Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
+




Work and Energy
Chapter 5
Pg. 158-181
+




5.1 Work
Pg. 160-163
+
         What do you think?
 List   five examples of things you have done in the
    last year that you would consider ...
+
    Work

     Inphysics, work is the magnitude of the force (F)
     times the magnitude of the displacement (d) in
  ...
+
    Work


 Pushing   this car is work because F and d are in
    the same direction.
 Why   aren’t the following task...
+
    Work
 At   an angle you can use the below equation
    to calculate the work being done
     Ifthe angle is 90°, w...
+
    Example


     How much work is being done on a
     vacuum cleaner pulled 3.0 m by a force of
     50.0 N at an an...
+
    Example


     W=Fdcosθ

     W=   (50)(3) cos(30°)
     W=   129.90J
+
    Classroom Practice Problem


     A 20.0kg suitcase is raised 3.0 m above a
     platform. How much work is done on...
+
    Work is a Scalar

                        Work  can be
                        positive or
                        ...
+
    Sign of Work is Important
 Work    is positive
     Force   is in the same direction as the displacement
 Work   ...
+




5.2 Energy
Pg. 164- 172
+
        What do you think?
     You   have no doubt heard the term kinetic energy.
      What  is it?
      What fact...
+
    Kinetic Energy


    Energy     associated with an object in
     motion                Wnet = Fd = mad
    Since ...
+
    Kinetic Energy
    Kinetic   energy depends on speed and
     mass
    The net work done on a body equals its
    ...
+
    Example

 A 7.0    Kg bowling ball moves at 3.0 m/s. How
    fast must a 2.45g ping pong ball move in order
    to ...
+
    Example

                                        2KE
     KE=   ½ mv2                  v
                          ...
+
    Classroom Practice Problems


     A 6.00
           kg cat runs after a mouse at 10.0
     m/s. What is the cat’s ...
+
    Work and Kinetic Energy


     KEis the work an object can do if the speed
     changes.
     Wnet   is positive i...
+
    Potential Energy

     Energyassociated with an object’s potential
     to move due to an interaction with its
    ...
+
    Gravitational Potential Energy

     Energy associated with an object due to the
     object’s position relative to...
+
    Elastic Potential Energy

     Theenergy available for use in deformed elastic
     objects
        Rubber bands, ...
+
    Elastic Potential Energy

    The   spring constant (k) depends on the
     stiffness of the spring.
      Stiffer...
+
    Example


     A 70.0kg  stuntman is attached to a bungee
     cord with an unstretched length of 15m. He
     jump...
+
    Example
     Given:

     m=   70kg k= 71.8 N/m         g= 10m/s2
     h=   50m – 44m= 6m
     x=   44m – 15m= 2...
+
    Example

     PEg=   mgh                    PEelastic   = ½ k x2
     PEg=   (70)(10)(6)            PEelastic=  ...
+
    Classroom Practice Problems

     When  a 2.00 kg mass is attached to a
     vertical spring, the spring is stretch...
+




5.3 Conservation of Energy
Pg. 173-178
+
       What do you think?
     Imagine   two students standing side by side at the
     top of a water slide. One steps...
+
       What do you think?
     What is meant when scientists say a quantity
     is conserved?
     Describe
         ...
+
    Mechanical Energy (ME)


     ME   = KE + PEg + PEelastic
      Doesnot include the many other types of
      ener...
+
    Conservation of Mechanical Energy

     The    sum of KE and PE remains constant.
     One type of energy changes ...
+
    Example


     Starting from rest, a child zooms down a
     frictionless slide from an initial height of
     3.0m...
+
    Example
       *Choose your equations
     PE=    mgh            KE=    ½ mv2
     PEf=   (25)(10)(0)    KEf=   ...
+
    Example
       *Put together
     PEi+    KEi= PEf+ KEf
     750    + 0 = 0 + ½ (25)vf2
     750=    12.5 vf2
   ...
+
    Classroom Practice Problems

 Suppose    a 1.00 kg book is dropped from a height
    of 2.00 m. Assume no air resis...
+
    Table of Values for the Falling Book

     h (m)   PE(J)    KE(J)   ME(J)

     0       19.6     0       19.6

     ...
+
    Conservation of Energy
     Acceleration   does not have to be constant.
     ME   is not conserved if friction is...
+
    Classroom Practice Problems

     A small 10.0 g ball is held to a slingshot that
     is stretched 6.0 cm. The spr...
+
        Now what do you think?
     Imagine   two students standing side by side at the
     top of a water slide. One ...
+
       Now what do you think?
     What is meant when scientists say a quantity
     is “conserved”?
     Describe
   ...
+




5.4 Power
Pg. 179-181
+
            What do you think?

     Twocars are identical with one exception.
     One of the cars has a more powerful...
+
    Power


    Therate at which work is done or
    energy is transferred
     Energy    used or work done per second...
+
    Power

     SI   units for power are J/s.
      Calledwatts (W)
      Equivalent to kg•m2/s3

     Horsepower (h...
+
    Watts


     These  bulbs all consume
     different amounts of power.
     A 100watt bulb consumes
     100 joule...
+
    Example


     A 193kg  curtain need to be raised 7.5m, at a
     constant speed, in as close to 5 sec as
     poss...
+
    Example
         W     Fd     mgd
    P
         t      t      t
          (193)(10)(7.5)
    P
                5
  ...
+
    Classroom Practice Problems


     Two horses pull a cart. Each exerts a
     force of 250.0 N at a speed of 2.0 m/...
+
            Now what do you think?

     Twocars are identical with one exception.
     One of the cars has a more powe...
Upcoming SlideShare
Loading in …5
×

of

Work and Energy Slide 1 Work and Energy Slide 2 Work and Energy Slide 3 Work and Energy Slide 4 Work and Energy Slide 5 Work and Energy Slide 6 Work and Energy Slide 7 Work and Energy Slide 8 Work and Energy Slide 9 Work and Energy Slide 10 Work and Energy Slide 11 Work and Energy Slide 12 Work and Energy Slide 13 Work and Energy Slide 14 Work and Energy Slide 15 Work and Energy Slide 16 Work and Energy Slide 17 Work and Energy Slide 18 Work and Energy Slide 19 Work and Energy Slide 20 Work and Energy Slide 21 Work and Energy Slide 22 Work and Energy Slide 23 Work and Energy Slide 24 Work and Energy Slide 25 Work and Energy Slide 26 Work and Energy Slide 27 Work and Energy Slide 28 Work and Energy Slide 29 Work and Energy Slide 30 Work and Energy Slide 31 Work and Energy Slide 32 Work and Energy Slide 33 Work and Energy Slide 34 Work and Energy Slide 35 Work and Energy Slide 36 Work and Energy Slide 37 Work and Energy Slide 38 Work and Energy Slide 39 Work and Energy Slide 40 Work and Energy Slide 41 Work and Energy Slide 42 Work and Energy Slide 43 Work and Energy Slide 44 Work and Energy Slide 45 Work and Energy Slide 46 Work and Energy Slide 47 Work and Energy Slide 48 Work and Energy Slide 49 Work and Energy Slide 50
Upcoming SlideShare
Temperature
Next
Download to read offline and view in fullscreen.

1 Like

Share

Download to read offline

Work and Energy

Download to read offline

Related Books

Free with a 30 day trial from Scribd

See all

Related Audiobooks

Free with a 30 day trial from Scribd

See all

Work and Energy

  1. 1. + Work and Energy Chapter 5 Pg. 158-181
  2. 2. + 5.1 Work Pg. 160-163
  3. 3. + What do you think?  List five examples of things you have done in the last year that you would consider work.  Based on these examples, how do you define work?
  4. 4. + Work  Inphysics, work is the magnitude of the force (F) times the magnitude of the displacement (d) in the same direction as the force. W = Fd  What are the SI units for work?  Force units (N) distance units (m)  N•m are also called joules (J).  How much work is 1 joule?  Liftan apple weighing about 1 N from the floor to the desk, a distance of about 1 m.
  5. 5. + Work  Pushing this car is work because F and d are in the same direction.  Why aren’t the following tasks considered work?  A student holds a heavy chair at arm’s length for several minutes.  A student carries a bucket of water along a horizontal path while walking at a constant velocity.
  6. 6. + Work  At an angle you can use the below equation to calculate the work being done  Ifthe angle is 90°, what is the component of F in the direction of d?  Fcos 90° = 0  Ifthe angle is 0°, what is the component of F in the direction of d?  Fcos 0° = F
  7. 7. + Example  How much work is being done on a vacuum cleaner pulled 3.0 m by a force of 50.0 N at an angle of 30° above the horizontal?  Given:  F= 50.0N d= 3.0 m θ=30°
  8. 8. + Example  W=Fdcosθ  W= (50)(3) cos(30°)  W= 129.90J
  9. 9. + Classroom Practice Problem  A 20.0kg suitcase is raised 3.0 m above a platform. How much work is done on the suitcase?  Answer: 5.9 x 102 J or 590 J
  10. 10. + Work is a Scalar  Work can be positive or negative but does not have a direction.
  11. 11. + Sign of Work is Important  Work is positive  Force is in the same direction as the displacement  Work is negative  Forceis in a different direction as the displacement  Sign of the net work lets you know if the object is speeding up or down + for speeding up and work is being on object  - for slowing down and work is done by object
  12. 12. + 5.2 Energy Pg. 164- 172
  13. 13. + What do you think?  You have no doubt heard the term kinetic energy.  What is it?  What factors affect the kinetic energy of an object and in what way?  Youhave no doubt heard the term potential energy.  What is it?  What factors affect the potential energy of an object and in what way?
  14. 14. + Kinetic Energy Energy associated with an object in motion Wnet = Fd = mad Since v2f = v2i + 2ad v2 f vi2 2 2 Wnet m( ) Then v f v i 2 ad 2 Finally 1 2 1 2 Wnet mv f mvi 2 2
  15. 15. + Kinetic Energy Kinetic energy depends on speed and mass The net work done on a body equals its change in kinetic energy SI units for KE  kg•m2/s2 or N•m or Joule (J)
  16. 16. + Example  A 7.0 Kg bowling ball moves at 3.0 m/s. How fast must a 2.45g ping pong ball move in order to have the same kinetic energy as the bowling ball? Is the speed reasonable for the ping pong ball?  Given:  Bowling ball: m= 7.0 kg v= 3.0m/s  Ping pong: m= 2.45 g (this= 0.00245kg) v=??
  17. 17. + Example 2KE  KE= ½ mv2 v m  KE= ½ (7)(32) 2(31.5)  KE= 31.5 J v 0.00245  Rearrange Equation v = 160.36 m/s to get v by itself
  18. 18. + Classroom Practice Problems  A 6.00 kg cat runs after a mouse at 10.0 m/s. What is the cat’s kinetic energy?  Answer: 3.00 x 102 J or 300 J  Suppose the above cat accelerated to a speed of 12.0 m/s while chasing the mouse. How much work was done on the cat to produce this change in speed?  Answer: 1.32 x 102 J or 132 J
  19. 19. + Work and Kinetic Energy  KEis the work an object can do if the speed changes.  Wnet is positive if the speed increases.  You must include all the forces that do work on the object in calculating the net work done
  20. 20. + Potential Energy  Energyassociated with an object’s potential to move due to an interaction with its environment; basically its stored energy  A book held above the desk  An arrow ready to be released from the bow  Some types of PE are listed below.  Gravitational  Elastic  Electromagnetic
  21. 21. + Gravitational Potential Energy  Energy associated with an object due to the object’s position relative to a gravitational source  SI unit is still a Joule  Theheight (h) depends on the “zero level” chosen where PEg= 0.
  22. 22. + Elastic Potential Energy  Theenergy available for use in deformed elastic objects  Rubber bands, springs in trampolines, pole-vault poles, muscles  For springs, the distance compressed or stretched = x
  23. 23. + Elastic Potential Energy The spring constant (k) depends on the stiffness of the spring.  Stiffer springs have higher k values.  Measured in N/m  Force in newtons needed to stretch a spring 1.0 meters
  24. 24. + Example  A 70.0kg stuntman is attached to a bungee cord with an unstretched length of 15m. He jumps off a bridge from a height of 50m. When he finally stops the cord has a stretched length of 44m. Assuming the spring constant is 71.8 N/m, what is the total PE relative to the water when the man stops falling?
  25. 25. + Example  Given:  m= 70kg k= 71.8 N/m g= 10m/s2  h= 50m – 44m= 6m  x= 44m – 15m= 29m  PEg= mgh  PEelastic = ½ k x2  PEtotal= PEg + PEelastic
  26. 26. + Example  PEg= mgh  PEelastic = ½ k x2  PEg= (70)(10)(6)  PEelastic= ½ (71.8)(292)  PEg= 4200 J  PEelastic= 30191.9J  PEtotal= PEg + PEelastic  PEtotal= 4200 + 30191.9  PEtotal= 34391.9J
  27. 27. + Classroom Practice Problems  When a 2.00 kg mass is attached to a vertical spring, the spring is stretched 10.0 cm such that the mass is 50.0 cm above the table.  What is the gravitational potential energy associated with the mass relative to the table?  Answer: 9.81 J  What is the spring’s elastic potential energy if the spring constant is 400.0 N/m?  Answer: 2.00 J
  28. 28. + 5.3 Conservation of Energy Pg. 173-178
  29. 29. + What do you think?  Imagine two students standing side by side at the top of a water slide. One steps off of the platform, falling directly into the water below. The other student goes down the slide. Assuming the slide is frictionless, which student strikes the water with a greater speed?  Explain your reasoning.  Would your answer change if the slide were not frictionless? If so, how?
  30. 30. + What do you think?  What is meant when scientists say a quantity is conserved?  Describe examples of quantities that are conserved.  Are they always conserved? If not, why?
  31. 31. + Mechanical Energy (ME)  ME = KE + PEg + PEelastic  Doesnot include the many other types of energy, such as thermal energy, chemical potential energy, and others  ME is not a new form of energy.  Just a combination of KE and PE
  32. 32. + Conservation of Mechanical Energy  The sum of KE and PE remains constant.  One type of energy changes into another type.  For the falling book, the PE of the book changed into KE as it fell.  As a ball rolls up a hill, KE is changed into PE.
  33. 33. + Example  Starting from rest, a child zooms down a frictionless slide from an initial height of 3.0m. What is her speed at the bottom of the slide? Her mass is 25kg.  Given:  vi= 0m/s hi= 3m m=25kg  vf= ?? hf=0m
  34. 34. + Example *Choose your equations  PE= mgh  KE= ½ mv2  PEf= (25)(10)(0)  KEf= ½ (25)v2  PEf= 0J  KEf= ??  PEi= (25)(10)(3)  KEi= ½ (25)(02)  PEi= 750J  KEi= 0J
  35. 35. + Example *Put together  PEi+ KEi= PEf+ KEf  750 + 0 = 0 + ½ (25)vf2  750= 12.5 vf2  vf2 = √60  vf= 7.75m/s
  36. 36. + Classroom Practice Problems  Suppose a 1.00 kg book is dropped from a height of 2.00 m. Assume no air resistance.  Calculate the PE and the KE at the instant the book is released.  Answer: PE = 19.6 J, KE = 0 J  Calculate the KE and PE when the book has fallen 1.0 m. (Hint: you will need an equation from Chapter 2.)  Answer: PE = 9.81 J, KE = 9.81 J  Calculate the PE and the KE just as the book reaches the floor.  Answer: PE = 0 J, KE = 19.6 J
  37. 37. + Table of Values for the Falling Book h (m) PE(J) KE(J) ME(J) 0 19.6 0 19.6 0.5 14.7 4.9 19.6 1.0 9.8 9.8 19.6 1.5 4.9 14.7 19.6 2.0 0 19.6 19.6
  38. 38. + Conservation of Energy  Acceleration does not have to be constant.  ME is not conserved if friction is present.  If friction is negligible, conservation of ME is reasonably accurate.  A pendulum as it swings back and forth a few times  Consider a child going down a slide with friction.  What happens to the ME as he slides down?  Answer: It is not conserved but, instead, becomes less and less.  The “lost” energy? is converted into nonmechanical energy (thermal energy).
  39. 39. + Classroom Practice Problems  A small 10.0 g ball is held to a slingshot that is stretched 6.0 cm. The spring constant is 2.0 102 N/m.  What is the elastic potential energy of the slingshot before release?  What is the kinetic energy of the ball right after the slingshot is released?  What is the ball’s speed at the instant it leaves the slingshot?  How high does the ball rise if it is shot directly upward?
  40. 40. + Now what do you think?  Imagine two students standing side by side at the top of a water slide. One steps off of the platform, falling directly into the water below. The other student goes down the slide. Assuming the slide is frictionless, which student strikes the water with a greater speed?  Explain your reasoning.  Would your answer change if the slide were not frictionless? If so, how?
  41. 41. + Now what do you think?  What is meant when scientists say a quantity is “conserved”?  Describe examples of quantities that are conserved.  Are they always conserved? If not, why?
  42. 42. + 5.4 Power Pg. 179-181
  43. 43. + What do you think?  Twocars are identical with one exception. One of the cars has a more powerful engine. How does having more power make the car behave differently?  What does power mean?  What units are used to measure power?
  44. 44. + Power Therate at which work is done or energy is transferred  Energy used or work done per second  If we substitute W for Fd then Fd P t
  45. 45. + Power  SI units for power are J/s.  Calledwatts (W)  Equivalent to kg•m2/s3  Horsepower (hp) is a unit used in the Avoirdupois system.  1.00 hp = 746 W
  46. 46. + Watts  These bulbs all consume different amounts of power.  A 100watt bulb consumes 100 joules of energy every second.
  47. 47. + Example  A 193kg curtain need to be raised 7.5m, at a constant speed, in as close to 5 sec as possible. Unsure which motor would be the best 3 motors were bought. Power ratings are 1.0kW, 3.5kW, and 5.5kW. Which motor is best for the job?  Given:  m= 193kg d= 7.5m t= 5 sec P=??
  48. 48. + Example W Fd mgd P t t t (193)(10)(7.5) P 5  P=2895 W or 2.895kW  So the best motor would be the 3.5kW motor
  49. 49. + Classroom Practice Problems  Two horses pull a cart. Each exerts a force of 250.0 N at a speed of 2.0 m/s for 10.0 min.  Calculate the power delivered by the horses.  How much work is done by the two horses?  Answers: 1.0 x 103 W and 6.0 x 105 J
  50. 50. + Now what do you think?  Twocars are identical with one exception. One of the cars has a more powerful engine. How does having more power make the car behave differently?  What does power mean?  What units are used to measure power?
  • RahmaAli6

    Oct. 27, 2015

Views

Total views

1,340

On Slideshare

0

From embeds

0

Number of embeds

124

Actions

Downloads

33

Shares

0

Comments

0

Likes

1

×