Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

M. Dimitrijevic - Twisted Symmetry and Noncommutative Field Theory

589 views

Published on

The SEENET-MTP Workshop JW2011
Scientific and Human Legacy of Julius Wess
27-28 August 2011, Donji Milanovac, Serbia

Published in: Education, Technology
  • Be the first to comment

  • Be the first to like this

M. Dimitrijevic - Twisted Symmetry and Noncommutative Field Theory

  1. 1. Balkan Summer Institute 2011, Workshop JW2011: Scientific and Human Legacy of Julius Wess, 27th -28th August 2011, Donji Milanovac, Serbia Twisted Symmetry and Noncommutative Field Theory Marija Dimitrijevi´ c University of Belgrade, Faculty of Physics, Belgrade, Serbiawith L. Jonke, B. Nikoli´ and V. Radovanovi´ c cJHEP 0712, 059 (2007); JHEP 0904, 108 (2009); Phys. Rev. D, 81 (2010); Phys. Rev. D,83 (2011); 1107.3475[hep-th]. M. Dimitrijevi´ , University of Belgrade – p.1 c
  2. 2. Outline • Noncommutative spaces from a twist -motivation -definition -examples • Example I: κ-Mikowski space-time • Example II: Non(anti)commutative SUSY Notation: "Munich" group: students, postdocs, collaborators of Julius Wess during the time he was in Munich (1990-2005) and Hamburg (2005-2007). M. Dimitrijevi´ , University of Belgrade – p.2 c
  3. 3. Noncommutative spaces from a twist ˆˆ Noncommutative space Ax , generated by xµ coordinates ˆ µ = 0, 1, . . . n such that: [ˆµ , xν ] = Θµν (ˆ). x ˆ x (1) It is an associative free algebra generated by xµ and divided by ˆ the ideal generated by relations (1). Differential calculus, integral, symmetries ["Munich" group around 1990 and from then on] can be discussed, but. . . ˆˆ ⋆-product geometry: represent Ax on the space of commuting coordinates, but keep track of the deformation ˆˆ Ax → Ax⋆ ˆx f (ˆ) → f (x) and ˆx g x f (ˆ)ˆ(ˆ) → f ⋆ g(x). M. Dimitrijevi´ , University of Belgrade – p.3 c
  4. 4. MW ⋆-product ∞ i n 1 ρ1 σ1 f ⋆ g (x) = θ . . . θρn σn n=0 2 n! ∂ρ1 . . . ∂ρn f (x) ∂σ1 . . . ∂σn g(x) i = f · g + θ ρσ (∂ρ f ) · (∂σ g) + O(θ 2 ). (2) 2 Associative, noncommutative; c. conjugation: (f ⋆ g)∗ = g ∗ ⋆ f ∗ . µ ν µ ν i µν Special example: x ⋆ x = x x + θ , 2 [xµ ⋆ xν ] = iθµν . , (3) The ⋆-product (2) enabled: construction of quantum field theories and analysis of their renormalizability properties, construction of NC Standard Model and the analysis of its phenomenological consequences,. . . ["Munich" group around 2000 and from then on]. M. Dimitrijevi´ , University of Belgrade – p.4 c
  5. 5. Twist formalism • Motivation 1: Product (2) can be viewed as coming from an Abelian twist given by i − 2 θρσ ∂ρ ⊗∂σ F =e (4) as f ⋆ g = µ F −1 f ⊗ g i ρσ 2θ ∂ρ ⊗∂σ = µ e f ⊗g i = f · g + θ ρσ (∂ρ f ) · (∂σ g) + O(θ 2 ). (5) 2 • Motivation 2: Deformation [xµ ⋆ xν ] = iθµν breaks the , classical Lorentz symmetry. Is there a deformation of Lorentz symmetry such that it is a symmetry of (3)? M. Dimitrijevi´ , University of Belgrade – p.5 c
  6. 6. Basic idea Consider first a deformation (twist) of a classical symmetry algebra g (Lorentz, SUSY, gauge,. . . ). Then deform the space-time itself. A twist F (introduced by Drinfel’d in 1983-1985) is: -an element of U g ⊗ U g -invertible -fulfills the cocycle condition (ensures the associativity of the ⋆-product) F ⊗ 1(∆ ⊗ id)F = 1 ⊗ F (id ⊗ ∆)F . (6) -additionally: F = 1 ⊗ 1 + O(h); h-deformation parameter. Notation: F = f α ⊗ fα and F −1 = ¯α ⊗ ¯α . f f ["Munich" group around 2005 and from then on]. M. Dimitrijevi´ , University of Belgrade – p.6 c
  7. 7. Action of F • F applied to U g: twisted Hopf algebra U gF [ta , tb ] = if abc tc ,∆F (ta ) = F∆(ta )F −1 , ε(ta ) = 0, SF = f α S(fα )S(ta )S(¯β )¯β . f f (7) • F applied to Ax (algebra of smooth functions on M): A⋆ x pointwise multiplication: µ(f ⊗ g) = f · g ⇓ ⋆-multiplication: µ⋆ (f ⊗ g) ≡ µ ◦ F −1 (f ⊗ g) = (¯α f )(¯α g) = f ⋆ g. f f (8) • F applied to the symmetry of theory cl cl cl F ,F −1 δg (φ1 φ2 ) = (δg φ1 )φ2 + φ1 (δg φ2 ) → deformed Leibniz rule. M. Dimitrijevi´ , University of Belgrade – p.7 c
  8. 8. • F applied to Ω (exterior algebra of forms): Ω⋆ wedge product: ω1 ∧ ω2 = ω1 ⊗ ω2 − ω2 ⊗ ω1 ⇓ ⋆-wedge product: ω1 ∧⋆ ω2 = (¯α ω1 ) ∧ (¯α ω2 ). f f• Differential calculus is classical: d : A⋆ → Ω⋆ . x d2 = 0, d(f ⋆ g) = df ⋆ g + f ⋆ dg, df = (∂µ f )dxµ = (∂µ f ) ⋆ dxµ . ⋆ (9)• Integral of a maximal form (d1 + d2 = dim(M)) is graded cyclic: ω1 ∧⋆ ω2 = (−1)d1 d2 ω2 ∧⋆ ω1 . (10) M. Dimitrijevi´ , University of Belgrade – p.8 c
  9. 9. Comments I: Deformations by twist i µν 1. Moyal-Weyl twist F = e− 2 θ ∂µ ⊗∂ν , θ µν = −θ νµ ∈ R: • θ-deformed Poincaré symmetry: Chaichian et al. (Phys. Lett. B604 2004), Wess (hep-th/0408080), Koch et al. (Nucl. Phys. B717 2005). [∂µ , ∂ν ] = 0, ⋆ [δω , ∂ρ ] = ωρµ ∂µ , ⋆ ⋆ ⋆ [δω , δω ′ ] = δ[ω,ω ′ ] , ⋆ ⋆ ⋆ i ρσ “ λ λ ” ∆(δω ) = δω ⊗ 1 + 1 ⊗ δω + θ ω ρ ∂λ ⊗ ∂σ + ∂ρ ⊗ ω σ ∂λ . 2 • θ-deformed gravity: Aschieri et al. (Class. Quant. Grav. 22, 2005 and 23, 2006). ⋆ ⋆ ⋆ [δξ , δη ] = δ[ξ,η] , ⋆ ⋆ ⋆ i ρσ “ ⋆ ⋆ ” ∆(δξ ) = δξ ⊗1+1⊗ δξ − θ δ(∂ρ ξ) ⊗ ∂σ + ∂ρ ⊗ δ(∂σ ξ) + . . . . 2 • θ-deformed gauge theory: Aschieri et al. (Lett. Math. Phys. 78 2006), Vassilevich (Mod. Phys. Lett. A 21 2006), Giller et al. (Phys. Lett. B655, 2007). ⋆ ⋆ ⋆ [δα , δβ ] = δ−i[α,β] , α = αa t a , ⋆ ⋆ ⋆ i ρσ “ ⋆ ⋆ ” ∆(δα ) = δα ⊗1+1⊗ δα − θ δ(∂ρ α) ⊗ ∂σ + ∂ρ ⊗ δ(∂σ α) + . . . . 2 M. Dimitrijevi´ , University of Belgrade – p.9 c
  10. 10. 2. Twisted supersymmetry: ´ Kosinski et al. (J. Phys. A 27 1994), Kobayashi et al.(Int. J. Mod. Phys. A 20 2005), Zupnik (Phys. Lett. B 627 2005), Ihl et al. (JHEP 06012006), Dimitrijevi´ et al. (JHEP 0712 2007), . . . c 1 C αβ ∂ ⊗∂ + 1 C ¯˙ ¯˙ ¯ ˙ ∂ α ⊗∂ β 1 αβ F1 = e2 α β 2 αβ˙ , F2 = e 2 C Dα ⊗Dβ ,... ¯˙ C αβ = C βα ∈ C, Dα = ∂α + iσ mα θα ∂m α˙3. Twist with commuting vector fields i ab X ⊗X F = e− 2 θ a b, Xa = Xa ∂µ , [Xa , Xb ] = 0, θab = const. µ • dynamical NC: vector fields Xa are dynamical, global Lorentz symmetry is preserved: Aschieri et al. (Lett. Math. Phys. 85 2008). • deformed gravity: cosmological and black hole solutions, coupled to fermions, deformed supergravity: Schupp et al. (0906.2724[hep-th]), Ohl et al. (JHEP 0901, 2009), Aschieri et al. (JHEP 0906 2009; JHEP 0906 2009). • κ-Minkowski: Meljanac et al. (Eur. Phys. J. C 53 2008), Borowiec et al. (Phys. Rev. D 79 2009),. . . M. Dimitrijevi´ , University of Belgrade – p.10 c
  11. 11. Example I: κ-Minkowski space-time Defined by: [ˆ0 , xj ] = iaˆj , x ˆ x [ˆi , xj ] = 0, x ˆ (11) with a = 1/κ and i, j = 1, 2, 3. Interesting phenomenological consequences: modified Lorentz symmetry, modified dispersion relations, DSR theories, . . . ⋆-product approach ["Munich" group 2002-2005] has problems with: non-unique derivatives, diferential calculus, non-cyclic integral. ⇒ Difficult to do field theory. . . Suggestion: apply the twist formalism with i − 2 θab Xa ⊗Xb − ia (∂0 ⊗xj ∂j −xj ∂j ⊗∂0 ) F =e =e 2 , (12) with X1 = ∂0 , X2 = xj ∂j , [X1 , X2 ] = 0 and θab = aǫab . M. Dimitrijevi´ , University of Belgrade – p.11 c
  12. 12. Action of the twist (11): • ⋆-product of functions f ⋆g = µ{F −1 f ⊗ g} ia = f · g + xj (∂0 f )∂j g − (∂j f )∂0 g + O(a2 ). (13) 2 • [x0 ⋆ xj ] = iaxj and [xi ⋆ xj ] = 0 . , , • Differential calculus i ⋆ df = (∂µ ) ⋆ dxµ , ⋆ ∂0 = ∂0 , ∂j = e− 2 a∂0 ∂j , ⋆ f ⋆ dx0 = dx0 ⋆ f, f ⋆ dxj = dxj ⋆ eia∂0 f, dxµ ∧⋆ dxν = dxµ ∧ dxν , d4 x = dx0 ∧ · · · ∧ dx3 . • Integral: ω1 ∧⋆ ω2 = (−1)d1 d2 ω2 ∧⋆ ω1 , with d1 + d2 = 4. M. Dimitrijevi´ , University of Belgrade – p.12 c
  13. 13. Enough ingredients to construct scalar and spinor field theories.For a gauge theory a ⋆-Hodge dual is needed: S= F 0 ∧ (∗F 0 ) → S = F ∧⋆ (∗F ), 1 with ∗F 0 = 2 ǫµναβ F 0αβ dxµ ∧ dxν and F = dA − A ∧⋆ A.The obvious choice ∗F = 1 ǫµναβ F αβ ⋆ dxµ ∧⋆ dxν does not lead 2to a gauge invariant action.Using the Seiberg-Witten map we were able to construct the⋆-Hodge dual up to first order in a. The invariant action is: 1 S=− 2F0j ⋆ e−ia∂0 X 0j + Fij ⋆ e−2ia∂0 X ij ⋆ d4 x, (14) 4with X nj = F nj − aAn ⋆ F nj and X jk = F jk + aAn ⋆ F jk . Analysisof EOM, dispersion relations, . . . . M. Dimitrijevi´ , University of Belgrade – p.13 c
  14. 14. Comments II • Advantages of twist formalism: -mathematically well defined -differential calculus -cyclic integral. • Disadvantages: -Hodge dual is difficult to generalize -global Poinaceré symmetry iso(1, 3) is replaced by global inhomogenious general linear symmetry igl(1, 3) -problem of conserved charges. • Possibilities: -natural basis -new definition of ⋆-Hodge dual -twisted gauge symmetry? M. Dimitrijevi´ , University of Belgrade – p.14 c
  15. 15. Example II: Twisted SUSY Non(anti)commutative field theories: from 2003 intensively, ["Munich" group around 2006 and from then on]. Different types of deformation of superspace, Wess-Zumino and Yang-Mills models, their renormalizability properties,. . . For an ilustration let us compare two different twists: 1 αβ 1 ¯ ¯˙ ¯˙ C ∂α ⊗∂β + 2 Cαβ ∂ α ⊗∂ β ˙ F1 = e 2 ˙ , (15) 1 αβ C Dα ⊗Dβ F2 = e 2 , (16) αβ βα with C1,2 = C1,2 ∈ C, ∂α = ∂ ¯˙ Dα = ∂α + iσ m α θα ∂m . ∂θα , α˙ An obvious difference: F1 is hermitean and F2 is not hermitean under the usual c.conjugation. M. Dimitrijevi´ , University of Belgrade – p.15 c
  16. 16. Twist F1 leads to: • ⋆-product of superfields −1 F ⋆ G = µ{F1 F ⊗ G} 1 = F · G − (−1)|F | C αβ (∂α F ) · (∂β G) 2 1 ¯ ˙ ¯˙ ¯˙ − (−1)|F | Cαβ (∂ α F )(∂ β G) + O(C 2 ). ˙ (17) 2 where |F | = 1 if F is odd and |F | = 0 if F is even. ¯˙ , ¯ ˙ ¯ ˙ • {θα ⋆ θβ } = C αβ , {θα ⋆ θβ } = Cαβ , [xm ⋆ xn ] = 0. , , ˙ • Deformed Leibniz rule ⇒ twisted SUSY transformations ⋆ δξ (F ⋆ G) = (δξ F ) ⋆ G + F ⋆ (δξ G) (18) i αβ ¯γ m ¯˙ + C ξ ˙ σ αγ (∂m F ) ⋆ (∂β G) + (∂α F ) ⋆ ξ γ σ mγ (∂m G) ˙ β˙ 2 i ¯ α m γα ˙ ˙ ˙ ¯˙ ˙ ˙ ¯β G) + (∂ α F ) ⋆ ξ α σ m εγ β (∂m G) . − Cαβ ξ σαγ ε (∂m F ) ⋆ (∂ ˙ ˙ αγ ˙ 2 ˙ M. Dimitrijevi´ , University of Belgrade – p.16 c
  17. 17. • Chirality is broken; if Φ is chiral Φ ⋆ Φ is not chiral! Project out chiral, antichiral and transverse components of Φ ⋆ Φ and Φ ⋆ Φ ⋆ Φ using the projectors P1 , P2 and PT ¯ 1 D2 D2 ¯ 1 D2 D2 1 Z P1 = , P2 = , f (x) g(x) = f (x) d4 y G(x − y)g(y). 16 16• Deformed Wess-Zumino action S = d4 x Φ+ ⋆ Φ (19) ¯¯ θθ θθ m λ + P2 Φ ⋆ Φ + P2 Φ ⋆ P2 Φ ⋆ Φ + c.c. 2 θθ 3 θθ• A minimal deformation of the commutative WZ action, good commutative limit, it is non-local. M. Dimitrijevi´ , University of Belgrade – p.17 c
  18. 18. • One-loop renormalizability using supergraph technique and the background field method: -no tadpole -the divergences in two-point function cannot be removed ⇒ The model is NOT renormalizable.• What can be done: -add new terms to absorb divergences ⇒ non-minimal deformation -understand better the interplay between twisted symmetry and renormalizability. M. Dimitrijevi´ , University of Belgrade – p.18 c
  19. 19. Twist F2 leads to: • ⋆-product of superfields −1 F ⋆ G = µ{F1 F ⊗ G} 1 = F · G − (−1)|F | C αβ (Dα F ) · (Dβ G) + O(C 2 ). (20) 2 where |F | = 1 if F is odd and |F | = 0 if F is even. • {θα ⋆ θβ } = C αβ , , ¯˙ , ¯ ˙ {θα ⋆ θβ } = 0, [xm ¯¯ ⋆ xn ] = −C αβ (σ mn ε) θ θ. , αβ ¯˙ • Since {Qα , Dβ } = {Qα , Dβ } = 0 Leibniz rule for SUSY transformations is undeformed. ⋆ δξ (F ⋆ G) = (δξ F ) ⋆ G + F ⋆ (δξ G) (21) • Chirality is broken again. Method of projectors. . . M. Dimitrijevi´ , University of Belgrade – p.19 c
  20. 20. • Deformed Wess-Zumino action 4 + m S = d x Φ ⋆Φ + P2 (Φ ⋆ Φ) + 2a1 P1 (Φ ⋆ Φ) ¯θ θθ θ ¯ 2 θθ ¯¯ θθ λ + P2 (P2 (Φ ⋆ Φ) ⋆ Φ) + 3a2 P1 (P2 (Φ ⋆ Φ) ⋆ Φ) 3 θθ ¯¯ θθ +2a3 (P1 (Φ ⋆ Φ) ⋆ Φ) +3a4 P1 (Φ ⋆ Φ) ⋆ Φ+ ¯¯ θθ θθ ¯¯ θθ ¯ +3a5 C 2 P2 (Φ ⋆ Φ) ⋆ Φ+ + c.c. . (22) ¯¯ θθ θθ• A non-minimal deformation of the commutative WZ action, good commutative limit, it is local. M. Dimitrijevi´ , University of Belgrade – p.20 c
  21. 21. • One-loop renormalizability using supergraph technique and the background field method: -no tadpole, no mass renormaization -a4 and a5 -terms in the action (20) required to absorb the (3) divergences appearing in Γ1 (4) -divergences in Γ1 cannot be absorbed ⇒ The general model IS NOT renormalizable.• HOWEVER: There is a special choice: a2 = a3 = a4 = 0 when the model is renormalizable! Almost all commutative SUSY results remain valid: no tadpole, no mass (4) renormalization, divergent parts of Γ1 and higher-point functions are zero.• Non-minimal deformation and undeformed SUSY render a renormalizable model. A more general conclusion? M. Dimitrijevi´ , University of Belgrade – p.21 c
  22. 22. Summary • NC spaces can be defined via twist. • Mathematically well defined, good control of deformed symmetries, differential calculus, integral. • More loose ends: Generalization of Noether theorem, conserved charges, Hodge dual,. . . Better understanding of renormalizability versus twisted symmetries also needed. M. Dimitrijevi´ , University of Belgrade – p.22 c

×