Published on

Published in: Technology, Business
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide


  1. 1. Universal Mobile Telecommunication System Telecommunications MSc in Software Development© Dirk Pesch, 2004 1
  2. 2. UMTS Requirements (Radio Access) • Maximum User Bit Rates – Rural Outdoor: 144kb/s (goal 384kb/s), up to 500km/h – Suburban Outdoor: 384kb/s (goal 512kb/s), up to 120km/h – Indoor/Urban Outdoor: 2Mb/s, max speed 10km/h • Flexibility – Negotiation of bearer service attributes – Parallel bearer services (service mix, multimedia) – Circuit and packet switched bearers – Scheduling of bearers – Link adaptation (quality, traffic, load, radio conditions) – Range of bit rates – Variable bit rate real-time capabilities© Dirk Pesch, 2004 2
  3. 3. UMTS Requirements (Radio Access) • Handover – Seamless handover between cells of one operator – Efficient handover between UMTS and 2nd generation • Compatibility with fixed network services – ATM bearer services – GSM services – IP based services – B/N-ISDN services • Facilities for quality of service provision • Private and residential operators • High spectrum efficiency • Asymmetric band usage© Dirk Pesch, 2004 3
  4. 4. UMTS Requirements (Radio Access) • Coverage/Capacity – provide variety of initial coverage/capacity configurations – Flexible use of various cell types and relations between cells – Ability to provide cost effective coverage in rural areas • Viability of mobile terminals • Reasonable network cost and complexity • Variety of mobile terminal/station types • Security • Compatibility with IMT2000 • Coexistence with other systems© Dirk Pesch, 2004 4
  5. 5. Technology Aspects • Flexible radio interface based on wideband CDMA technology • Data rates up to 2Mbps and beyond • Wide range of teleservices – voice, voice related – video, videotelephony – multimedia – data, Internet – broadcast, paging • Hierarchical Architecture – Satellite – Public outdoor (macro, micro cell) – Public indoor – Private indoor© Dirk Pesch, 2004 5
  6. 6. UMTS Terrestrial Radio Access • 3rd generation radio access system – FDD mode (W-CDMA) – TDD mode (TD-CDMA) – Multicarrier mode (optional) • Core network based on evolved GSM network© Dirk Pesch, 2004 6
  7. 7. UTRA W-CDMA Radio Interface Channel bandwidth 5MHz (10Mhz, 20Mhz) Chip rate 3.84Mchip/s Frame length 10ms Channelisation spreading variable spreading Data modulation QPSK(downlink), BPSK (uplink) Spreading modulation Balanced QPSK (downlink) Dual-channel QPSK (uplink) Coherent detection User dedicated time multiplexed pilot Common pilot in downlink Channel multiplexing in Control and pilot channel time multiplexed uplink I and Q multiplexing for data and control Multirate Variable spreading© Dirk Pesch, 2004 7
  8. 8. UTRA W-CDMA Radio Interface Spreading factors 4 - 256 Power control Open and fast closed loop (1500Hz) Spreading (downlink) Variable length orthogonal sequences for channel separation, Gold sequences for cell and user separation Spreading (uplink) Variable length orthogonal sequences for channel separation, Gold sequences 241 for user separation (diff. Time shifts in I, Q, cycle 216 10ms radio frames) Handover Soft handover Interfrequency handover© Dirk Pesch, 2004 8
  9. 9. UTRA Network - Interfaces and Protocols UTRAN HSS NodeB MAP NodeB 3G MSC/ PSTN/ISDN RNC VLR NodeB UE Iur Gs’ NodeB Uu RNC NodeB 3G SGSN Gn GGSN Internet Iu NodeB Iub© Dirk Pesch, 2004 9
  10. 10. UTRA Network Functions • Overall system access control – System information broadcasting • Radio channel ciphering – Radio channel ciphering – Radio channel deciphering • Handover – Radio environment survey – Handover decision – Macro-diversity control – Handover control, execution, completion – SRNS relocation – Inter-system handover© Dirk Pesch, 2004 10
  11. 11. UTRA Network Functions • Radio resource management and control – Radio bearer connection setup and release – Reservation and release of physical radio channels – Allocation and de-allocation of physical radio channels – Packet data transfer over radio – RF power control and setting – Radio channel coding and decoding – Channel coding control – Initial (random) access detection and handling© Dirk Pesch, 2004 11
  12. 12. Radio Interface Protocol Architecture C-plane signalling U-plane information L3 RRC PDCP BMC RLC L2/RLC RLC RLC RLC Logical Channels MAC L2/MAC Transport Channels PHY L1© Dirk Pesch, 2004 12
  13. 13. Physical Layer - FDD Mode • Procedures – Power control – Cell search – Random access – Idle mode operation • Optional features – Adaptive antennas – Multi-user detection – Downlink transmit diversity – Location function support© Dirk Pesch, 2004 13
  14. 14. Physical Layer - TDD Mode • Procedures – Synchronisation of TDD base stations – Dynamic channel allocation – Power control – Cell search – Random access • Optional features – Joint detection (MUD) – Adaptive antennas – Downlink transmit diversity – Location function support© Dirk Pesch, 2004 14
  15. 15. MAC Layer • MAC services – Data transfer – Re-allocation of radio resources and MAC parameters – Reporting of measurements – Allocation/deallocation of radio resource • MAC logical channels – Control Channels (CCH) • Synchronisation Control Channel (SCCH) • Broadcast Control Channel (BCCH) • Paging Control Channel (PCCH) • Dedicated Control Channel (DCCH) • Common Control Channel (CCCH)© Dirk Pesch, 2004 15
  16. 16. MAC Layer • MAC logical channels (cont.) – Traffic Channel (TCH) • Dedicated Traffic Channel (DTCH) • MAC functions – Selection of appropriate transport format – Priority handling between data flows – Priority handling between users – Scheduling of broadcast, paging and notification messages – Identification of MSs on common transport channels – Multiplexing/demultiplexing of higher layer PDUs – Routing of higher layer signalling (TDD mode)© Dirk Pesch, 2004 16
  17. 17. MAC Layer • MAC functions (cont.) – Maintenance of MAC signalling connection (TDD mode) – Dynamic transport channel type switching – Traffic volume monitoring – Monitoring link quality (TDD mode) – Support of open loop power control© Dirk Pesch, 2004 17
  18. 18. RLC Layer • RLC services – L2 connection establishment/release – Transparent data transfer – Unacknowledged data transfer – Acknowledged data transfer – QoS setting • RLC functions – Connection control – Segmentation and reassembly – Transfer of user data – Error correction© Dirk Pesch, 2004 18
  19. 19. RLC Layer • RLC functions (cont.) – In-sequence delivery of L2 SDUs to higher layers – Duplicate detection – Flow control – Protocol error detection and recovery – Suspend/resume function – Quick repeat – Keep alive – Ciphering© Dirk Pesch, 2004 19
  20. 20. Radio Resource Control • RRC services – General control – Notification – Dedicated control • RRC functions – Broadcast information from core & radio access network – Establishment, maintenance, and release of RRC connections between UE and UTRAN – Establishment, re-configuration, and release of radio access bearers – Assignment, re-configuration, and release of radio resources for RRC connection – RRC connection mobility functions – Arbitration of radio resource allocation between cells© Dirk Pesch, 2004 20
  21. 21. Radio Resource Control • Control of requested QoS • UE measurement reporting and control of reporting • Outer loop power control • Control of ciphering • Initial cell selection and re-selection in idle mode • paging/notification • contention resolution and congestion control© Dirk Pesch, 2004 21
  22. 22. FDD Mode Transport Channels • Dedicated transport channel – DCH - Dedicated Channel • Common transport channel – BCCH - Broadcast Control Channel – FACH - Forward Access Channel – PCH - Paging Channel – RACH - Random Access Channel© Dirk Pesch, 2004 22
  23. 23. FDD Mode Frame Structure - Uplink 1 Dedicated Physical Data/Control Channel DPDCH Data, Ndata bits DPCCH Pilot, Npilot bits TPC, NTPC bits RI, NRI bits 0.625ms, 10*2k bits (k=0…6) Slot #1 Slot #2 Slot #i Slot #16 Tf = 10ms Frame #1 Frame #2 Frame #i Frame #72 Tsuper = 720ms Variable spreading factor SF = 256/2k (k = 0…6)© Dirk Pesch, 2004 23
  24. 24. FDD Mode Frame Structure - Uplink 2 Physical Random Access Channel (PRACH) 1.25ms Access slot #1 Random access burst Access slot #2 Random access burst Access slot #i Random access burst Offset of access slot #i Access slot #8 Random access burst Frame boundary© Dirk Pesch, 2004 24
  25. 25. FDD Mode Frame Structure - Uplink Random Access Burst Format Random access burst Preamble part Message part 1 ms 0.25 ms 10 ms Message part of random access burst Data part I Pilot symbols Q Rate Information 10 ms Structure of Random Access burst data part MS ID Req. Serv. Optional user packet CRC© Dirk Pesch, 2004 25
  26. 26. FDD Mode Frame Structure - Downlink DPCCH DPDCH Pilot TPC RI Data 0.625ms, 20*2k bits (k=0…6) Slot #1 Slot #2 Slot #i Slot #16 Tf = 10ms Frame #1 Frame #2 Frame #i Frame #72 Tsuper = 720ms Variable spreading factor SF = 256/2k (k = 0…6)© Dirk Pesch, 2004 26
  27. 27. Downlink Spreading and Modulation cos(ωt) I p(t) DPDCH/DPCCH S →P cch cscramb Q p(t) sin(ωt) • cch Channelisation code (OVSF), separates connections • cscramb Scrambling code (10ms), only one per cell • p(t) pulse shaping filter© Dirk Pesch, 2004 27
  28. 28. Uplink Spreading and Modulation cos(ωt) cd Re{..} I p(t) DPDCH I+jQ IQ Q mux DPCCH cscramb p(t) Im{..} cc sin(ωt) • cc, cd Channelisation codes, separates data and control • cscramb Scrambling code (10ms or 256 chips), separates MSs • p(t) pulse shaping filter© Dirk Pesch, 2004 28
  29. 29. Transport Channel Coding/Multiplexing Static rate matching Dynamic rate matching TrCh 1 Channel Rate- Inter-frame Multiplexing coding matching interleaving CC TrCh Rate- Intra-frame matching interleaving TrCh M Channel Rate- Inter-frame coding matching interleaving© Dirk Pesch, 2004 29
  30. 30. FDD Mode - Cell Search One radio frame (10ms) cp cp cp csi,1 csi,2 csi,16 One slot (0.625ms) cp: primary synchronisation code csi,k: secondary synchronisation code Frame timing and Long-code Long- Slot timing long-code group long- acquired acquired acquired Search all codes Search PSC using Decode SSC in long-code match filter sequence group© Dirk Pesch, 2004 30
  31. 31. FDD Mode - Slotted Mode Operation Measurement period 10 ms Synchronisation signal on different carrier One frame 10ms One frame 10ms One frame 10ms© Dirk Pesch, 2004 31
  32. 32. TDD Mode Frame Structure TDD frame 10 ms BS Tx part MS Tx part Uplink/downlink downlink switch point Spreading codes (variable) UL/DL uplink Data Midamble Data© Dirk Pesch, 2004 32
  33. 33. Packet Data Transmission Three options for packet data transmission – Short packets in RACH Arbitrary time Random access burst Random access burst including small packet including small packet Random Access Channel (RACH)© Dirk Pesch, 2004 33
  34. 34. Packet Data Transmission – Packet reservation based transmission on a dedicated channel Random access Random access burst burst Random Access Channel (RACH) Packet Packet Dedicated Channel (DCH)© Dirk Pesch, 2004 34
  35. 35. Packet Data Transmission – Packet transmission on existing dedicated channel Capacity Scheduled Unscheduled request packet packet Dedicated Channel (DCH) Link maintenance (pilot and power control)© Dirk Pesch, 2004 35
  36. 36. Handover • UTRA Soft handover – Soft handover between cells – Softer handover between sectors of same cell • UTRA to UTRA hard handover – Inter-frequency handover – FDD/TDD and TDD/FDD handover • UTRA to GSM hard handover© Dirk Pesch, 2004 36
  37. 37. Inter-operability GSM/UTRA • Requirement for UTRA NodeBs to inform dual mode MS of existing GSM frequencies in the area • Inter-operation between UTRAN and GSM BSS to maintain current service during inter-system handover • GSM network is required to indicate WCDMA spreading codes for easy cell identification© Dirk Pesch, 2004 37
  38. 38. UMTS Core Network • Circuit-switched core network – consists of – 3G MSC – 3G Gateway MSC – Media Gateway • Packet-switched core network – consists of – 3G SGSN – 3G GGSN – IP Multimedia Subsystem (IMS) (from Rel.5 onwards)© Dirk Pesch, 2004 38
  39. 39. IP Multimedia Subsystem IP Multimedia Networks Legacy mobile signalling Networks PSTN Mb Mb PSTN BGCF CSCF PSTN Mm Mk Mk Mw BGCF C, D, Mj Gc, Gr Mi Cx IMS- HSS MGCF CSCF MGW Mg Mn Mr Mw Mb MRFP MRFC P-CSCF UE Mp Gm Mb Mb Mb Go IM Subsystem© Dirk Pesch, 2004 39
  40. 40. Call Session Control Function • Call Session Control Function (CSCF) is SIP server providing control signalling functionality for multimedia services in IP networks • Proxy-CSCF – first contact point of the UE with the IMS (always in network where UE resides) – forwards SIP messages to S-CSF/I-CSCF • Serving-CSCF – always assigned in the home network, acts as registrar making information available through HSS – handles session states to support SIP services • Interrogating-CSCF – main contact point in network for home or roaming subscriber in that network – resolves SIP server addresses for current session© Dirk Pesch, 2004 40
  41. 41. Other IMS Network Elements • Breakout Gateway Control Function (BGCF) – selects network for PSTN breakout – once network for breakout is chosen, selects MGCF for inter-working with PSTN • Multimedia Resource Function – divided into Media Resource Function Control (MRFC) – controls media stream resources provided on the Mb interface – and Media Resource Function Processor (MRFP) provides resources for media streams on the Mb interface • Media Gateway (MGW) – terminates bearer channels from circuit-switched domain and media packet streams from the packet-switched domain • Media Gateway Control Function (MGCF) – controls MGW and translates signalling messages between different signalling systems© Dirk Pesch, 2004 41
  42. 42. UMTS Protocol Architecture UE Node B RNC SGSN GGSN USER PLANE CONTROL PLANE System Network Layer USER PLANE CONTROL PLANE Radio Network Layer USER PLANE CONTROL PLANE Transport Network Layer© Dirk Pesch, 2004 42
  43. 43. Transport Network Layer Protocols Radio Interface Terrestrial Interfaces Uu Iub Iu RRC/ RRC/ RANAP/ RANAP/ PDCP PDCP Iu FP Iu FP RLC RLC Layer 2 MAC MAC FP FP Transport Transport Layer 1 Layers Layers Transport Transport WCDMA WCDMA L1 L1 UE Node B SRNC CN© Dirk Pesch, 2004 43
  44. 44. Transport Network Layer Protocols at Uu • Medium Access Control (MAC) protocol – maps logical channels into appropriate transport channels • Radio Link Control (RLC) protocol – provide segmentation/reassembly for Protocol Data Units – provides error correction functions for both control and user data • Transport Network Layer – used by RRC functions in the control plane as radio signalling bearers – used by service-specific protocol layers in the user plane such as the Packet Data Convergence Protocol© Dirk Pesch, 2004 44
  45. 45. Transport Network Protocols over Terrestrial Interfaces • Use of ATM as Layer 2 protocol on UTRAN terrestrial interfaces • Use of Ethernet as Layer 2 on some interfaces in the core network in particular IMS • Layer 3 and 4 protocols are IP and TCP© Dirk Pesch, 2004 45
  46. 46. Radio Network Layer Uu Iub Iur Iu RRC NBAP NBAP RNSAP RNSAP RRC RANAP RANAP UE Node B DRNC SRNC CN© Dirk Pesch, 2004 46
  47. 47. System Network Layer • Lower layer protocol is responsible for Uu Iu mobility management (here we refer to Session GPRS MM as the mobility SS SMS SM SS SMS SM management responsible for GPRS users) GPRS MM MM Context GPRS MM • On top of GPRS MM run the communication service specific protocols, session management (SM), Signalling Connection supplementary services (SS), and short message service (SMS) UE RNC SGSN • On top of the UMTS network layer operate the IP based transport and application layer protocols© Dirk Pesch, 2004 47
  48. 48. UMTS Quality of Service Classes Traffic class Conversational Streaming Interactive Background Maximum bit rate (kbps) < 2 048 < 2 048 – overhead Guaranteed bit rate (kbps) < 2 048 Max. SDU size (octets) ≤1 500 or 1 502 Residual BER 5*10-2, 10-2, 5*10-3, 10-3, 10-4, 10-6 4*10-3, 10-5, 6*10-8 10-2, 7*10-3, 10-3, 10-4, 10- 10-1, 10-2, 7*10-3, 10-3, 10- SDU error ratio 5 4, 10-3, 10-4, 10-6 10-5 Transfer delay max value (ms) 100 250 • Main criteria for QoS is data transmission delay with other criteria including bit rate (bandwidth), nature of traffic (symm./asymm.), error rate, etc. • Conversational and streaming class are for real-time traffic • Interactive and background class are used by normal Internet type data traffic with interactive for WWW browsing and Telnet and background for e-mail and FTP access© Dirk Pesch, 2004 48
  49. 49. Applications • Conversational Class Applications – Circuit-switched voice service • similar to GSM using the 24.008 protocol and AMR speech encoding – Packet-switched voice service • uses SIP based session management and SDP based session description as a Voice over IP service, AMR encoding used for speech encoding • Streaming Class Applications – video and audio streaming using buffering mechanisms at the receiver to compensate for delay variability in bearer service • Interactive Class Applications – applications such as web browsing and remote login where the overall level of service is characterised by the request-response delay • Background Class Applications – Any non real-time application such as e-mail, ftp access, etc with delay insensitivity but error free requirement© Dirk Pesch, 2004 49
  50. 50. QoS Requirements • Conversational/Real-Time Service requirements – ITU-T G.114 limits for voice service • 0 – 150ms preferred range (<30ms unnoticeable) • 150 – 400ms acceptable range • >400ms unacceptable – human ear intolerant to jitter but tolerant to some extend to error with a limit of ca. 3% Frame Erasure Rate • Interactive Service requirement – Zero loss (error) requirement – Delay tolerance – 2 – 4 sec. for web browsing with 0.5 sec target – E-mail download from local service with similar delay requirement to web browsing • Background Service requirement – 30sec delivery delay for SMS© Dirk Pesch, 2004 50
  51. 51. UMTS End-to-End QoS Architecture U MTS UE UTRA N SGSN GGSN IP Serv er UE A pplic ation Lay er SIP End-to-End Serv ic e SIP SIP Trans port UDP UDP UDP Lay er IP IP IP Sy s tem UMTS Bearer Serv ic e Ex ternal Bearer Serv ic e Lay er R adio Netw ork Radio A c c es s Bearer CN Bearer Lay er Lay ers Trans port R adio Bearer Iu Bearer Bac k bone Lay er U TR A Phy s ic al F D D /TD D© Dirk Pesch, 2004 51
  52. 52. RRC Connection Setup Procedure UE N ode B RNC 1 . R R C C o n n e c t io n R e q u e s t RRC RRC { C C C H ( o n R A C H ) : R R C C o n n e c t io n R e q u e s t } 2 . R R C C o n n e c t io n S e tu p RRC RRC { C C C H (o n F A C H ) : R R C C o n n e c t io n S e t u p } 3 . R R C C o n n e c tio n S e t u p C o m p le t e RRC RRC { D C C H (o n D C H ) : R R C C o n n e c t io n S e t u p C o m p le t e } UE N o de B RNC© Dirk Pesch, 2004 52
  53. 53. PDP Context Activation Procedure UE N ode B RN C SGSN GGSN 1 . D ir e c t T ra n s fe r : A c tiv a te P D P C o n te x t R e q u e s t SM SM 2 . R A B A s s ig n m e n t R e q u e s t RAB RAN AP RAN AP 3 . R a d io L in k S e tup RB N BAP N BAP 4 . R e s p o ns e N BAP N BAP 5 . A L C A P Iu b D a ta T ra n sp o rt B e a re r S e tup 6 . R a d io B e a re r S e tup RRC RRC { D C C H : R a d io B e a re r S e tu p } 7 . R a d io B e a re r S e tup C o m p le te RRC RRC 8 . R A B A s s ig nm e nt R e s p o ns e RAN AP RAN AP 9 . C re a te P D P C o n te x t R e q ue s t G TP G TP 1 0 . R e s p o ns e GTP G TP 1 1 . D ire c t T r a n s f e r : A c tiv a te P D P C o n te xt SM SM UE N ode B RN C SGSN GGSN© Dirk Pesch, 2004 53
  54. 54. Location Management LA • VLR divided into Location Areas RA Cell URA Cell Cell Cell URA Cell Cell • Each LA is divided into Routing Cell Cell Cell Cell Cell Areas, which are controlled by the RA URA SGSN for paging purposes during Cell URA Cell Cell Cell Cell Cell packet transfer Cell Cell Cell Cell Cell • An RA is divided into UTRAN Routing Areas (URA), which are tracked by the RNC© Dirk Pesch, 2004 54
  55. 55. UTRAN Mobility Management Cell DCH Connected Mode • UTRAN mobility management is Idle Mode Cell PCH triggered by the establishment of an Cell FACH RRC connection URA PCH • In CONNECTED mode the UE can have different states depending on connection type – Cell DCH: UE has allocated dedicated resources, e.g. DPDCH and DPCCH – Cell FACH: no dedicated resources but communication through RACH and FACH – Cell PCH: UE known by SRNC, UE reached via PCH – URA PCH: location known at URA level and UE is paged via BCH© Dirk Pesch, 2004 55
  56. 56. Core Network Mobility Management MS MM States 3G -SGSN MM States PM M PM M DETACHE D DETAC HED Detach, Detach, PS Detach PS Attach Reject, PS Detach PS Attach Reject, PS Attach RAU Reject PS Attach RAU Reject PS Signalling PS Signalling PM M -IDLE Connection Release PM M - Connection Release PM M - CONNECTED PM M -IDLE CONNECTED SM-ACT IVE or PS Signalling SM-ACT IVE or SM-ACT IVE or SM-ACT IVE or INACT IVE PS Signalling Connection Establish INACT IVE INACT IVE INACT IVE Connection Establish Serving RNC relocation • PMM-DETACHED: UE not known to the network, attach required, SM is inactive • PMM-IDLE: UE attached to GPR core network with UE having established MM contexts, no RRC connection established (UE know with RA accuracy) • PMM-CONNECTED: RRC connection established, SGSN tracks UE at RA level with RNC tracking at cell level© Dirk Pesch, 2004 56
  57. 57. Attach Procedure UE RNC SG SN HLR 1 . P S A t ta c h R e q RRC RRC 2 . Init ia l U E M e ss a g e R AN AP R AN AP PMM 3 . Id e nt ity R e q u e s t PM M PM M 3 . Id e n tit y R e sp o n s e PMM 4 . S e nd A u t h In fo M AP MAP 4. A ck M AP MAP PMM 5 . A u th e n tic a t io n R e q u e s t PM M 5 . A u th e n tic a t io n R e sp o n s e PM M PM M 6 . C h e c k IM E I MAP MAP 6. A ck M AP MAP 7 . S e c u rity M o d e C o m m a n d RRC R R C /R A N A P RANAP 7 . S e c u rit y M o d e C o m p le t e RRC R R C /R A N A P RANAP 8 . U p d a te L o c a t io n M AP MAP 9 . In se rt S u b s c ribe r D a t a M AP MAP 9 . A ck MAP MAP 1 0 . U p d a te L o c a tio n A c k MAP MAP 1 1 . A t ta c h A c c e p t PMM PM M 1 2 . A tt a c h C o m p le te PMM PM M UE RNC SGSN HLR© Dirk Pesch, 2004 57
  58. 58. Intra-SGSN SRNC Relocation Procedure UE N ode B N ode B RNC RNC SG SN S o u rce T a rg e t S o u rce T a rg et 1 . D ec ision to in itia te S RN S r eloca tion 2 . Up lin k S ign a llin g T ra n sfer In d ica tion R N SA P RN SA P 3. Re loca tion R eq u ire d RANAP RA N A P 4 . R eloca tion R equ est RANA P RA N A P 5 . R a d io L in k S etu p Req u est N BA P NBAP 6. R a dio L in k Setup R esp on se NBAP NBAP 7 . A L C A P Iub D a ta T ra n sp ort B ea rer S etu p 8 . D ow n lin k a n d u plin k syn ch ron isa tion NBAP N BA P 9 . R eloca tion R equ est A ck RANA P RANAP 1 0. R eloca tion C om m a n d RANAP RA N A P 11 . Reloca tion C om m it R N SA P R N SA P 1 2 . R eloca tion D ete ct RAN AP RANAP 1 3 . R a d io L in k F a ilu re In d ica tion NBAP N BA P 14 . R N T I R ea lloca tion RRC RRC 15 . R N T I R ea lloca tion C om p lete R RC RRC 1 6 . R eloca tion C om p lete RAN AP RANA P 17 . Iu R elea se C om m a n d RANAP RA N A P UE N ode B N ode B RNC RNC SG SN S o u rc e T a rg et S o u rc e T a rg et© Dirk Pesch, 2004 58
  59. 59. Inter-SGSN SRNC Relocation Procedure UE Source Target Old New GGSN RNC RNC SGSN SGSN 1. Decision to perform SRNS relocation 2. Relocation Required RANAP RANAP 3. Forward Relocation Request GTP GTP 4. Relocation Request RANAP RANAP Establishment of Radio Access Bearers 4. Relocation Request Acknowledge RANAP RANAP 5. Forward Relocation Rsp GTP GTP 6. Relocation Command RANAP RANAP 7. Forwarding of data RNSAP RNSAP 8. Relocation Commit RNSAP RNSAP 9. Relocation Detect RANAP RANAP 11. Update PDP Context Request 10. RAN Mobility Information RRC RRC GTP GTP 10. Confirm 11. Response RRC RRC GTP GTP 12. Relocation Complete RANAP RANAP 12. Forward Relocation Complete GTP GTP 12. Ack GTP GTP 13. Iu Release Command RANAP RANAP 13. Complete RANAP RANAP UE Source Target Old New GGSN RNC RNC SGSN SGSN© Dirk Pesch, 2004 59
  60. 60. Branch Addition Procedure UE N od e B RNC D ecisio n to setu p n ew R L N BAP 1 . R ad io Lin k S etu p R eq u est NBAP S tart R X 2 . R ad io L in k S e tup R esp o n se NBAP NBAP 3 . A LC A P Iub B ea rer S etup 4 . D o w n lin k S yn chro nisa tio n D C H -F P D C H -F P 5 . U p lin k S ynch ro nisatio n D C H -F P D C H -F P S tart T X 6 . A ctiv e S e t U p d ate RRC RRC { D C C H : A ctive S et U p d ate} 7 . A ctiv e S e t U p d ate C o m p lete RRC RRC {D C C H : A ctive S et U p d a te C o m p lete} UE Node B RNC© Dirk Pesch, 2004 60
  61. 61. Routing Area Update Procedure MS Node B RNC SGSN 1-3: RRC Connection Establishment RRC 4: Routeing Area Update Request RRC/RANAP RANAP 5: Security Mode Command RANAP RANAP RRC 6: Security Mode Command RRC 7: Security Mode Complete RRC RRC 8: Sec Mode Compl RANAP RANAP 9: Routeing Area Update Accept RRC RRC/RANAP RANAP 10: Routeing Area Update Complete RRC RRC/RANAP RANAP 11-12: RRC Connection Release MS Node B RNC SGSN© Dirk Pesch, 2004 61
  62. 62. Service Request Procedure UE RNC SGSN HLR GGSN 1. RRC Connection Request 1. RRC Connection Setup 2. Service Request 3. Security Functions 4. Service Accept 4. RAB Assignment Request 5. RB Setup 6. RB Setup Complete 6. RAB Assignment Response 7. SGSN-Initiated PDP Context Modification 8. Uplink PDU UE RNC SGSN HLR GGSN© Dirk Pesch, 2004 62
  63. 63. Paging Procedure UE RNC RNC MSC NODE B 1. Paging A) UE is in IDLE mode RANAP RANAP 2. PCCH: Paging Type I RRC RRC 1. Paging B) UE is in URA connected mode RANAP or in Cell_PCH RRC state RANAP 2. Paging Request RNSAP RNSAP 3. PCCH: Paging Type I RRC RRC 3. PCCH: Paging Type I RRC RRC C) UE is in cell connected mode 1. Paging with existing DCCH RANAP RANAP 2. DCCH: Paging Type 2 RRC RRC UE NODE B RNC RNC MSC© Dirk Pesch, 2004 63