Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
The current study presents a new data analysis technique developed while evaluating continuous emission data collected from a trash compactor. The evaluation involved tailpipe sampling with a portable emission monitoring system (PEMS) from a diesel fueled 525-horsepower trash
compactor. The sampling campaign took place by running the compactor with regular no. 2 diesel, B20 and ULSD fuels. The purpose was to determine the possible emission reductions in nitrous oxides (NOx) and carbon dioxide (CO2) from the use of B20 and ULSD in an off-road
vehicle. The results from the NOx analysis are discussed.
The initial data analysis identified two important issues. The first concern related to a bias in the calculated F values due to the very large number of samples (N). The large N influenced the probability values and indicated a false statistical significance for all factors tested. Additionally,
the data observations were found to be highly autocorrelated. Thus, a time interval data reduction
technique was used to address these two statistical limitations to the robustness of the statistical
analyses. The result in each case was a subset of quasi-independent observations sampled at an interval of 800 seconds. The autocorrelation and false statistical significance issues were promptly resolved by using this technique. Since the issues of false statistical significance and autocorrelation are inherent in continuous data, the positive results obtained from the use of this technique can be far-reaching. This technique allowed for a valid use of the general linear model (GLM) with engine speed as the covariate factor to test day, fuel type and compactor factors. This technique is most relevant given the advancements in data collection capabilities that
require data handling techniques to satisfy the statistical assumptions necessary for valid analyses to ensue.
Be the first to comment