Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Keith sequeira fake traffic detection

224 views

Published on

Keith Sequeira
Oklahoma State University
MSIS 5633
CWID 10010784

Published in: Technology
  • Login to see the comments

  • Be the first to like this

Keith sequeira fake traffic detection

  1. 1. Fake Call Traffic Detection Keith Sequeira MSIS 5633 Analysis using Tableau Desktop
  2. 2. Background• Verizon - Database Analyst• Invoice Validation• Auto Dialers - fake traffic
  3. 3. Auto Dialers• Fake call traffic generation• Software• Hardware
  4. 4. Data• Call Detail Records (CDR)• Vendor 1 – 1 Month – Bill cycle – Oct 2011• Vendor 2 – 1 Month – Bill cycle – May 2011 – 3 Parts – split randomly
  5. 5. Edit Data• Tools - MS Access• Created fields• Limited data by date
  6. 6. Tableau Desktop• From Phone Number• To Phone Number• Billable Time
  7. 7. Vendor 1 – Auto Dialer• Flat distribution of Billable Time – NOT NORMAL
  8. 8. Vendor 1 - Basic Statistics• Mean – 0.1594• Standard Deviation – 0.1531• Variance – 0.02343
  9. 9. Vendor 2 – Part 1• Suspected Auto Dialer – Flat distribution of Billable Time • NOT NORMAL
  10. 10. Vendor 2- Part 1 - Basic Statistics• Mean – 2.091• Standard Deviation – 5.631• Variance – 31.70
  11. 11. Vendor 2 – Part 2• Suspected Auto Dialer – Even distribution of Billable Time • NORMAL
  12. 12. Vendor 2- Part 2 - Basic Statistics• Mean – 4.433• Standard Deviation – 10.01• Variance – 100.2
  13. 13. Vendor 2 – Part 3• Suspected Auto Dialer – Flat distribution of Billable Time • NOT NORMAL
  14. 14. Vendor 2- Part 3 - Basic Statistics• Mean – 5.774• Standard Deviation – 11.79• Variance – 139.0
  15. 15. Conclusion• HIGH VOLUME – Same FROM number – Same TO number – Same Billable Time
  16. 16. Conclusion• High likelihood of Fake Call Generation• Need more research• Thank you

×