 2
A B A B A B
Steady-state
AC circuit
( )i t
( )v t
( ) ( )ω φ θ ω φ= + + +∫0
1
sin sin
T
p pV I t t dt
T
31/33
Department of Electronic Engineering, NTUT
Power in AC Circuits
Average power:
( )θ ω φ θ = − + +
  ∫ ∫0 0
cos cos 2 2
2
T Tp pV I
dt t dt
T
( ) ( ) { }
θ
θ θ ∗
= = = =
0
cos 1
cos cos Re
2 2 2 2
T
p p p p p pV I V I V I
t T VI
T T
Steady-state
AC circuit
( )i t
( )v t
( ) ( )ω φ θ ω φ= + + +∫0
1
sin sin
T
p pP V I t t dt
T
V
Iθ
φ
( )φ θ+
=
j
pV V e
φ∗ −
= j
pI I e
θ
=* j
p pVI V I e
{ } θ=*
Re cosp pVI V I
32/33
Department of Electronic Engineering, NTUT
Root-Mean-Square (RMS) Value
θ
θ θ= = =
cos
cos cos
22 2
p p p p
rms rms
V I V I
P V I
(RMS value is also called the effective value)
When the circuit contains L and C, the current and voltage may not be
in-phase (they can be in-phase if effects of L and C cancelled at the given frequency),
and hence the apparent power may not be totally absorbed by the circuit.
Define RMS voltage and current as
=
2
p
rms
V
V =
2
p
rms
I
I
power factor (PF)
is define as the power factor (功率因子/因素)θ≤ ≤0 cos 1
×Actual power = Apparent power Power factor
θ= cosrms rmsV I
33/33
1 of 33

Recommended

射頻電子 - [第二章] 傳輸線理論 by
射頻電子 - [第二章] 傳輸線理論射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論Simen Li
8.5K views47 slides
Circuit Network Analysis - [Chapter1] Basic Circuit Laws by
Circuit Network Analysis - [Chapter1] Basic Circuit LawsCircuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsSimen Li
3.5K views32 slides
電路學 - [第七章] 正弦激勵, 相量與穩態分析 by
電路學 - [第七章] 正弦激勵, 相量與穩態分析電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析Simen Li
5K views41 slides
專題製作發想與報告撰寫技巧 by
專題製作發想與報告撰寫技巧專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧Simen Li
3.3K views61 slides
電路學 - [第四章] 儲能元件 by
電路學 - [第四章] 儲能元件電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件Simen Li
9.9K views21 slides
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計 by
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計
射頻電子 - [實驗第四章] 微波濾波器與射頻多工器設計Simen Li
6.4K views23 slides

More Related Content

What's hot

電路學 - [第八章] 磁耦合電路 by
電路學 - [第八章] 磁耦合電路電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路Simen Li
4.5K views28 slides
電路學 - [第五章] 一階RC/RL電路 by
電路學 - [第五章] 一階RC/RL電路電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路Simen Li
11.6K views32 slides
射頻電子 - [實驗第一章] 基頻放大器設計 by
射頻電子 - [實驗第一章] 基頻放大器設計射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計Simen Li
2.6K views135 slides
射頻電子 - [第三章] 史密斯圖與阻抗匹配 by
射頻電子 - [第三章] 史密斯圖與阻抗匹配射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配Simen Li
50.9K views70 slides
射頻電子 - [實驗第二章] I/O電路設計 by
射頻電子 - [實驗第二章] I/O電路設計射頻電子 - [實驗第二章] I/O電路設計
射頻電子 - [實驗第二章] I/O電路設計Simen Li
8.9K views20 slides
電路學 - [第六章] 二階RLC電路 by
電路學 - [第六章] 二階RLC電路電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路Simen Li
33.5K views33 slides

What's hot(20)

電路學 - [第八章] 磁耦合電路 by Simen Li
電路學 - [第八章] 磁耦合電路電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路
Simen Li4.5K views
電路學 - [第五章] 一階RC/RL電路 by Simen Li
電路學 - [第五章] 一階RC/RL電路電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路
Simen Li11.6K views
射頻電子 - [實驗第一章] 基頻放大器設計 by Simen Li
射頻電子 - [實驗第一章] 基頻放大器設計射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計
Simen Li2.6K views
射頻電子 - [第三章] 史密斯圖與阻抗匹配 by Simen Li
射頻電子 - [第三章] 史密斯圖與阻抗匹配射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配
Simen Li50.9K views
射頻電子 - [實驗第二章] I/O電路設計 by Simen Li
射頻電子 - [實驗第二章] I/O電路設計射頻電子 - [實驗第二章] I/O電路設計
射頻電子 - [實驗第二章] I/O電路設計
Simen Li8.9K views
電路學 - [第六章] 二階RLC電路 by Simen Li
電路學 - [第六章] 二階RLC電路電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路
Simen Li33.5K views
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis by Simen Li
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisRF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
Simen Li3.2K views
射頻電子 - [第五章] 射頻放大器設計 by Simen Li
射頻電子 - [第五章] 射頻放大器設計射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計
Simen Li15K views
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬 by Simen Li
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
Simen Li34.9K views
射頻電子 - [第六章] 低雜訊放大器設計 by Simen Li
射頻電子 - [第六章] 低雜訊放大器設計射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計
Simen Li8.5K views
電路學 - [第三章] 網路定理 by Simen Li
電路學 - [第三章] 網路定理電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理
Simen Li6.3K views
射頻電子 - [實驗第三章] 濾波器設計 by Simen Li
射頻電子 - [實驗第三章] 濾波器設計射頻電子 - [實驗第三章] 濾波器設計
射頻電子 - [實驗第三章] 濾波器設計
Simen Li20.4K views
RF Module Design - [Chapter 1] From Basics to RF Transceivers by Simen Li
RF Module Design - [Chapter 1] From Basics to RF TransceiversRF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF Transceivers
Simen Li7.9K views
RF Circuit Design - [Ch2-2] Smith Chart by Simen Li
RF Circuit Design - [Ch2-2] Smith ChartRF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith Chart
Simen Li8.3K views
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬 by Simen Li
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
Simen Li7.3K views
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator by Simen Li
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
Simen Li4.8K views
電路學 - [第一章] 電路元件與基本定律 by Simen Li
電路學 - [第一章] 電路元件與基本定律電路學 - [第一章] 電路元件與基本定律
電路學 - [第一章] 電路元件與基本定律
Simen Li64.2K views
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬 by Simen Li
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Simen Li8K views
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬 by Simen Li
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
Simen Li7.8K views
Agilent ADS 模擬手冊 [實習2] 放大器設計 by Simen Li
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計
Simen Li7.6K views

Viewers also liked

RF Circuit Design - [Ch3-1] Microwave Network by
RF Circuit Design - [Ch3-1] Microwave NetworkRF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkSimen Li
3.8K views32 slides
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier by
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband AmplifierRF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband AmplifierSimen Li
5.3K views16 slides
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier by
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierRF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierSimen Li
10.6K views45 slides
Circuit Network Analysis - [Chapter3] Fourier Analysis by
Circuit Network Analysis - [Chapter3] Fourier AnalysisCircuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisSimen Li
12.4K views61 slides
Circuit Network Analysis - [Chapter4] Laplace Transform by
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformSimen Li
14.7K views61 slides
RF Circuit Design - [Ch1-2] Transmission Line Theory by
RF Circuit Design - [Ch1-2] Transmission Line TheoryRF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheorySimen Li
12.2K views40 slides

Viewers also liked(10)

RF Circuit Design - [Ch3-1] Microwave Network by Simen Li
RF Circuit Design - [Ch3-1] Microwave NetworkRF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave Network
Simen Li3.8K views
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier by Simen Li
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband AmplifierRF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
Simen Li5.3K views
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier by Simen Li
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierRF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
Simen Li10.6K views
Circuit Network Analysis - [Chapter3] Fourier Analysis by Simen Li
Circuit Network Analysis - [Chapter3] Fourier AnalysisCircuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier Analysis
Simen Li12.4K views
Circuit Network Analysis - [Chapter4] Laplace Transform by Simen Li
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace Transform
Simen Li14.7K views
RF Circuit Design - [Ch1-2] Transmission Line Theory by Simen Li
RF Circuit Design - [Ch1-2] Transmission Line TheoryRF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line Theory
Simen Li12.2K views
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions by Simen Li
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain ExpressionsRF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
Simen Li4.8K views
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching by Simen Li
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingRF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
Simen Li11.2K views
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ... by Simen Li
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Simen Li26.2K views
全端物聯網探索之旅 - 重點整理版 by Simen Li
全端物聯網探索之旅 - 重點整理版全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版
Simen Li5.1K views

Similar to Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis

Multiband Transceivers - [Chapter 1] by
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Simen Li
2.9K views44 slides
A-tutorial.pdf by
A-tutorial.pdfA-tutorial.pdf
A-tutorial.pdfFernandoAlbornoz16
2 views17 slides
EC8553 Discrete time signal processing by
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing ssuser2797e4
403 views12 slides
signal and system Lecture 2 by
signal and system Lecture 2signal and system Lecture 2
signal and system Lecture 2iqbal ahmad
1.2K views8 slides
A Simple Communication System Design Lab #3 with MATLAB Simulink by
A Simple Communication System Design Lab #3 with MATLAB SimulinkA Simple Communication System Design Lab #3 with MATLAB Simulink
A Simple Communication System Design Lab #3 with MATLAB SimulinkJaewook. Kang
516 views24 slides
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD by
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDBenjamin Jaedon Choi
566 views24 slides

Similar to Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis(20)

Multiband Transceivers - [Chapter 1] by Simen Li
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1]
Simen Li2.9K views
EC8553 Discrete time signal processing by ssuser2797e4
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing
ssuser2797e4403 views
signal and system Lecture 2 by iqbal ahmad
signal and system Lecture 2signal and system Lecture 2
signal and system Lecture 2
iqbal ahmad1.2K views
A Simple Communication System Design Lab #3 with MATLAB Simulink by Jaewook. Kang
A Simple Communication System Design Lab #3 with MATLAB SimulinkA Simple Communication System Design Lab #3 with MATLAB Simulink
A Simple Communication System Design Lab #3 with MATLAB Simulink
Jaewook. Kang516 views
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD by Benjamin Jaedon Choi
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Wideband Frequency Modulation.pdf by ArijitDhali
Wideband Frequency Modulation.pdfWideband Frequency Modulation.pdf
Wideband Frequency Modulation.pdf
ArijitDhali451 views
SolutionsPlease see answer in bold letters.Note pi = 3.14.docx by rafbolet0
SolutionsPlease see answer in bold letters.Note pi = 3.14.docxSolutionsPlease see answer in bold letters.Note pi = 3.14.docx
SolutionsPlease see answer in bold letters.Note pi = 3.14.docx
rafbolet07 views
Ecg by toi_sat
EcgEcg
Ecg
toi_sat499 views
Lecture1 by srirenga
Lecture1Lecture1
Lecture1
srirenga88 views
Applications of Differential Calculus in real life by OlooPundit
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life
OlooPundit135 views
Fourier transforms & fft algorithm (paul heckbert, 1998) by tantanoid by Xavier Davias
Fourier transforms & fft algorithm (paul heckbert, 1998) by tantanoidFourier transforms & fft algorithm (paul heckbert, 1998) by tantanoid
Fourier transforms & fft algorithm (paul heckbert, 1998) by tantanoid
Xavier Davias1.6K views

More from Simen Li

2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII) by
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)Simen Li
5K views50 slides
Node.js Event Loop & EventEmitter by
Node.js Event Loop & EventEmitterNode.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterSimen Li
4.9K views30 slides
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013 by
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Simen Li
7.5K views60 slides
Phase-locked Loops - Theory and Design by
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignSimen Li
10.3K views140 slides
ADF4113 Frequency Synthesizer 驅動程式實作 by
ADF4113 Frequency Synthesizer 驅動程式實作ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作Simen Li
2.6K views16 slides
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計 by
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Simen Li
13.8K views54 slides

More from Simen Li(20)

2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII) by Simen Li
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
Simen Li5K views
Node.js Event Loop & EventEmitter by Simen Li
Node.js Event Loop & EventEmitterNode.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitter
Simen Li4.9K views
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013 by Simen Li
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Simen Li7.5K views
Phase-locked Loops - Theory and Design by Simen Li
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and Design
Simen Li10.3K views
ADF4113 Frequency Synthesizer 驅動程式實作 by Simen Li
ADF4113 Frequency Synthesizer 驅動程式實作ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作
Simen Li2.6K views
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計 by Simen Li
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Simen Li13.8K views
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬 by Simen Li
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
Simen Li8.5K views
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware by Simen Li
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
Simen Li14.6K views
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware by Simen Li
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
Simen Li6.2K views
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3) by Simen Li
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
Simen Li2.7K views
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2) by Simen Li
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
Simen Li3.3K views
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1) by Simen Li
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
Simen Li4.5K views
深入淺出C語言 by Simen Li
深入淺出C語言深入淺出C語言
深入淺出C語言
Simen Li8.9K views
[嵌入式系統] 嵌入式系統進階 by Simen Li
[嵌入式系統] 嵌入式系統進階[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階
Simen Li9.3K views
Multiband Transceivers - [Chapter 7] Spec. Table by Simen Li
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. Table
Simen Li1.6K views
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP... by Simen Li
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Simen Li3.6K views
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers by Simen Li
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversMultiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Simen Li4K views
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios by Simen Li
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosMultiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Simen Li3.8K views
Multiband Transceivers - [Chapter 5] Software-Defined Radios by Simen Li
Multiband Transceivers - [Chapter 5]  Software-Defined RadiosMultiband Transceivers - [Chapter 5]  Software-Defined Radios
Multiband Transceivers - [Chapter 5] Software-Defined Radios
Simen Li2.8K views
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems by Simen Li
Multiband Transceivers - [Chapter 3]  Basic Concept of Comm. SystemsMultiband Transceivers - [Chapter 3]  Basic Concept of Comm. Systems
Multiband Transceivers - [Chapter 3] Basic Concept of Comm. Systems
Simen Li3.2K views

Recently uploaded

Investigation of Physicochemical Changes of Soft Clay around Deep Geopolymer ... by
Investigation of Physicochemical Changes of Soft Clay around Deep Geopolymer ...Investigation of Physicochemical Changes of Soft Clay around Deep Geopolymer ...
Investigation of Physicochemical Changes of Soft Clay around Deep Geopolymer ...AltinKaradagli
15 views16 slides
DevOps-ITverse-2023-IIT-DU.pptx by
DevOps-ITverse-2023-IIT-DU.pptxDevOps-ITverse-2023-IIT-DU.pptx
DevOps-ITverse-2023-IIT-DU.pptxAnowar Hossain
12 views45 slides
_MAKRIADI-FOTEINI_diploma thesis.pptx by
_MAKRIADI-FOTEINI_diploma thesis.pptx_MAKRIADI-FOTEINI_diploma thesis.pptx
_MAKRIADI-FOTEINI_diploma thesis.pptxfotinimakriadi
8 views32 slides
LDPC_CODES.ppt by
LDPC_CODES.pptLDPC_CODES.ppt
LDPC_CODES.ppthsomashekar987
16 views44 slides
Searching in Data Structure by
Searching in Data StructureSearching in Data Structure
Searching in Data Structureraghavbirla63
14 views8 slides
Effect of deep chemical mixing columns on properties of surrounding soft clay... by
Effect of deep chemical mixing columns on properties of surrounding soft clay...Effect of deep chemical mixing columns on properties of surrounding soft clay...
Effect of deep chemical mixing columns on properties of surrounding soft clay...AltinKaradagli
10 views10 slides

Recently uploaded(20)

Investigation of Physicochemical Changes of Soft Clay around Deep Geopolymer ... by AltinKaradagli
Investigation of Physicochemical Changes of Soft Clay around Deep Geopolymer ...Investigation of Physicochemical Changes of Soft Clay around Deep Geopolymer ...
Investigation of Physicochemical Changes of Soft Clay around Deep Geopolymer ...
AltinKaradagli15 views
DevOps-ITverse-2023-IIT-DU.pptx by Anowar Hossain
DevOps-ITverse-2023-IIT-DU.pptxDevOps-ITverse-2023-IIT-DU.pptx
DevOps-ITverse-2023-IIT-DU.pptx
Anowar Hossain12 views
_MAKRIADI-FOTEINI_diploma thesis.pptx by fotinimakriadi
_MAKRIADI-FOTEINI_diploma thesis.pptx_MAKRIADI-FOTEINI_diploma thesis.pptx
_MAKRIADI-FOTEINI_diploma thesis.pptx
fotinimakriadi8 views
Searching in Data Structure by raghavbirla63
Searching in Data StructureSearching in Data Structure
Searching in Data Structure
raghavbirla6314 views
Effect of deep chemical mixing columns on properties of surrounding soft clay... by AltinKaradagli
Effect of deep chemical mixing columns on properties of surrounding soft clay...Effect of deep chemical mixing columns on properties of surrounding soft clay...
Effect of deep chemical mixing columns on properties of surrounding soft clay...
AltinKaradagli10 views
Generative AI Models & Their Applications by SN
Generative AI Models & Their ApplicationsGenerative AI Models & Their Applications
Generative AI Models & Their Applications
SN10 views
fakenews_DBDA_Mar23.pptx by deepmitra8
fakenews_DBDA_Mar23.pptxfakenews_DBDA_Mar23.pptx
fakenews_DBDA_Mar23.pptx
deepmitra816 views
GDSC Mikroskil Members Onboarding 2023.pdf by gdscmikroskil
GDSC Mikroskil Members Onboarding 2023.pdfGDSC Mikroskil Members Onboarding 2023.pdf
GDSC Mikroskil Members Onboarding 2023.pdf
gdscmikroskil58 views
Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc... by csegroupvn
Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc...Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc...
Design of Structures and Foundations for Vibrating Machines, Arya-ONeill-Pinc...
csegroupvn5 views
Design_Discover_Develop_Campaign.pptx by ShivanshSeth6
Design_Discover_Develop_Campaign.pptxDesign_Discover_Develop_Campaign.pptx
Design_Discover_Develop_Campaign.pptx
ShivanshSeth637 views
2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx by lwang78
2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx
2023Dec ASU Wang NETR Group Research Focus and Facility Overview.pptx
lwang78109 views

Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis

  • 1. Network Analysis Chapter 2 e, Phasor, and Sinusoidal Steady-State Analysis Chien-Jung Li Department of Electronic Engineering National Taipei University of Technology
  • 2. Department of Electronic Engineering, NTUT Compound Interest • 複利公式: 本金P, 年利率r, 一年複利n次, t年後本金加利息之總和為   = +    1 nt r S P n • Let P=1, r=1, and t=1   = +    1 1 n S n When n goes to infinite, S converges to 2.718… (= e) Let P=10萬, r/n=10%/12, t=1 S=11,0471 Let P=10萬, r/n=10%, and n=36, t=1 S=3,091,268 2/33
  • 3. Department of Electronic Engineering, NTUT Development of Logarithm • Michael Stifel (1487-1567) • John Napier (1550-1617) • 利用對數而將乘法變成加法的特性,刻卜勒成功 計算了火星繞日的軌道。 ( )+ ∗ = = 2 52 5 7 m m m m ( )− = = 7 7 4 3 4 m m m m ( )− − = = = 2 2 3 1 3 1m m m mm − − − =⋯ ⋯3 2 1 0 1 2 3 , , , , 1, , , ,m m m m m m m 3/33
  • 4. Department of Electronic Engineering, NTUT Definition of dB (分貝) • , where • Power gain • Voltage gain • Power (dBW) • Power (dBm) • Voltage (dBV) • Voltage (dBuV) ( )= ⋅10 logdB G ( )= aG b  = ⋅     2 1 10 log P P  = ⋅     2 1 20 log V V ( )= ⋅10 log 1-W P ( )= ⋅10 log 1-mW P ( )= ⋅20 log 1-Volt V ( )µ = ⋅20 log 1- V V 相對量 ((((比例,,,, 比值,,,, 無單位, dB), dB), dB), dB) 絕對量 ((((因相對於一絕對單位,,,, 因此可表示一絕對量.... 有單位,,,, 單位即為dBWdBWdBWdBW,,,, dBmdBmdBmdBm,,,, dBVdBVdBVdBV…)…)…)…) 4/33
  • 5. Department of Electronic Engineering, NTUT In some textbooks, phasor may be represented as Euler’s Formula • Euler’s Formula cos sinjx e x j x= + ( ) ( ) ( ) { } { }ω φ φ ω ω φ + = ⋅ + = ⋅ = ⋅cos Re Re j t j j t p p pv t V t V e V e e φ φ= ⋅ = ∠ def j p pV V e V • Phasor (相量) Don’t be confused with VectorVectorVectorVector (向量) which is commonly denoted as A (How it comes?) 取實部 (即cosine部分) phasor A real sinusoidal signal v(t) that can be represented as: V V 5/33
  • 6. Department of Electronic Engineering, NTUT Definition of e lim 1 n x n x e n→∞   = +    2 3 lim 1 1 1! 2! 3! n x n x x x x e n→∞   = + = + + + +    … x jx= ( ) ( ) 2 3 1 1! 2! 3! jx jx jxjx e = + + + +… • Euler played a trick let , where 1j = − 1 lim 1 n n e n→∞   = +    6/33
  • 7. Department of Electronic Engineering, NTUT • Since , , , How It Comes… 1j = − 2 1j = − 3 1j = − − 4 1j =     = − + − + + − + − +        … … 2 4 3 5 1 2! 4! 3! 5! x x x x j x 2 4 cos 1 2! 4! x x x = − + − +… 3 5 sin 3! 5! x x x x= − + − +… cos sinjx e x j x= + cos sinjx e x j x− = − cos 2 jx jx e e x − + = − − =sin 2 jx jx e e x j ( ) ( )= + + + +… 2 3 1 1! 2! 3! jx jx jxjx e • Use and we have (姊妹式) 7/33
  • 8. Department of Electronic Engineering, NTUT Coordinate Systems x-axis y-axis x-axis y-axis P(r,θ) θ r P(x,y) 2 2 r x y= + 1 tan y x θ − = cosx r θ= siny r θ= Cartesian Coordinate System (笛卡兒座標系, 直角座標系) Polar Coordinate System (極坐標系) (x,0) (0,y) ( )cos ,0r θ ( )0, sinr θ Projection on x-axis Projection on y-axis 8/33
  • 9. Department of Electronic Engineering, NTUT Sine Waveform x-axis y-axis P(x,y) x y r θ θθ y θ 0 π/2 π 3π/2 2π Go along the circle, the projection on y-axis results in a sine wave. 9/33
  • 10. Department of Electronic Engineering, NTUT x θ 0 π/2 π 3π/2 Cosine Waveform x-axis y-axis θ Go along the circle, the projection on x-axis results in a cosine wave. Sinusoidal waves relate to a CircleCircleCircleCircle very closely. Complete going along the circle to finish a cycle, and the angle θ rotates with 2π rads and you are back to the original starting-point and. Complete another cycle again, sinusoidal waveform in one period repeats again. Keep going along the circle, the waveform will periodically appear. 10/33
  • 11. Department of Electronic Engineering, NTUT Complex Plan (I) It seems to be the same thing with x-y plan, right? • Carl Friedrich Gauss (1777-1855) defined the complex plan. He defined the unit length on ImImImIm-axis is equal to “j”. A complex Z=x+jy can be denoted as (x, yj) on the complex plan. (sometimes, ‘j’ may be written as ‘i’ which represent imaginary) Re-axis Im-axis Re-axis Im-axis P(r,θ) θ r P(x,yj) 2 2 r x y= + 1 tan y x θ − = cosx r θ= siny r θ= (x,0j) (0,yj) ( )cos ,0r θ ( )0, sinr θ ( )1j = − 11/33
  • 12. Department of Electronic Engineering, NTUT Complex Plan (II) Re-axis Im-axis 1 Every time you multiply something by j, that thing will rotate 90 degrees. 1j = − 2 1j = − 3 1j = − − 4 1j = 1*j=j j j*j=-1 -1 -j -1*j=-j -j*j=1 (0.5,0.2j) (-0.2, 0.5j) (-0.5, -0.2j) (0.2, -0.5j) • Multiplying j by j and so on: 12/33
  • 13. Department of Electronic Engineering, NTUT Sine Waveform Re-axis Im-axis P(x,y) x y r θ θθ y=rsinθ θ 0 π/2 π 3π/2 2π To see the cosine waveform, the same operation can be applied to trace out the projection on ReReReRe-axis. 13/33
  • 14. Department of Electronic Engineering, NTUT Phasor Representation (I) – Sine Basis ( ) ( ) { } { }φ ω φ θ ω φ= + = =sin Im Imj j t j j sv t A t Ae e Ae e Re-axis Im-axis P(A,ф) y=Asin ф θ 0 π/2 π 3π/2 2π ф tθ ω= Given the phasor denoted as a point on the complex-plan, you should know it represents a sinusoidal signal. Keep this in mind, it is very very important! time-domain waveform 14/33
  • 15. Department of Electronic Engineering, NTUT Phasor Representation (II) – Cosine Basis ( ) ( ) { } { }φ ω φ θ ω φ= + = =cos Re Rej j t j j sv t A t Ae e Ae e Re-axis Im-axis P(A,ф) y=Acos ф θ 0 π/2 π 3π/2 2π ф tθ ω= time-domain waveform 15/33
  • 16. Department of Electronic Engineering, NTUT Phasor Representation (III) ( ) ( ) { }φ ω ω φ= + = 1 1 1 1 1sin Im j j t v t A t A e e Re-axis Im-axis P(A1,ф1) ф1 P(A2,ф2) P(A3,ф3) θ 0 π/2 π 3π/2 2π tθ ω= A1sin ф1 ( ) ( ) { }φ ω ω φ= + = 2 2 2 2 2sin Im j j t v t A t A e e ( ) ( ) { }φ ω ω φ= + = 3 3 3 3 3sin Im j j t v t A t A e e A2sin ф2 A3sin ф3 16/33
  • 17. Department of Electronic Engineering, NTUT Mathematical Operation j t j tde j e dt ω ω ω= ⋅ 1j t j t e dt e j ω ω ω = ⋅∫ ( ) ( )0 1 t v t i t dt C = ∫ ω = = ⋅ 1 CV I Z I j C ( ) ( )di t v t L dt = ω= ⋅ = ⋅LV j L I Z I ω = = 1 1 CZ j C sC ω= =LZ j L sL • LLLL and CCCC: from time-domain to phasor-domain analysis (s is the Laplace operator) ( )σ ω σ= + =, here let 0s j 17/33
  • 18. Department of Electronic Engineering, NTUT Phasor Everywhere • 電路學、電子學: Phasor 常見為一個固定值 (亦可為變量) • 電磁學、微波工程: Phasor 常見為變動量, 隨傳播方向變化 • 通訊系統: Phasor 常見為變動量, 隨時間變化 此變動的phasor也經常被稱作複數波包(complex envelope)、波包 (envelope),或帶通訊號的等效低通訊號(equivalent lowpass signal of the bandpass signal)。Phasor如果被拆成正交兩成分,常稱作I/Q訊 號,而在數位通訊裡表示I/Q訊號的複數平面(座標系)也被稱為星座 圖(constellation)。 • You will see “Phasor” many times in your E.E. life. It just appears with different names, and it is just a representation or an analysis technique. • Keep in mind that a phasor represents a signal, it’s like a head on your body. 18/33
  • 19. Department of Electronic Engineering, NTUT Simple Relation Between Sine and Cosine • Sine CosineSine CosineSine CosineSine Cosine π/2 π 3π/2 2π sinθ θ 0 cosθ • Negative sine or cosineNegative sine or cosineNegative sine or cosineNegative sine or cosine ( )θ θ= +cos sin 90 ( )θ θ= −sin cos 90 ( )θ θ− = +cos cos 180 ( )θ θ− = +sin sin 180 Try to transform into sine-form:θ−cos ( ) ( ) ( )θ θ θ θ− = − + = + = −cos sin 90 sin 270 sin 90 19/33
  • 20. Department of Electronic Engineering, NTUT Cosine as a Basis ( ) { }ω ω= =cos Re j t pv t V t Ve = ∠0pV V ( ) { }ωπ ω ω   = = − =    sin cos Re 2 j t p pv t V t V t Ve = ∠ − 90pV V ( ) ( ) { }ω ω ω π= − = + =cos cos Re j t p pv t V t V t Ve = ∠180pV V ( ) { }ωπ ω ω   = − = + =    sin cos Re 2 j t p pv t V t V t Ve = ∠90pV V cosinecosinecosinecosine sinesinesinesine negative cosinenegative cosinenegative cosinenegative cosine negative sinenegative sinenegative sinenegative sine Phasor Phasor Phasor Phasor 20/33
  • 21. Department of Electronic Engineering, NTUT Sine as a Basis ( ) { }ω ω= =sin Im j t pv t V t Ve = ∠0pV V ( ) { }ωπ ω ω   = = + =    cos sin Im 2 j t p pv t V t V t Ve = ∠90pV V ( ) ( ) { }ω ω ω π= − = + =sin sin Im j t p pv t V t V t Ve = ∠180pV V ( ) { }ωπ ω ω   = − = − =    cos sin Im 2 j t p pv t V t V t Ve = ∠ − 90pV V Phasor Phasor Phasor Phasor cosinecosinecosinecosine sinesinesinesine negative cosinenegative cosinenegative cosinenegative cosine negative sinenegative sinenegative sinenegative sine 21/33
  • 22. Department of Electronic Engineering, NTUT Addition of Sinusoidal A basic property of sinusoidal functions is that the sum of an arbitrary number of sinusoids of the same frequency is equivalent to a single sinusoid of the given frequency. It must be emphasized that all sinusoids must be of the same frequency. ( ) ( )ω θ= +sinpv t V t θ= ∠1 1 1pV V θ= ∠2 2 2pV V θ= ∠n pn nV V = + + +⋯1 2 nV V V V ( ) ( ) ( ) ( )ω θ ω θ ω θ= + + + + + +⋯1 1 2 2sin sin sinp p pn nv t V t V t V t ( )1v t ( )2v t ( )nv t 22/33
  • 23. Department of Electronic Engineering, NTUT Example ( ) ( ) ( )= +0 1 2v t v t v t ( ) ( )= −1 20cos 100 120v t t ( ) ( )= − +2 15sin 100 60v t t = ∠ − = −1 20 30 17.3205 10V j = ∠ − = − −2 15 120 7.5 12.9904V j ( ) ( )= − + − −0 17.3205 10 7.5 12.9904V j j ( ) ( )= −0 25sin 100 66.87v t t = − = ∠ −9.8205 22.9904 25 66.87j = ∠ − = − −1 20 120 10 17.321V j = ∠ = − +2 15 150 12.9904 7.5V j ( ) ( )= − − + − +0 10 17.321 12.9904 7.5V j j = − − = ∠22.9904 9.8205 25 203.13j ( ) ( )= +0 25cos 100 203.13v t t ( )= −25sin 100 66.87t Choose the basis you like, and the results are identical. andFor calculate use sine function as a basis use cosine function as a basis 23/33
  • 24. Department of Electronic Engineering, NTUT Steady-state Impedance = = + V Z R jX I • Steady-state impedance resistance reactance = = + I Y G jB Z • Steady-state admittance conductance susceptance = +30 40Z j = Ω30R = Ω40X = = − + 1 0.012 0.016 30 40 Y j j = 0.012G S = −0.016X S 24/33
  • 25. Department of Electronic Engineering, NTUT Conversion to Phasor-domain ( )i t ( )v t V I RR ( )i t ( )v t ( )i t ( )v t C L ω 1 j C V I ωj LV I = ⋅V R I ω = ⋅ 1 V I j C ω= ⋅V j L I V I V I V I V and I are in-phase V lags I by 90o V leads I by 90o R C L 25/33
  • 26. Department of Electronic Engineering, NTUT Frequency Response Frequency-independent All pass Frequency-dependent High-pass Frequency-dependent Low-pass V I R ω 1 j C V I ωj LV I = + =Z R jX R ω = + = 1 Z R jX C ω π= 2 f ω π= 2 f ω π= 2 f ω= + =Z R jX L 26/33
  • 27. Department of Electronic Engineering, NTUT Calculate the Impedance (I) ω 1 j C V • Calculate the impedance of a 0.01-uF capacitor at (a) f=50Hz (b) 1kHz (c) 1MHz ( )π − = + = + = − Ω ⋅ × 6 1 0 318.309 k 2 50 0.01 10 Z R jX j j = − Ω318.309 kX = Ω318.309 kZ I (a) f = 50 Hz ( )π − = + = + = − Ω × ⋅ ×3 6 1 0 15.92 k 2 1 10 0.01 10 Z R jX j j = − Ω15.92 kX = Ω15.92 kZ (b) f = 1 kHz ( )π − = + = + = − Ω × ⋅ ×6 6 1 0 15.92 2 1 10 0.01 10 Z R jX j j = − Ω15.92X = Ω15.92Z (c) f = 1 MHz = 0.01 µFC 27/33
  • 28. Department of Electronic Engineering, NTUT Calculate the Impedance (II) • Calculate the impedance of a 100-mH inductor at (a) f=50Hz (b) 1kHz (c) 1MHz ( )π − = + = + ⋅ × = Ω3 0 2 50 100 10 31.42Z R jX j j = Ω31.42X = Ω31.42Z (a) f = 50 Hz ( )π − = + = + × ⋅ × = Ω3 3 0 2 1 10 100 10 628.32Z R jX j j = Ω628.32X = Ω628.32Z (b) f = 1 kHz ( )π − = + = + × ⋅ × = Ω6 3 0 2 1 10 100 10 628.32 kZ R jX j j = Ω628.32 kX = Ω628.32 kZ (c) f = 1 MHz ωj LV I = 100 mHL 28/33
  • 29. Department of Electronic Engineering, NTUT Calculate the Impedance (III) • Calculate the impedance of following circuit at (a) f=50Hz (b) 1kHz (c) 1MHz ( ) ( ) π − = + = + = − Ω ⋅ × 6 1 200 0.2 318.309 k 2 50 0.01 10 Z R jX j j = Ω318.309 kZ (a) f = 50 Hz ( ) ( ) π − = + = + = − Ω × ⋅ ×3 6 1 200 0.2 15.92 k 2 1 10 0.01 10 Z R jX j j = Ω15.92 kZ (b) f = 1 kHz ( ) ( ) π − = + = + = − Ω × ⋅ ×6 6 1 200 200 15.92 2 1 10 0.01 10 Z R jX j j = Ω200.63Z (c) f = 1 MHz ω 1 j C = 0.01 µFC R = Ω200R = ∠ − Ω318.309k 89.96Z = ∠ − Ω15.92k 89.26Z = ∠ Ω200.63 -4.55Z 29/33
  • 30. Department of Electronic Engineering, NTUT Calculate the Impedance (IV) • Calculate the impedance of following circuit at (a) f=50Hz (b) 1kHz (c) 1MHz ( ) ( )π − = + = + ⋅ × = + Ω3 200 2 50 100 10 200 31.42Z R jX j j = Ω202.45Z (a) f = 50 Hz ( ) ( )π − = + = + × ⋅ × = + Ω3 3 200 2 1 10 100 10 200 628.32Z R jX j j = Ω659.38Z (b) f = 1 kHz ( ) ( )π − = + = + × ⋅ × = + Ω6 3 200 2 1 10 100 10 0.2 628.32 kZ R jX j j = Ω628.32 kZ (c) f = 1 MHz ωj L = 100 mHL R = Ω200R = ∠ Ω202.45 8.93Z = ∠ Ω659.38 72.34Z = ∠ Ω628.32 k 89.98Z 30/33
  • 31. Department of Electronic Engineering, NTUT Power in AC Circuits ( ) ( )ω φ= +sinpi t I t ( ) ( )ω φ θ= + +sinpv t V t Instantaneous power absorbed by the circuit: ( ) ( ) ( ) ( ) ( )ω φ θ ω φ= = + + +sin sinp pp t v t i t V I t t ( ) ( ) ( )= =∫ ∫0 0 1 1T T P p t dt v t i t dt T T Average power: ( ) ( )= − − + 1 1 sin sin cos cos 2 2 A B A B A B Steady-state AC circuit ( )i t ( )v t ( ) ( )ω φ θ ω φ= + + +∫0 1 sin sin T p pV I t t dt T 31/33
  • 32. Department of Electronic Engineering, NTUT Power in AC Circuits Average power: ( )θ ω φ θ = − + +   ∫ ∫0 0 cos cos 2 2 2 T Tp pV I dt t dt T ( ) ( ) { } θ θ θ ∗ = = = = 0 cos 1 cos cos Re 2 2 2 2 T p p p p p pV I V I V I t T VI T T Steady-state AC circuit ( )i t ( )v t ( ) ( )ω φ θ ω φ= + + +∫0 1 sin sin T p pP V I t t dt T V Iθ φ ( )φ θ+ = j pV V e φ∗ − = j pI I e θ =* j p pVI V I e { } θ=* Re cosp pVI V I 32/33
  • 33. Department of Electronic Engineering, NTUT Root-Mean-Square (RMS) Value θ θ θ= = = cos cos cos 22 2 p p p p rms rms V I V I P V I (RMS value is also called the effective value) When the circuit contains L and C, the current and voltage may not be in-phase (they can be in-phase if effects of L and C cancelled at the given frequency), and hence the apparent power may not be totally absorbed by the circuit. Define RMS voltage and current as = 2 p rms V V = 2 p rms I I power factor (PF) is define as the power factor (功率因子/因素)θ≤ ≤0 cos 1 ×Actual power = Apparent power Power factor θ= cosrms rmsV I 33/33