SlideShare a Scribd company logo

Projekt Matematike

S Gashi
S Gashi
S GashiStudent at Oxford College of Marketing

TEMA: Figurat dhe Trupat gjeometrik ( Formulat )

Projekt Matematike

1 of 21
Download to read offline
PROJEKT
Lenda:Matematike
Tema:Trupat dhe figurat gjeometrike
Gjeometria ; është degë e matematikës që i
studion figurat e rrafshit dhe hapësirës
dhe relacionet në mes tyre.
FIGURAT GJEOMETRIKE
1.Katrori
2.Drejtkendeshi
3.Rombi
4.Trekendeshi
5.Trapez
6.Paralelogram
• Katrori
Katrori është rombi i cili ka kater brinjët te
barabarta.
Vetitë e katrorit.
• Kendet janë te gjithë te drejte.
• Diagonalet jane kongruente.
• Diagonalet bien pingul mbi njera tjetren.
• Diagonalet pergjysmojne njera tjetren.
Siperfaqja Perimetri
S=a*a P=4a
• Drejtkendeshi
Drejtkendeshi eshte paralelogrami qe I ka brinjet
2 e nga 2 paralele e kongruente .
Perimetri
P=2(a+b)
Siperfaqja
S=a*b
• Rombi
Rombi eshte paralelogrami qe I ka 4 brinjet
kongruente.
Perimetri
P=4a
Siperfaqja
S=(d1*d2)/2
Ad

Recommended

Trupat gjeometrik
Trupat gjeometrikTrupat gjeometrik
Trupat gjeometrikEsmer Alda
 
Syprina e katërorit dhe drejtkëndëshit
Syprina e katërorit dhe drejtkëndëshitSyprina e katërorit dhe drejtkëndëshit
Syprina e katërorit dhe drejtkëndëshitAdelina Fejzulla
 
Shnderrimet Gjeometrike
Shnderrimet GjeometrikeShnderrimet Gjeometrike
Shnderrimet GjeometrikeErgi Nushi
 
Kontibuti i Shqipetareve ne mbrojtjen e hebrenjeve gjate luftes se 2 boterore
Kontibuti i Shqipetareve ne mbrojtjen e hebrenjeve  gjate luftes se 2 boteroreKontibuti i Shqipetareve ne mbrojtjen e hebrenjeve  gjate luftes se 2 boterore
Kontibuti i Shqipetareve ne mbrojtjen e hebrenjeve gjate luftes se 2 boteroreXheni Marku
 
roli i elementeve kimike ne organizmin e njeriut
roli i elementeve kimike ne organizmin e njeriutroli i elementeve kimike ne organizmin e njeriut
roli i elementeve kimike ne organizmin e njeriutmikaela basha
 

More Related Content

What's hot

Te drejtat e femijeve
Te drejtat e femijeveTe drejtat e femijeve
Te drejtat e femijeve22062002
 
Historia e skënderbeut
Historia e skënderbeutHistoria e skënderbeut
Historia e skënderbeutenis vladi
 
Projekt; Gjeometria ne programet shkollore e jeten e perditshme
Projekt; Gjeometria ne programet shkollore e jeten e perditshmeProjekt; Gjeometria ne programet shkollore e jeten e perditshme
Projekt; Gjeometria ne programet shkollore e jeten e perditshmesidorelahalilaj113
 
iliada analize , Analize e Iliades
iliada analize , Analize e Iliadesiliada analize , Analize e Iliades
iliada analize , Analize e Iliadesssuseree34b8
 
Prodhimi i energjise
Prodhimi i energjiseProdhimi i energjise
Prodhimi i energjiseroberto1723
 
Llojet e teksteve
Llojet e teksteveLlojet e teksteve
Llojet e tekstevesindi21
 
Trashegimia natyrore e kulturore ne trevat Shqipetare
Trashegimia natyrore e kulturore ne trevat ShqipetareTrashegimia natyrore e kulturore ne trevat Shqipetare
Trashegimia natyrore e kulturore ne trevat ShqipetareKe Keiss
 
Hebrenjtë në Shqipëri
Hebrenjtë në ShqipëriHebrenjtë në Shqipëri
Hebrenjtë në ShqipëriDonikaLici
 
Elementet kimik ne trupin tone projekt kimi
Elementet kimik ne trupin tone  projekt kimiElementet kimik ne trupin tone  projekt kimi
Elementet kimik ne trupin tone projekt kimiFacebook
 
matematika projekt
matematika projektmatematika projekt
matematika projektFacebook
 
Komunizmi ne shqiperi
Komunizmi ne shqiperiKomunizmi ne shqiperi
Komunizmi ne shqiperiElton Gjoka
 
PROJEKT/KIMI •HEKURI SI ELEMENT KIMIK
 PROJEKT/KIMI •HEKURI SI ELEMENT KIMIK PROJEKT/KIMI •HEKURI SI ELEMENT KIMIK
PROJEKT/KIMI •HEKURI SI ELEMENT KIMIKKleaHaka
 

What's hot (20)

Te drejtat e femijeve
Te drejtat e femijeveTe drejtat e femijeve
Te drejtat e femijeve
 
Historia e skënderbeut
Historia e skënderbeutHistoria e skënderbeut
Historia e skënderbeut
 
Projekt; Gjeometria ne programet shkollore e jeten e perditshme
Projekt; Gjeometria ne programet shkollore e jeten e perditshmeProjekt; Gjeometria ne programet shkollore e jeten e perditshme
Projekt; Gjeometria ne programet shkollore e jeten e perditshme
 
iliada analize , Analize e Iliades
iliada analize , Analize e Iliadesiliada analize , Analize e Iliades
iliada analize , Analize e Iliades
 
Syprina e trekëndëshit
Syprina e trekëndëshitSyprina e trekëndëshit
Syprina e trekëndëshit
 
Prodhimi i energjise
Prodhimi i energjiseProdhimi i energjise
Prodhimi i energjise
 
Ngrohja globale
Ngrohja globaleNgrohja globale
Ngrohja globale
 
Figurat letrare
Figurat letrareFigurat letrare
Figurat letrare
 
Llojet e teksteve
Llojet e teksteveLlojet e teksteve
Llojet e teksteve
 
Trashegimia natyrore e kulturore ne trevat Shqipetare
Trashegimia natyrore e kulturore ne trevat ShqipetareTrashegimia natyrore e kulturore ne trevat Shqipetare
Trashegimia natyrore e kulturore ne trevat Shqipetare
 
Hebrenjtë në Shqipëri
Hebrenjtë në ShqipëriHebrenjtë në Shqipëri
Hebrenjtë në Shqipëri
 
Ndotja e ujit
Ndotja e ujitNdotja e ujit
Ndotja e ujit
 
Mjedisi dhe njeriu
Mjedisi dhe njeriuMjedisi dhe njeriu
Mjedisi dhe njeriu
 
Mjedisi
MjedisiMjedisi
Mjedisi
 
Yndyrat dhe sheqernat
Yndyrat dhe sheqernatYndyrat dhe sheqernat
Yndyrat dhe sheqernat
 
Elementet kimik ne trupin tone projekt kimi
Elementet kimik ne trupin tone  projekt kimiElementet kimik ne trupin tone  projekt kimi
Elementet kimik ne trupin tone projekt kimi
 
FILOZOFIA
FILOZOFIA FILOZOFIA
FILOZOFIA
 
matematika projekt
matematika projektmatematika projekt
matematika projekt
 
Komunizmi ne shqiperi
Komunizmi ne shqiperiKomunizmi ne shqiperi
Komunizmi ne shqiperi
 
PROJEKT/KIMI •HEKURI SI ELEMENT KIMIK
 PROJEKT/KIMI •HEKURI SI ELEMENT KIMIK PROJEKT/KIMI •HEKURI SI ELEMENT KIMIK
PROJEKT/KIMI •HEKURI SI ELEMENT KIMIK
 

Similar to Projekt Matematike

Drejteza dhe Trekendeshi Hysen Doko
Drejteza dhe Trekendeshi   Hysen DokoDrejteza dhe Trekendeshi   Hysen Doko
Drejteza dhe Trekendeshi Hysen DokoHysen Doko
 
Trekendeshi Hysen Doko
Trekendeshi   Hysen DokoTrekendeshi   Hysen Doko
Trekendeshi Hysen DokoHysen Doko
 
Teoremat e rrethit
Teoremat e rrethitTeoremat e rrethit
Teoremat e rrethitTeutë Domi
 
Trekendeshat dhe simbolet
Trekendeshat dhe simboletTrekendeshat dhe simbolet
Trekendeshat dhe simboletLediø Bøjka
 
Trupat e rrotullimit
Trupat e rrotullimitTrupat e rrotullimit
Trupat e rrotullimitani salla
 
Presentation kubi, kuboidi,prizmi
Presentation kubi, kuboidi,prizmi Presentation kubi, kuboidi,prizmi
Presentation kubi, kuboidi,prizmi zenel hajdini
 
Trekendeshat mat. 9.4
Trekendeshat mat. 9.4Trekendeshat mat. 9.4
Trekendeshat mat. 9.4Stiven Baci
 
Trekendeshat mat. 9.1
Trekendeshat mat. 9.1Trekendeshat mat. 9.1
Trekendeshat mat. 9.1Stiven Baci
 
Trekendeshat mat. 9
Trekendeshat mat. 9Trekendeshat mat. 9
Trekendeshat mat. 9Stiven Baci
 

Similar to Projekt Matematike (14)

Matematika8
Matematika8Matematika8
Matematika8
 
Drejteza dhe Trekendeshi Hysen Doko
Drejteza dhe Trekendeshi   Hysen DokoDrejteza dhe Trekendeshi   Hysen Doko
Drejteza dhe Trekendeshi Hysen Doko
 
Trekendeshi Hysen Doko
Trekendeshi   Hysen DokoTrekendeshi   Hysen Doko
Trekendeshi Hysen Doko
 
Matematike
MatematikeMatematike
Matematike
 
Teoremat e rrethit
Teoremat e rrethitTeoremat e rrethit
Teoremat e rrethit
 
Matematikk
MatematikkMatematikk
Matematikk
 
Trekendeshat dhe simbolet
Trekendeshat dhe simboletTrekendeshat dhe simbolet
Trekendeshat dhe simbolet
 
Trupat e rrotullimit
Trupat e rrotullimitTrupat e rrotullimit
Trupat e rrotullimit
 
Gjeometri klasa 9
Gjeometri klasa 9Gjeometri klasa 9
Gjeometri klasa 9
 
Presentation kubi, kuboidi,prizmi
Presentation kubi, kuboidi,prizmi Presentation kubi, kuboidi,prizmi
Presentation kubi, kuboidi,prizmi
 
Trekendeshat mat. 9.4
Trekendeshat mat. 9.4Trekendeshat mat. 9.4
Trekendeshat mat. 9.4
 
Gjeometria kl-9
Gjeometria kl-9Gjeometria kl-9
Gjeometria kl-9
 
Trekendeshat mat. 9.1
Trekendeshat mat. 9.1Trekendeshat mat. 9.1
Trekendeshat mat. 9.1
 
Trekendeshat mat. 9
Trekendeshat mat. 9Trekendeshat mat. 9
Trekendeshat mat. 9
 

More from S Gashi

PROJEKTI
PROJEKTIPROJEKTI
PROJEKTIS Gashi
 
Projekt gjeoGRAFIE
Projekt gjeoGRAFIEProjekt gjeoGRAFIE
Projekt gjeoGRAFIES Gashi
 
Projekt historie
Projekt historieProjekt historie
Projekt historieS Gashi
 
Projekt muzike
Projekt muzikeProjekt muzike
Projekt muzikeS Gashi
 
Projekti me instrumente muzike
Projekti me instrumente muzikeProjekti me instrumente muzike
Projekti me instrumente muzikeS Gashi
 
Thenie &fakte
Thenie &fakteThenie &fakte
Thenie &fakteS Gashi
 
Projekt(fizike)
Projekt(fizike)Projekt(fizike)
Projekt(fizike)S Gashi
 
Projekt(ed.shoqerore)
Projekt(ed.shoqerore)Projekt(ed.shoqerore)
Projekt(ed.shoqerore)S Gashi
 
Projekt gjeografie klasa 9
Projekt gjeografie klasa 9Projekt gjeografie klasa 9
Projekt gjeografie klasa 9S Gashi
 
Projekt( parashikimi i motit )
Projekt( parashikimi i motit )Projekt( parashikimi i motit )
Projekt( parashikimi i motit )S Gashi
 

More from S Gashi (13)

PROJEKTI
PROJEKTIPROJEKTI
PROJEKTI
 
Projekt gjeoGRAFIE
Projekt gjeoGRAFIEProjekt gjeoGRAFIE
Projekt gjeoGRAFIE
 
Projekt historie
Projekt historieProjekt historie
Projekt historie
 
Projekt muzike
Projekt muzikeProjekt muzike
Projekt muzike
 
Projekti me instrumente muzike
Projekti me instrumente muzikeProjekti me instrumente muzike
Projekti me instrumente muzike
 
Thenie &fakte
Thenie &fakteThenie &fakte
Thenie &fakte
 
Projekt(fizike)
Projekt(fizike)Projekt(fizike)
Projekt(fizike)
 
Project
ProjectProject
Project
 
Projekt(ed.shoqerore)
Projekt(ed.shoqerore)Projekt(ed.shoqerore)
Projekt(ed.shoqerore)
 
Projekt
ProjektProjekt
Projekt
 
Projekt
ProjektProjekt
Projekt
 
Projekt gjeografie klasa 9
Projekt gjeografie klasa 9Projekt gjeografie klasa 9
Projekt gjeografie klasa 9
 
Projekt( parashikimi i motit )
Projekt( parashikimi i motit )Projekt( parashikimi i motit )
Projekt( parashikimi i motit )
 

Projekt Matematike

  • 2. Gjeometria ; është degë e matematikës që i studion figurat e rrafshit dhe hapësirës dhe relacionet në mes tyre.
  • 4. • Katrori Katrori është rombi i cili ka kater brinjët te barabarta. Vetitë e katrorit. • Kendet janë te gjithë te drejte. • Diagonalet jane kongruente. • Diagonalet bien pingul mbi njera tjetren. • Diagonalet pergjysmojne njera tjetren. Siperfaqja Perimetri S=a*a P=4a
  • 5. • Drejtkendeshi Drejtkendeshi eshte paralelogrami qe I ka brinjet 2 e nga 2 paralele e kongruente . Perimetri P=2(a+b) Siperfaqja S=a*b
  • 6. • Rombi Rombi eshte paralelogrami qe I ka 4 brinjet kongruente. Perimetri P=4a Siperfaqja S=(d1*d2)/2
  • 7. • Trekendeshi Trekëndëshi është njëra nga figurat themelore në gjeometri: Formohet me bashkimin e tre pikave të cilat nuk shtrihen në një drejtëzë me vija të drejta. Pikat quhen kulme të trekëndëshit ndërsa pjesa e drejtëzës (vijës së drejtë) që ndodhet ndërmjet kulmeve quhet brinjë e trekëndëshit. Kulmet i shënojmë me A, B, dhe C ndërsa trekëndëshin me ABC. Perimetri P=a+b+c Siperfaqja S=b*h
  • 8. • Trekendeshat sipas brinjeve ; -Trekendeshi i cfaredoshem, eshte ai trekendesh qe nuk ka asnje brinje ose kend te barabarte. -Trekendesh dybrinjeshem eshte ai trekendesh qe ka dy brinje te barabarta, dhe kendet ku keto brinje mbeshteten te barabarta. -Trekendesh barabrinjes eshte ai trekendesh qe ka tre brinjet e tij te barabarta dhe kendet nga 60°.
  • 9. • Trekendeshat sipas kendeve ; - Trekendeshi kendgjere esht ai trekendesh qe ka nje kend te gjere (+90°). -Trekendeshi kend-ngushte eshte ai trekendesh qe ka tre kende te ngushte. -Trekendeshi kenddrejte eshte ai trekendesh qe ka nje kend te drejte.
  • 10. • Teoremat: -Pitagora:katrori i (c) eshte i baraberte me shumen e katrorve te kateteve (a,b). -Euklidit:Prodhimi i dy projeksioneve te kateteve (a,b)eshte i barabarte me katrorin e lartesise.
  • 11. • Trapezi Trapezi eshte nje katerkendesh i crregullt ku mund te kete nje kend te drejte. Siperfaqja Perimetri S=(B+b)*h/2 P=a+b+c+d Vija e mesme c=(B+b)/2
  • 12. • Paralelogrami Në gjeometrinë euklidiane, paralelogrami është një katërkënësh që i ka brinjët dy e nga dy paralele. Perimetri P=2(a+b) Siperfaqja S=b*h
  • 13. Stereometria;është ajo degë e matematikës që studion trupat gjeometrik. Ajo quhet ndryshe GJEOMETRIA NE HAPËSIRË
  • 14. TRUPAT GJEOMETRIK • Kubi • Kuboidi • Sfera • Koni • Cilindri • Piramida • Prizmi
  • 15. • Kubi Kubi është një trup gjeometrik. Kubi ndryshon nga katrori ngase është tre dimensional. Ky ka gjashtë faqe, tetë kulme dhe dymbëdhjetë tehe. Kubi i ka të gjitha brinjët e barabarta si dhe këndet i ka të gjitha të drejta. Sb = a2 Sp =6a2 Sa = 4a2 P=12a Pb =4a V =a3
  • 16. • Kuboidi Prizmi i drejtë katërkëndor me bazë drejtkëndësh quhet kuboid . Sb =a*b Sp =2(ab+ac+bc) Sa =2bc+2ac Pb =2a+2b V =a*b*c
  • 17. • Piramida Piramida është një shumëfaqësh me baza 2 shumëkëndësha dhe faqet anësore i ka kongruente. Vëllimi i një piramide është sa një e treta e vëllimit të një prizmi të drejtë me bazë e lartësi të njëjtë. Sa=Pb*a/2 V=1/3Sb*h Sp=Sa+Sb
  • 18. • Koni Koni quhet trup i kufizuar nga nje siperfaqe konike,qe ndodhet nga njera ane ekulmit dhe nga nje plan i cili pret tegjitha perftueset. Prerja plane quhet baze ekonit. Pika S quhet kulm i konit. Lartesia ekonit quhet largesa e pikes S nga baza. Koni me baze rreth dhe lartesi qe kalon nga qendra e bazes quhet kon i drejte rrethor. Ai perftohet nga rrotullimi i nje trekendeshi kendrejte rreth njerit katet te tij. Sa=πRa Sb=π*R2 Sp=πR(a+R). V=13Sb*h
  • 19. • Cilindri Cilindër quhet ajo pjesë e sipërfaqes cilindrike e cila ndodhet ndërmjet dy rrafsheve paralele. Cilindri quhet i drejtë nëse rrafshet prerëse janë normale me boshtin përndryshe quhet i pjerrët. Largësia mes dy rrafsheve prerëse quhet lartësi e cilindrit. Sa=2πR*h Sb=π*R2 Sp=2πR*h+2π R2 V =Sb*h
  • 20. • Sfera Sfera është bashkësia e pikave në hapësirë të cilat kanë largësi të barabarta prej një pike të fiksuar. V=4*π*R3 3 S=4*π*R2
  • 21. • Prizmi Fjala “prizem” vjen nga greqishtja. Ai gjen perdorim te gjere edhe ne fizike.Ai mund te jete trekendor,katerkendor, pesekendor etj ne varesi te formes se bazes.Prizem i drejte quhet ai prizem,brinjet anesore te se cilit jane pingule me bazat. Ai quhet i rregullt,nese baza e tij eshte nje shumekendesh i rregullt. Sa = Pb*h Sp=Sa+2Sb V=Sb*h