29748758 metabolisme-suhu


Published on

Published in: Technology, Business
  • Be the first to comment

  • Be the first to like this

29748758 metabolisme-suhu

  1. 1. Thermodynamics laws <ul><li>The total energy of a system remains constant </li></ul><ul><li>The total entropi of a system must increase if a process is to occur spontaneously. </li></ul>
  2. 2. Terminologi <ul><li>BMR </li></ul><ul><li>Free energy </li></ul><ul><li>Coupler-uncoupler reaction </li></ul><ul><li>Hypertermia </li></ul><ul><li>Febris </li></ul><ul><li>Endergonik-eksergonik </li></ul><ul><li>Endotermik-eksotermik </li></ul><ul><li>UCP </li></ul>
  3. 3. Demam : Suhu tubuh meningkat diatas normal. Suhu tubuh normal 36,5 – 37,2ºC. Hiperpireksia : > 42 ºC. Hipotermia : < 35 ºC. Etiologi : - Kelainan otak - Bahan toksik ( Keduanya mempengaruhi pusat pengaturan tempeatur di hipotalamus / set point )
  4. 4. What is metabolism <ul><li>Metabolism is the sum of all of the enzymes-catalyzed reactions that take place in cells . </li></ul><ul><li>Can be viewed as having two contrasting processes : </li></ul><ul><li>* catabolism : energy yielding reactions in which </li></ul><ul><li>complex mol are broken down to small molecule </li></ul><ul><li>* anabolism : energy requiring reactions in which simple precursor molecule are converted into complex mol. </li></ul>
  5. 5. Stages of metabolism <ul><li>Stage 1 : digestion giving monomeric units that are absorbed from the gut. </li></ul><ul><li>Stage 2 : conversion of the monomeric units into simple mol within cells such as amino acids, glucose and fatty acids. </li></ul><ul><li>Stage 3 : simple mol oxidized to CO2 and water. Most of ATP generated in this stage. </li></ul>
  6. 6. Role of Acetyl CoA Acetyl CoA polysaccharides monosaccharides lipids fatty acids proteins amino acids fatty acids triglcerides and phospholipids ketone bodies citric acid cycle CO 2 + H 2 O + ATP cholesterol bile salts steroids
  7. 7. Energy yielding in catabolism <ul><li>Catabolism of C-H, lipids, aa to a simpler end-product such as CO2, H2O and amonia is accompanied by the synthesis of ATP . </li></ul><ul><li>ATP is utilized for various cellular functions such as : </li></ul><ul><li>synthesis of protein,RNA,DNA for growth, adaptation and repair, </li></ul><ul><li>synthesis of fat and glycogen, </li></ul><ul><li>performance of mechanical work, </li></ul><ul><li>active ion transport, </li></ul><ul><li>absorptions of nutrients against the gradient. </li></ul>
  8. 8. Energy Metabolism <ul><li>Each large macromolecule is broken down into something smaller. </li></ul><ul><li>Carbohydrates Simple sugars </li></ul><ul><li>Fats Fatty acids and glycerol </li></ul><ul><li>Proteins Amino acids </li></ul><ul><li>Each step in their breakdown must be a carefully controlled process. ATP is used as the basic energy transfer unit. </li></ul>
  9. 9. ATP <ul><li>ATP adenosine triphosphate </li></ul><ul><li>a nucleotide composed of three basic units. </li></ul>adenine phosphate chain ribose CH 2 O OH OH N N N N NH 2 O P O P O P O - O O - O O - O O -
  10. 10. ATP and ADP O - O P P O P O - O - O OH OH N N N N O P O O O ADP O OH OH N N N N O P O O O - O ATP It takes energy to put on the third phosphate. Energy is released when it is removed. ADP - ATP conversions act as a major method of transferring energy. O - CH 2 NH 2 O - CH 2 NH 2 O -
  11. 11. ATP and ADP O - O P P O P O - O - O OH OH N N N N O P O O O ADP O OH OH N N N N O P O O O - O ATP It takes energy to put on the third phosphate. Energy is released when it is removed. ADP - ATP conversions act as a major method of transferring energy. O - CH 2 NH 2 O - CH 2 NH 2 O -
  12. 12. Energy, ATP and the Movement of Phosphate ATP ADP ADP phosphoenolpyruvate 1,3-diphosphoglycerate creatine phosphate glucose-1-phosphate fructose-6-phosphate glucose-6-phosphate P Energy P P P P P
  13. 13. Mitochondria <ul><li>“ Powerhouse” of the cell. </li></ul>Inner membrane Cristae 0.2-0.8  m Outer membrane Matrix Intermembrane space
  14. 14. Mitochondria <ul><li>Outer membrane - </li></ul><ul><li>Mostly phospholipids and cholesterol. </li></ul><ul><li>Contains transport protein that forms pores. </li></ul><ul><li>Very permeable. </li></ul><ul><li>Inner membrane - </li></ul><ul><li>Highly folded structures known as cristae . </li></ul><ul><li>Inner space is called the matrix . </li></ul><ul><li>Different structure compared to outer </li></ul><ul><li>membrane - not permeable. </li></ul><ul><li>Contains three types of proteins. </li></ul>
  15. 15. Inner Membrane Proteins <ul><li>Transport - </li></ul><ul><li>Used to move materials across inner membrane. </li></ul><ul><li>Respiratory chain - </li></ul><ul><li>Complexes that are responsible for production of ATP from energy sources. Requires oxygen. </li></ul><ul><li>ATP synthase - </li></ul><ul><li>Used for the phosphorylation of ADP. </li></ul><ul><li>All work together to produce energy in cell. </li></ul>
  16. 16. Where Reactions Occur <ul><li>Synthesis occurs in the cytoplasm - </li></ul><ul><li>glycolysis </li></ul><ul><li>production of fatty acids and amino acids </li></ul><ul><li>Oxidation occurs in the mitochondria - </li></ul><ul><li>citric acid cycle </li></ul><ul><li>fatty acid oxidation </li></ul><ul><li>oxidation of amino acids </li></ul><ul><li>This makes the various reactions easier to control because they occur in different places. </li></ul>
  17. 17. Oxidative Phosphorylation <ul><li>Much of the energy from metabolism comes from this process. </li></ul><ul><li>NADH and FADH 2 are both used to produce additional ATP when they are oxidized. </li></ul><ul><li>NADH nicotinamide adenine dinucleotide </li></ul><ul><li>FADH 2 flavin adenine dinucleotide </li></ul><ul><li>The oxidation relies on the flow of electrons using a complex structure in the mitochondria. </li></ul>
  18. 18. Electron Transport Chain CoQ Cyt b FP Fe-S Cyt c 1 Cyt c Cyt a,a 3 Fe-S NADH + H + FADH 2 4 H + + 4 e - + O 2 2 H 2 O FP flavoprotein Fe-S iron-sulfur protein CoQ coenzyme Q Cyt cytochromes. Structurally related proteins that each contain iron inner membrane space of mitochondria inner membrane
  19. 19. Components of the Electron Transport Chain cytochrome c flavoprotein
  20. 20. Electron Transport Chain <ul><li>This portion of the process is responsible for the oxidation of NADH to NAD + (FADH 2 as well). </li></ul><ul><li>Results in H + being built up in the intermembrane space of the mitochondria. </li></ul><ul><li>This difference in H + is what drives the second portion of the system. </li></ul><ul><li>Note - This phase requires oxygen! </li></ul>
  21. 21. ATP Synthase and the F 1 Complex H + H + H + H + H + H + H + H + H + H + H + H + H + H + H + ADP + P i ATP Electron Transport Chain F 1 -ATPase complex Inner mitochondrial membrane Outer mitochondrial membrane
  22. 22. ATP Synthase and the F 1 Complex In this step, the H + concentration difference between the mitochondrial matrix and the intermembrane space is what provides the energy to produce ATP . Steps consist of H + Transport movement of H + F 1 Event production of ATP
  23. 23. ATP Produced per Glucose <ul><li>Glycolysis: </li></ul><ul><li>2 ATP 2 ATP </li></ul><ul><li>2 NADH 2.5 ATP/NADH 5 ATP* </li></ul><ul><li>Citric Acid Cycle: </li></ul><ul><li>2 GTP 1 ATP/GTP 2 ATP </li></ul><ul><li>6 NADH 2.5 ATP/NADH 15 ATP </li></ul><ul><li>2 FADH 2 1.5 ATP/FADH 2 3 ATP </li></ul><ul><li>32 ATP </li></ul>* 3 ATP in muscle and brain. 30 ATP / glucose
  24. 24. Energy Yield 30 - 32 ATP / glucose Glycolysis Mitochondria Glucose Pyruvate Oxidative phosphorylation 6 NADH+ 2 FADH 2 2 NADH 2 NADH 2 ATP 2 ATP 26-28 ATP Acetyl CoA 2 GTP
  25. 25. Control of the Citric Acid Cycle <ul><li>Several routes for controlling the cycle. </li></ul><ul><li>Insufficient oxygen. </li></ul><ul><li>Reduced energy demand causes a build up of ATP, NADH inhibits - </li></ul><ul><li>Pyruvate to acetyl CoA conversion. </li></ul><ul><li>Acetyl CoA production of citrate (ATP only). </li></ul><ul><li>Some intermediate steps in the cycle. </li></ul><ul><li>Excess ADP will stimulate many of these same steps to make things go faster. </li></ul>
  26. 26. Use of Amino Acids and Fatty Acids Fats and protein can also be used by the body as a source of energy. Not as easily used as carbohydrates. Liver glycogen glucose-6-P pyruvate Amino Acids or Fatty Acids