Statistics  for Management Lesson 1 Introduction  and Data Collection
Lesson Topics <ul><li>Statistical Thinking and Management </li></ul><ul><li>Descriptive   versus  Inferential  Statistics ...
1. Statistical Thinking and Management Three Aspects of Quality Improvement Management Philosophy Behavioral  Tools Statis...
2. Statistical Methods <ul><li>Descriptive Statistics </li></ul><ul><li>Inferential Statistics </li></ul>Collecting and de...
Descriptive  Statistics <ul><li>Collect Data   e.g. Survey </li></ul><ul><li>Present Data   e.g. Tables  and Graphs </li><...
Inferential  Statistics <ul><li>Estimation </li></ul><ul><li>Hypothesis  </li></ul><ul><li>Testing  </li></ul>Making decis...
3. Types of Data
3. Data Sources Primary Data Collection Secondary Data Compilation Observation Experimentation Survey Print or Electronic
Quota 4.Types of Sampling Methods Samples Non-Probability Samples Judgement Chunk Probability Samples Simple  Random Syste...
Probability Samples Probability Samples Simple  Random Systematic Stratified Cluster Subjects of the sample are chosen bas...
Simple Random Samples <ul><li>Every individual or item from the  </li></ul><ul><li>target frame has an   equal chance   of...
Systematic Samples <ul><li>Decide on sample size: n </li></ul><ul><li>Divide population of N individuals into groups of  <...
Stratified Samples <ul><li>Population divided into  2 or more groups  according  to some common characteristic. </li></ul>...
Cluster Samples <ul><li>Population divided into several   “ clusters ”,  </li></ul><ul><li>each representative of the popu...
5. Survey methods <ul><li>Interview (Anket, Face to face, Telephon, Letter) </li></ul><ul><li>Observation </li></ul><ul><l...
6. Types of Survey Errors <ul><li>Coverage Error </li></ul><ul><li>Non Response Error </li></ul><ul><li>Sampling Error </l...
Lesson Summary <ul><li>Described the use of   Statistical Thinking   to improve  </li></ul><ul><li>quality. </li></ul><ul>...
Upcoming SlideShare
Loading in …5
×

Lesson01_new

1,231 views

Published on

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,231
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
39
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Lesson01_new

  1. 1. Statistics for Management Lesson 1 Introduction and Data Collection
  2. 2. Lesson Topics <ul><li>Statistical Thinking and Management </li></ul><ul><li>Descriptive versus Inferential Statistics </li></ul><ul><li>Types of Data and their Sources </li></ul><ul><li>Types of Sampling Methods </li></ul><ul><li>Survay methods </li></ul><ul><li>Types of Survey Errors </li></ul>
  3. 3. 1. Statistical Thinking and Management Three Aspects of Quality Improvement Management Philosophy Behavioral Tools Statistical Methods
  4. 4. 2. Statistical Methods <ul><li>Descriptive Statistics </li></ul><ul><li>Inferential Statistics </li></ul>Collecting and describing data. Making decisions based on sample data.
  5. 5. Descriptive Statistics <ul><li>Collect Data e.g. Survey </li></ul><ul><li>Present Data e.g. Tables and Graphs </li></ul><ul><li>Characterize Data e.g. Mean </li></ul>A Characteristic of a: P opulation is a P arameter S ample is a S tatistic.
  6. 6. Inferential Statistics <ul><li>Estimation </li></ul><ul><li>Hypothesis </li></ul><ul><li>Testing </li></ul>Making decisions concerning a population based on sample results.
  7. 7. 3. Types of Data
  8. 8. 3. Data Sources Primary Data Collection Secondary Data Compilation Observation Experimentation Survey Print or Electronic
  9. 9. Quota 4.Types of Sampling Methods Samples Non-Probability Samples Judgement Chunk Probability Samples Simple Random Systematic Stratified Cluster
  10. 10. Probability Samples Probability Samples Simple Random Systematic Stratified Cluster Subjects of the sample are chosen based on known probabilities.
  11. 11. Simple Random Samples <ul><li>Every individual or item from the </li></ul><ul><li>target frame has an equal chance of </li></ul><ul><li>being selected. </li></ul><ul><li>Selection may be with replacement or </li></ul><ul><li>without replacement . </li></ul><ul><li>One may use table of random numbers </li></ul><ul><li>for obtaining samples. </li></ul>
  12. 12. Systematic Samples <ul><li>Decide on sample size: n </li></ul><ul><li>Divide population of N individuals into groups of </li></ul><ul><li>k individuals: k = N / n </li></ul><ul><ul><ul><li>Randomly select one individual from the 1st group. </li></ul></ul></ul><ul><li>Select every k-th individual thereafter. </li></ul>N = 64 n = 8 k = 8 First Group
  13. 13. Stratified Samples <ul><li>Population divided into 2 or more groups according to some common characteristic. </li></ul><ul><li>Simple random sample selected from each. </li></ul><ul><li>The two or more samples are combined into one. </li></ul>
  14. 14. Cluster Samples <ul><li>Population divided into several “ clusters ”, </li></ul><ul><li>each representative of the population. </li></ul><ul><li>Simple random sample selected from each. </li></ul><ul><li>The samples are combined into one. </li></ul>Population divided into 4 clusters.
  15. 15. 5. Survey methods <ul><li>Interview (Anket, Face to face, Telephon, Letter) </li></ul><ul><li>Observation </li></ul><ul><li>Experimentation </li></ul><ul><li>Data compilation </li></ul>
  16. 16. 6. Types of Survey Errors <ul><li>Coverage Error </li></ul><ul><li>Non Response Error </li></ul><ul><li>Sampling Error </li></ul><ul><li>Measurement Error </li></ul>Excluded from selection. Follow up on non responses. Chance differences from sample to sample . Bad Question!
  17. 17. Lesson Summary <ul><li>Described the use of Statistical Thinking to improve </li></ul><ul><li>quality. </li></ul><ul><li>Addressed the notion of Descriptive versus Inferential </li></ul><ul><li>Statistics. </li></ul><ul><li>Defined and described different Types of Data and </li></ul><ul><li>Sources </li></ul><ul><li>Listed Types of Sampling Methods. </li></ul><ul><li>Described different Types of Survey Errors. </li></ul>

×