G. Senjanovic - Neutrino Paradigm and LHC

1,180 views

Published on

The SEENET-MTP Workshop BW2011
Particle Physics from TeV to Plank Scale
28 August – 1 September 2011, Donji Milanovac, Serbia

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,180
On SlideShare
0
From Embeds
0
Number of Embeds
192
Actions
Shares
0
Downloads
12
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

G. Senjanovic - Neutrino Paradigm and LHC

  1. 1. Neutrino Paradigm and LHC Goran Senjanović ICTP, Trieste 011 g us t 30, 2 r BW2011, Au Pre pare d foTuesday, August 30, 2011
  2. 2. New Physics: these days we all say LHC and yet... no hard prediction most tied to naturalness - soft try phenomenological (experimental) motivation? still softTuesday, August 30, 2011
  3. 3. Neutrino Mass - the only new established physics beyond SM if Majorana window to new physics serious chance at LHC ?Tuesday, August 30, 2011
  4. 4. Talk:Tuesday, August 30, 2011
  5. 5. Talk: not a reviewTuesday, August 30, 2011
  6. 6. Talk: not a review a case for LHC as a neutrino machineTuesday, August 30, 2011
  7. 7. Talk: not a review a case for LHC as a neutrino machine case study of a (the?) theoryTuesday, August 30, 2011
  8. 8. Talk: not a review a case for LHC as a neutrino machine case study of a (the?) theory seesaw at LHCTuesday, August 30, 2011
  9. 9. Dirac ’31 Dirac equation ’28 Skobeltsyn ’23 Chao ’29 anti particles Anderson ’32 Segre’, Chamberlain ’55 particle ⇒ different antiparticle for every fermionTuesday, August 30, 2011
  10. 10. neutrino = anti neutrino ? Majorana ’37 neutron Lepton Number Violation: `creation of electrons’ neutrino less double beta decay Racah’37 Furry ’38 colliders - LHC Keung, GS ’83Tuesday, August 30, 2011
  11. 11. Parity violation in weak interaction not well known: Lee, Yang ’56 they argue it is a hidden symmetry * * mirror fermions Martinez, Melfo, Nesti, GS ’11 Melfo, Nemevsek, Nesti, GS, Zhang ’11Tuesday, August 30, 2011
  12. 12. Majorana Program: neutrino mass νM = νL + ∗ νL ⇔ mν (νL νL M + h.c.) ∆L = 2 lepton number violation forbidden by SM symmetry window to new physicsTuesday, August 30, 2011
  13. 13. Double-beta decay Goepert-Mayer ’35 76 32 Ge →76 As + e + ν 33 ¯ ⇒ 76 32 Ge →76 Se + e + e + ν + ν 34 ¯ ¯ n p W e νe νe e W n pTuesday, August 30, 2011
  14. 14. Double-beta decay Goepert-Mayer ’35 76 32 Ge →76 As + e + ν 33 ¯ ⇒ 76 32 Ge →76 Se + e + e + ν + ν 34 ¯ ¯ n p W e νe mM ⊗ ν νe e W n pTuesday, August 30, 2011
  15. 15. Neutrinoless Double-beta decay Goepert-Mayer ’35 76 32 Ge →76 As + e + ν 33 ¯ ⇒ 76 32 Ge →76 Se + e + e + ν + ν 34 ¯ ¯ n p W e 76 32 Ge →76 Se + e + e 34 νe mM ⊗ ν proportional to neutrino mass νe e W t1/2 ≥ 10 24 yr ⇒ M mν 1 eV n pTuesday, August 30, 2011
  16. 16. Neutrino masses Neutr 14 14 m23 2 2 12 Θ13 Θ12 12 m12 Neutrino mass contribution 10 10 8 8 2 99 CL 2 Χ 99 CL Χ 6 6 4 4 90 CL 90 CL 2 2 1.01 0 105 104 103 102 0 0 10 20 m2 in eV2 Θ 0.1 0.1 inverted Oscillation parameter central value solar mass splitting ∆m2 = (7.58 ± 0.21) 10−5 eV2 ( |mee| in eV 12 atmospheric mass splitting |∆m23 | = (2.40 ± 0.15) 10−3 eV2 2 ( 0.01 0.01 solar mixing angle tan2 θ12 = 0.484 ± 0.048 normal sin2 2θ23 = 1.02 ± 0.04 ν atmospheric mixing angle ‘CHOOZ’ mixing angle sin2 2θ13 = 0.07 ± 0.04 10−3 0.001 Table 1.1: Summary of present information on neutrino masses and m data. 10−4 4 104 −4 10 10 1.2 0.001 0.001 Present 0.01 0.01 0.1 0.1 1 1 lightest neutrino mass in eV Table 1.1 summarizes the oscillation interpretation of the two established Vissani ’02 • The atmospheric evidence. SuperKamiokande [6] observed disa atmospheric neutrinos, with ‘infinite’ statistical significance (∼ 17σ seen by Macro and other atmospheric experiments. If interpreted aTuesday, August 30, 2011 νµ → ντ with quasi-maximal mixing angle. The other possibilities
  17. 17. Neutrino masses Neutr 14 14 m23 2 2 12 Θ13 Θ12 12 m12 Neutrino mass contribution 10 10 8 8 2 99 CL 2 Χ 99 CL Χ 6 6 4 4 90 CL 90 CL 2 2 1.01 0 105 104 103 102 0 0 10 20 m2 in eV2 Θ 0.1 0.1 inverted Oscillation parameter central value solar mass splitting ∆m2 = (7.58 ± 0.21) 10−5 eV2 ( |mee| in eV 12 atmospheric mass splitting |∆m23 | = (2.40 ± 0.15) 10−3 eV2 2 ( solar mixing angle tan2 θ12 = 0.484 ± 0.048 cosmology 0.01 0.01 normal sin2 2θ23 = 1.02 ± 0.04 ν atmospheric mixing angle ‘CHOOZ’ mixing angle sin2 2θ13 = 0.07 ± 0.04 10−3 0.001 Table 1.1: Summary of present information on neutrino masses and m data. 10−4 4 104 −4 1.2 Present Seljak, Slosar, Mcdonald ’06 10 10 0.001 0.001 0.01 0.01 0.1 0.1 1 1 lightest neutrino mass in eV Hannestad et al ’10 Table 1.1 summarizes the oscillation interpretation of the two established Vissani ’02 • The atmospheric evidence. SuperKamiokande [6] observed disa atmospheric neutrinos, with ‘infinite’ statistical significance (∼ 17σ seen by Macro and other atmospheric experiments. If interpreted aTuesday, August 30, 2011 νµ → ντ with quasi-maximal mixing angle. The other possibilities
  18. 18. Neutrino masses Neutr 14 14 m23 2 2 12 Θ13 Θ12 12 m12 Neutrino mass contribution 10 10 8 8 2 99 CL 2 Χ 99 CL Χ 6 6 4 4 90 CL 90 CL 2 2 Klapdor ’01-10 1.01 0 105 104 103 102 0 0 10 20 Θ 0ν2β m2 in eV2 HM experiment 0.1 0.1 inverted Oscillation parameter central value solar mass splitting ∆m2 = (7.58 ± 0.21) 10−5 eV2 ( |mee| in eV 12 atmospheric mass splitting |∆m23 | = (2.40 ± 0.15) 10−3 eV2 2 ( solar mixing angle tan2 θ12 = 0.484 ± 0.048 cosmology 0.01 0.01 normal sin2 2θ23 = 1.02 ± 0.04 ν atmospheric mixing angle ‘CHOOZ’ mixing angle sin2 2θ13 = 0.07 ± 0.04 10−3 0.001 Table 1.1: Summary of present information on neutrino masses and m data. 10−4 4 104 −4 1.2 Present Seljak, Slosar, Mcdonald ’06 10 10 0.001 0.001 0.01 0.01 0.1 0.1 1 1 lightest neutrino mass in eV Hannestad et al ’10 Table 1.1 summarizes the oscillation interpretation of the two established Vissani ’02 • The atmospheric evidence. SuperKamiokande [6] observed disa atmospheric neutrinos, with ‘infinite’ statistical significance (∼ 17σ seen by Macro and other atmospheric experiments. If interpreted aTuesday, August 30, 2011 νµ → ντ with quasi-maximal mixing angle. The other possibilities
  19. 19. Experiments !o at -I Experiments ongoing!ti Experiment Isotope Mass of Sensitivity Sensitivity Status Start Isotope [kg] T 0ν [yrs] mν , meV 1/2 GERDA 76 Ge 18 3 × 1025 ∼ 200 running! 2011 40 2 × 1026 ∼ 70 in progress ∼ 2012ation 1000 6 × 1027 10-40 RD ∼ 2015lation 130 Te CUORE 200 (6.5 ÷ 2.1) × 1026 20-90 in progress ∼ 2013ts MAJORANA 76 Ge 30-60 (1 ÷ 2) × 1026 70-200 in progress ∼ 2013cs 1000 6 × 1027 10-40 RD ∼ 2015 EXO 136 Xe 200 6.4 × 1025 100-200 in progress ∼ 2011 1000 8 × 1026 30-60 RD ∼ 2015 SuperNEMO 82 Se 100-200 (1 − 2) × 1026 40-100 RD ∼ 2013-2015 KamLAND-Zen 136 Xe 400 4 × 1026 40-80 in progress ∼ 2011 1000 1027 25-50 RD ∼ 2013-2015 SNO+ 150 Nd 56 4.5 × 1024 100-300 in progress ∼ 2012 500 3 × 1025 40-120 RD ∼ 2015 For a recent review [Rodejohann, arXiv:1106.1334] Rodejohann’11 Tuesday, August 30, 2011 Stay tuned
  20. 20. GERDA@LNGS started if claim confirmed expect: a few years new physics necessary? G2 mee Feinberg, Goldhaber ’59 Aν ∝ F 2 ν p Pontecorvo ’64 (p 100 M eV ) G 2 MW 4 AN P ∝ F 5 Λ Λ ∼ T eV LHCTuesday, August 30, 2011
  21. 21. Neutrino mass: theoryTuesday, August 30, 2011
  22. 22. Standard Model: neutrino massless only νL - and νL νL forbidden Why parity : L R broken ? God may be left-handed, but not an invalidTuesday, August 30, 2011
  23. 23. L-R symmetry Lee, Yang dream uL νL uR dL eL eR dR WLTuesday, August 30, 2011
  24. 24. L-R symmetry Lee, Yang dream uL νL dL eL WLTuesday, August 30, 2011
  25. 25. L-R symmetry Lee, Yang dream uL νL νR uR dL eL eR dR WL WRTuesday, August 30, 2011
  26. 26. L-R symmetry Lee, Yang dream uL νL νR uR dL eL eR dR WL WR mWR mWL Pati, Salam ’74 E mWR parity restored? Mohapatra, GS ’75Tuesday, August 30, 2011
  27. 27. G = SU (2)L × SU (2)R × U (1)B−L B−L Q= 3 TL + 3 TR + 2 • hypercharge Y: traded for anomaly free global B-L of SM • right-handed neutrinos: LR symmetry cancel gauge B-L anomalyTuesday, August 30, 2011
  28. 28. Curse: neutrino mass • neutrino massive - just like the electron • naive expectation: mν me (if Dirac particles) tried hard to avoid it, not convincing Branco, GS ’77Tuesday, August 30, 2011
  29. 29. Blessing: neutrino mass seesaw MνR ∝ MWR νL 0 mD νR mD MνR 1 mν = mT D mD Minkowski ‘77 MνR Mohapatra, GS ‘79Tuesday, August 30, 2011
  30. 30. Maiezza, Nemevsek, Nesti, GS ‘10 Minimal model: MWR 2.5 TeV theoretical limit Beall, Bander, Soni ’81 Mohapatra, GS, Tran ’83 Ecker, Grimus ’85 ..... Zhang, An, Ji, Mohapatra ’07 rare processes: KL − KS mass difference... experiment is catching up !Tuesday, August 30, 2011
  31. 31. New source for 0ν2β Mohapatra, GS ’81 n p n p WL WR e e νe Ne LL mν ⊗ RR mN ⊗ νe Ne e e WL WR n p n p 1 1 1 mν RR ∝ 4 LL ∝ 4 MWR mN M W L p2 N = right-handed neutrino p 100M eV mν 1 eV MWR mN 10MWL ~TeVTuesday, August 30, 2011
  32. 32. LHC connection?Tuesday, August 30, 2011
  33. 33. rotation in a plane d ¯ u WR e Ne mN ⊗ Ne e W ¯ d R uTuesday, August 30, 2011
  34. 34. ¯ u e d WR Ne e N ⊗ Ne m u WR ¯ dTuesday, August 30, 2011
  35. 35. e e u u ¯ R Ne Ne R W W ⊗ mN d ¯ dTuesday, August 30, 2011
  36. 36. WR production @ colliders • direct probe of Majorana nature j (anti) j WR proton N d − WR l Keung, G.S. ’83 u proton l • Parity restoration Figure 5: Production of lepton number violating same sign dileptons at col- liders through WR and N • Lepton Number Violation: electrons(such as jets) heavy particles needed to complete the SM in order to have m = 0 (+ ν • Lepton Flavorhave a direct measureflavornumber violation N ). R It is thus crucial to Violation: of lepton structure which can probe the source of neutrino Majorana mass. This is provided by the same sign dilepton production at colliders as we discuss below.Tuesday, August 30, 2011
  37. 37. 14 TeV LHC L=10/fb Nesti red = background peaks = mass of WR (GeV) Gift of LNV: no background 500 1000 1500 2000 2500 3000 3500 above 1.5 TeV • up to 4 TeV @ L= 30/fb Gninenko et al ’06 CMS • up to ~ 6 TeV @ L= 300/fb Ferrari et al, ’00 ATLASTuesday, August 30, 2011
  38. 38. Nemevsek, Nesti, GS, Zhang, ‘11 LHC @ E = 7 TeV lljj January 1000 90 1000 90 800 800 95 D0: dijets D0: dijets 95 MNΜ GeVMN GeV 600 600 99 99 400 400 200 200 L33.2pb1 L34pb1 0 0 MWR GeV 800 1000 1200 1400 1600 1800 MWR GeV 800 1000 1200 1400 1600 1800 . Exclusion (90%, 95%, 99%eCL) in the MWR –mN plane from the eejj (left) and µµjj (right) channel. We assu e µµntal cancelation in the RH lepton mixings. The 2σ lower bound ∼1.4 TeV is valid over a range of RH neutrino ma early data:several hundred GeV. L=33-34/pb W M R 1.4 T eV we estimate: suppress the family 1/fb L = indices, and indices, to- We perform a 2.2 Carlo simulation, using MWR Monte T eV with the flavor mixing Graph [18], Pythia [19] to generate the events f process pp → n n j (n, n ≥ 2) and do the show 2 gR µ ¯ gL 2 2 2 ZLR f γµ T3R + tan2 θW g2 (T3L − Q) f ,n θW gL /gR R including the K-factor of 1.3 to account for the N θW is the usual weak mixing angle. It is easy to QCD corrections [20]. We simulate the CMS dethat there 30, 2011lower limit on gR gL tan θW . All Tuesday, August is a using both PGS and Delphes which give essentia
  39. 39. LHC @ E = 7 TeV latest: MWR 1700 GeV July L = 240 /pb CMS Preliminary CMS Preliminary MNe [GeV] MNµ [GeV] MNe MWR 240 pb-1 at 7 TeV MNµ MWR 240 pb-1 at 7 TeV 1200 Observed 1200 Observed Expected Expected 1000 1000 800 800 600 600 Excluded by Tevatron Excluded by Tevatron 400 400 200 200 0 0 800 1000 1200 1400 1600 800 1000 1200 1400 1600 MWR [GeV] MWR [GeV] (a) Electron channel (b) Muon channel Figure 4: The 95% confidence level excluded ( MWR , M N ) region for the electron (left) and muon (right) channels. CMS public note: CMS PAS EXO-11-002 Leonidopoulos, talk @ IECHEP, Grenoble, JulyTuesday, August 30, 2011
  40. 40. utrino at January ’11 Nemevsek, Nesti, GS, Zhang, ‘11 ider - II On a global plot [Nemevˇek+ ’11] s Nesti hysics? 1000 1000 Quantum ers L33.2pb1l 500 90 500 D0: dijets D0: dijetser 99 99 95 ale WR 95 100 100 MNΜ GeV MN GeV ΒHs M 0Ν2 50 50 jetEM activityCβ Μ jetEM acer ΤN 1 mmνR 10 Displaced Vertex 10 Μ Displ 5 ΤN 5 m 5 Missing Energyary CMS CMS Μ 1 1 1000 1500 MWR GeV 1000 1500 2000 2500 3000 The interesting 0νββ region waiting for us. . . Looking forward for jets with EM activity. . . . . . and displaced vertices. Tuesday, August 30, 2011
  41. 41. utrino at January ’11 Nemevsek, Nesti, GS, Zhang, ‘11 ider - II On a global plot [Nemevˇek+ ’11] s Nesti hysics? 1000 1000 Quantum ers L33.2pb1l 500 90 500 D0: dijets D0: dijetser 99 99 95 ale WR 95 100 100 MNΜ GeV MN GeV ΒHs M 0Ν2 50 50 jetEM activityCβ Μ jetEM acer ΤN 1 mmνR 10 Displaced Vertex 10 Μ Displ 5 ΤN 5 m 5 Missing Energyary CMS CMS Μ 1 1 1000 1500 MWR GeV 1000 1500 2000 2500 3000 The interesting 0νββ region waiting for us. . . Looking forward for jets with EM activity. . . . . . and displaced vertices. ’11 July Tuesday, August 30, 2011
  42. 42. utrino at January ’11 Nemevsek, Nesti, GS, Zhang, ‘11 ider - II On a global plot [Nemevˇek+ ’11] s Nesti hysics? 1000 1000 Quantum ers L33.2pb1l 500 90 500 D0: dijets D0: dijetser 99 99 95 ale WR 95 100 100 MNΜ GeV MN GeV ΒHs M 0Ν2 50 50 jetEM activityCβ Μ jetEM acer ΤN 1 mmνR 10 Displaced Vertex 10 Μ Displ 5 ΤN 5 m 5 Missing Energyary CMS CMS Μ 1 1 1000 1500 MWR GeV 1000 1500 2000 2500 3000 theoretical limit The interesting 0νββ region waiting for us. . . Looking forward for jets with EM activity. . . . . . and displaced vertices. ’11 July Tuesday, August 30, 2011
  43. 43. LHC: measure mN and VR Keung, G.S. ’83 p j WR VR iα Nα VR jα WR p j i j in order to illustrate: type II seesaw VR = ∗ VL mN /mν = const Tello, Nemevsek, Nesti, GS, Vissani, PRL’11Tuesday, August 30, 2011
  44. 44. Back to neutrinoless double beta decay Tello et al ’11 Right only Left + Right 1.01 lightest mN in GeV normal 1 10 100 400 500 0.1 0.1 inverted 1. 1.0 0.5 |MN | in eV normal inverted |mee | in eV 0.01 0.01 0.1 ee 0.05 ν +N 10−3 0.001 0.01 MWR = 3.5 TeV 0.005 MWR = 3.5 TeV largest mN = 0.5 TeV 10−4 −4 104 4 largest mN = 0.5 TeV 10 10 0.001 0.001 0.01 0.01 0.1 0.1 1 lightest neutrino mass in eV 10−3 0.001 −4 104 10 0.001 0.001 0.01 0.01 0.1 1 lightest neutrino mass in eV opposite from mν non-vanishingTuesday, August 30, 2011
  45. 45. Neutrino mass: back to basicsTuesday, August 30, 2011
  46. 46. Fundamental issues?Tuesday, August 30, 2011
  47. 47. Fundamental issues? neutrino much lighter than electronTuesday, August 30, 2011
  48. 48. Fundamental issues? neutrino much lighter than electron a problem? not a prioriTuesday, August 30, 2011
  49. 49. Fundamental issues? neutrino much lighter than electron a problem? not a priori technically natural: chiral or lepton number symmetryTuesday, August 30, 2011
  50. 50. Fundamental issues? neutrino much lighter than electron a problem? not a priori technically natural: chiral or lepton number symmetry lepton mixings large, quark smallTuesday, August 30, 2011
  51. 51. Fundamental issues? neutrino much lighter than electron a problem? not a priori technically natural: chiral or lepton number symmetry lepton mixings large, quark small a problem? not a prioriTuesday, August 30, 2011
  52. 52. Fundamental issues? neutrino much lighter than electron a problem? not a priori technically natural: chiral or lepton number symmetry lepton mixings large, quark small a problem? not a priori q-l symmetry badly brokenTuesday, August 30, 2011
  53. 53. Fundamental issues? neutrino much lighter than electron a problem? not a priori technically natural: chiral or lepton number symmetry lepton mixings large, quark small a problem? not a priori q-l symmetry badly broken neutrino masses/mixings new physicsTuesday, August 30, 2011
  54. 54. Effective operators and New Physics SM degrees of freedom two operators stand out HH p qqq Lν = ν Yef f Lp = Yef f Λν Λ2 p Weinberg ’79 ν u = q= e L d L H - Higgs doublet Yef f 1 Λν 10 14 GeV Λp 1015 GeVTuesday, August 30, 2011
  55. 55. Grand Unification? suggestive: Λν Λp MGU T SO(10) tailor made minimal supersymmetric version: θatm 45 ⇔ θub 0 o Bajc, GS, Vissani ’02 θ13 10o Goh, Mohapatra, Ng ’03 ⇒ ....... No LHC T2K GS: review ‘11 Aulakh ’11Tuesday, August 30, 2011
  56. 56. Fermi theory g2 1 GF = g 0.6 GF = 2 8MW2 Λ Λ 300 GeV MW 80 GeV True scale can be (much) smaller Gravity 1 g2 GN = 2 GN = 2 g1 MP ΛF ΛF T eV ⇒ MP 10 19 GeV g = (ΛF R) −n/2 ADD ’98 large extra dimensionsTuesday, August 30, 2011
  57. 57. Weinberg’s d= 5 operator: UV completion = seesaw ( H)C(H ) = (T C )(H T H)= (T H)C(H T ) T σ T σ σ σ singlet fermion triplet fermion (sterile) Y=0 Type I LR triplet scalar Y=2 Type III SU(5) Type II LRTuesday, August 30, 2011
  58. 58. Probing seesaw @ LHCTuesday, August 30, 2011
  59. 59. Minkowski ‘77 Type I seesaw Mohapatra, GS ‘79 Gell-Mann, et al ’79 integrated out - phantom particle? Yanagida ’79 H H sterile neutrino - remnant of LR? ν N N ν N - hard, if not impossible, YD YD to produce at colliders Kersten, Smirnov ’07 Datta, Guchait, Pilaftsis ’93 crying for WR Datta, Guchait, Roy ’93 Han, Zhang ’06 del Aguila, Aguilar-Saavedra, Pittau ’0 7’ del Aguila, Aguilar-Saavedra ’08Tuesday, August 30, 2011
  60. 60. L-R theory • understanding P violation • gauge structure: new currents • LNV@colliders • see-saw: νRTuesday, August 30, 2011
  61. 61. L-R theory νRTuesday, August 30, 2011
  62. 62. GUT • unification of forces • charge quantization: monopoles • fermion mass relations • proton decay: X bosonTuesday, August 30, 2011
  63. 63. GUT X bosonTuesday, August 30, 2011
  64. 64. Standard Model • Electroweak unification • gauge structure • W-Z mass ratio • neutral currents: Z bosonTuesday, August 30, 2011
  65. 65. Standard Model Z bosonTuesday, August 30, 2011
  66. 66. Type III seesaw: triplet fermions Foot, Lew, He, Joshi ’89 H H origin: GUT ? ν T T ν YT YT MINIMAL SU(5) Georgi-Glashow • asymmetric matter • no unification 3× (10F + ¯F ) 5 • neutrino massless • fine-tuningTuesday, August 30, 2011
  67. 67. one extra fermionic 24F Bajc, G.S. ’06 Bajc, Nemevsek, G.S. ‘o7 maintains nicely the ugliness of the minimal model : • asymmetric matter but also its predictivity • even more fine-tuning 24F = (1C , 1)0 + (1C , 3)0 +(8C , 1) + (3C , 2)5/6 + (¯C , 2)−5/6 3 triplet T hybrid: type I + III singlet STuesday, August 30, 2011
  68. 68. • one massless neutrino Bajc, Nemevsek, G.S. ‘o7 • unification Αi 1 Μ color octet 60 50 40 30 triplet 20 log10 ΜGeV 10 3 5 7 9 11 13 15 17 0Tuesday, August 30, 2011
  69. 69. • one massless neutrino Bajc, Nemevsek, G.S. ‘o7 • unification Αi 1 Μ color octet 60 50 40 30 triplet 20 log10 ΜGeV 10 3 5 7 9 11 13 15 17 0Tuesday, August 30, 2011
  70. 70. • one massless neutrino Bajc, Nemevsek, G.S. ‘o7 • unification Αi 1 Μ color octet 60 50 40 30 triplet 20 log10 ΜGeV 10 3 5 7 9 11 13 15 17 0Tuesday, August 30, 2011
  71. 71. • one massless neutrino Bajc, Nemevsek, G.S. ‘o7 • unification Αi 1 Μ color octet 60 50 40 30 triplet 20 log10 ΜGeV 10 3 5 7 9 11 13 15 17 0Tuesday, August 30, 2011
  72. 72. • one massless neutrino Bajc, Nemevsek, G.S. ‘o7 • unification Αi 1 Μ color octet 60 50 40 30 triplet 20 log10 ΜGeV 10 3 5 7 9 11 13 15 17 0Tuesday, August 30, 2011
  73. 73. • one massless neutrino Bajc, Nemevsek, G.S. ‘o7 • unification Αi 1 Μ color octet 60 50 40 30 triplet 20 log10 ΜGeV 10 3 5 7 9 11 13 15 17 0Tuesday, August 30, 2011
  74. 74. • one massless neutrino Bajc, Nemevsek, G.S. ‘o7 • unification Αi 1 Μ color octet proton decay 60 50 40 30 triplet 20 log10 ΜGeV 10 3 5 7 9 11 13 15 17 0Tuesday, August 30, 2011
  75. 75. • one massless neutrino Bajc, Nemevsek, G.S. ‘o7 • unification Αi 1 Μ color octet proton decay 60 50 40 30 triplet 20 log10 ΜGeV 10 3 5 7 9 11 13 15 17 0Tuesday, August 30, 2011
  76. 76. • one massless neutrino Bajc, Nemevsek, G.S. ‘o7 • unification Αi 1 Μ color octet proton decay 60 50 40 30 triplet 20 log10 ΜGeV 10 3 5 7 9 11 13 15 17 0Tuesday, August 30, 2011
  77. 77. • one massless neutrino Bajc, Nemevsek, G.S. ‘o7 • unification Αi 1 Μ color octet proton decay 60 50 40 30 triplet 20 log10 ΜGeV 10 3 5 7 9 11 13 15 17 0Tuesday, August 30, 2011
  78. 78. • one massless neutrino • unification mT vs MGU T @ two loops log10(m3/GeV) 3.5 3.0 2.5 15.6 15.7 15.8 15.9 16.0 log10(Mgut/GeV) Bajc, Nemevsek, G.S. ‘o7Tuesday, August 30, 2011
  79. 79. LHC: same sign leptons l ∆L = 2 YT j T− u ¯ Z j j − W d W+ j T0 YT l Bajc, Nemevsek, GS ’07 Franceschini, Hambye, Strumia ’08 del Aguila, Aguilar-Saavedra ’08 Arhrib, Bajc, Ghosh, Han, Huang, Puljak, GS ’09Tuesday, August 30, 2011
  80. 80. Probing neutrino parameters i Same couplings yT contribute to: • neutrino mass matrix • triplet decays LHC: mT ⇒ 450 (700) GeV @ L = 10 (100)f b−1 Arhrib, Bajc, Ghosh, Han, Huang, Puljak, GS ’09Tuesday, August 30, 2011
  81. 81. eful to invert the seesaw formula (4) following [27, 28] and to parameterize the Yukawags by only one complex parameter.3 We thus have the relations  i√M (U √mν cos z + U √mν sin z) , NH (mν = 0),  i∗ T i2 2 i3 3 1 vyT = (9)  i√MT (Ui1 √mν cos z + Ui2 √mν sin z) , IH (mν = 0), 1 2 3  −i√M (U √mν sin z − U √mν cos z) , NH (mν = Ibarra, Ross ’04  i∗ S i2 2 i3 3 1 0), vyS = √ √ ν √ ν (10) ν  −i MS (Ui1 m sin z − Ui2 m cos z) , IH (m = 0). 1 2 3 z = complexs another solution with the opposite sign of the second terms in (9), (10). The majorage of this parameterization is to allow us to untangle the contributions of yT and yS , one can separately explore the correlations between these Yukawa couplings and theo oscillation parameters, as we will demonstrate next. singlet Yukawa couplings yS are less useful for our consideration since one does not ithe singlet to be produced at the LHC. The Yukawa couplings |yT | are invarianthe operations Tuesday, August 30, 2011
  82. 82. Supersymmetry? • can mimic many of the phenomena • Type III - wino with RP violation WRp = λec + λ qdc + λ uc dc dc + µ H • too many parameters assumptions about sparticle masses • supersymmetric seesaw? subject in itselfTuesday, August 30, 2011
  83. 83. LHC:Tuesday, August 30, 2011
  84. 84. LHC: can probe the origin of neutrino massTuesday, August 30, 2011
  85. 85. LHC: can probe the origin of neutrino mass can resolve the mystery of parity violationTuesday, August 30, 2011
  86. 86. LHC: can probe the origin of neutrino mass can resolve the mystery of parity violation can directly observe lepton number violationTuesday, August 30, 2011
  87. 87. LHC: can probe the origin of neutrino mass can resolve the mystery of parity violation can directly observe lepton number violation can directly see Majorana natureTuesday, August 30, 2011
  88. 88. LHC: can probe the origin of neutrino mass can resolve the mystery of parity violation can directly observe lepton number violation can directly see Majorana nature Last but not least: measure masses and mixings and provide link with low energy experimentsTuesday, August 30, 2011
  89. 89. Thank youTuesday, August 30, 2011
  90. 90. Abstract Abstract A search for narrow resonances at high mass in the dimuon and dielectron channels A search for narrow resonances at high mass in the dimuon and dielectron channels Neutral gauge boson has been performed by the CMS experiment at the CERN LHC, using pp collision CMS-PAS EXO-11-019 has been performed by the CMS experiment at the CERN LHC, using pp collision √ √ data recorded at s = 7 TeV. The event samples correspond to an integrated lumi- data recorded at s = 7 TeV. The event samples correspond to an integrated lumi- Julymodels with ZLR1.1 fb−11.. Heavy dilepton resonances are predicted in theoretical models with − nosity of 1.1 fb nosity of Heavy dilepton resonances are predicted in theoretical extra gauge bosons (Z ) or as Kaluza–Klein graviton excitations (GKK in the Randall- extra gauge bosons (Z ) or as Kaluza–Klein graviton excitations (GKK ))in the Randall- Sundrum model. Upper limits on the inclusive cross section of Z GKK ) → + − Sundrum model. Upper limits on the inclusive cross3section of Z ((GKK ) → + − “ + − are presented. These limits exclude at 95% confidence level relative to Z → + − are presented. These limits exclude at 95% confidence level “ a Z with standard-model-like couplings below 1940 GeV, the superstring-inspired standard-model-like couplings below 1940 GeV, the superstring-inspired Majorana neutrino. The Higgs sector1 consists of [2]: Z below 1620 GeV, and, for values of the coupling parameter k/MPl of 0.05 (0.1), ψ and, for values of the coupling parameter k/MPl of 0.05 (0.1),the SU (2)L,R triplets ∆L and ∆R . Besides giving a Ma- ψ Kaluza–Klein gravitons below 1450 (1780) GeV. gravitons below 1450 (1780) GeV.jorana mass to N , a non-vanishing ∆R leads to the rela-tion between the new neutral and charged gauge bosons √ MZLR 2gR /gL MW R = (gR /gL ) 2 − tan2 θ W . = 1.7(2) for gL = gRFor gR ≈ gL , one gets MZLR ≈ 1.7 MWR . In thiscase, one can infer the lower bound on MZLR from thelower bound on MWR in Fig. 1 and it exceeds the di-rect search result from [15]. For example, in the case ofmN ∼ 500 GeV, the ZLR with a mass below 2.38 TeV isexcluded. Dirac neutrino. In this case, the triplets are tradedfor the usual SM type left and right doublets, as in theTuesday, August 30, 2011
  91. 91. ν ∆0 ν ∆+ f + W ∆++ f W+ f 100.0 f 50.0 99 Cascade Decay 99 10.0M GeV 5.0 99 1.0 Leptonic Decay 0.5 50 Gauge Boson Decay 1010 108 106 104 0.01 1 v GeVTuesday, August 30, 2011
  92. 92. Y B−L = TR + 3 2 2 • embedded in a non-abelian: slows down the running • unification OK for MR 10 10 GeVTuesday, August 30, 2011
  93. 93. Lepton Flavor Violation c µ → ee e ⇒ mN M∆ Cirigliano et al ’04 Tello ’08 (Loop: µ → e γ µ → e conversion in nuclei )Tuesday, August 30, 2011
  94. 94. Lepton Flavor Violation: implications 5.0 5.0 5. absolute bound from LFV 5. absolute bound from LFV 1.0 1. 1.0 1. mN/m∆ mN/m∆ 0.5 0.5 0.5 0.5 0.1 0.1 0.1 0.1 0.05 always allowed by LFV 0.05 0.05 always allowed by LFV 0.05 MWR = 3.5TeV MWR = 3.5TeV 0.01 4 Normal Hierarchy 0.01 4 Inverted Hierarchy 0.01 0.01 10−4 10 0.001 0.001 0.01 0.01 0.10.1 1 1 10−4 10 0.001 0.001 0.01 0.01 0.1 0.1 1 1 lightest neutrino mass in eV lightest neutrino mass in eV Tello, Nemevsek, Nesti, GS, Vissani, PRL’11Tuesday, August 30, 2011
  95. 95. Neutrino at Collider - II F. Nesti Limits on W’ Direct Limits CMS arXiv:1107.4771 July 1.5 TeV w Physics? Current probes: int: Quantum umbers W → tb: dijets @ D0: odel cale [PRL ’96, ’04, ’08, 1101.0806] L= 1.1/fb ollider MWR ≥ 885 GeV w scale WR mits K¯ W → eν: e+ E @ CMS: January [CMS, 1012.5945]Pvs C νββ MWR ≥ 1.35 TeV for very light mνR ∼ GeV (36 pb−1 ) olliderWR -νR L,R (superseding MWR ≥ 1.12 TeV from Tevatron) ect jj mmary Limit on Z → µ+ µ− MZ 1050 GeV [CMS, 1103.0981] (superseding MZ 959 GeV (CDF) [Erler+, 1010.3097]) Recent data. . . CMS PAS EXO-11-024 L= 1.1/fb 2.2 TeV July Tuesday, August 30, 2011
  96. 96. ino at er - II How How right is it? WR right is W ? RNestiysics? LHC is a pp symmetric machine, so it is not possible to use the uantum simple AFB asymmetry of WR , to look for chirality of its interactions.rs One has to use the first decay WR → eN.e WR - Determine the WR direction (from the full event!) - Identify the first lepton. (the more energetic) - Its asymmetry wrt the WR direction gives the ’Right’ chirality.R It is necessary to efficiently distinguish the two leptons. (More difficult for MN = 0.6 ÷ 0.8 MWR [Ferrari ’00])y Also the subsequent decay N → jj may be used. Polarization seems to be visible in a wide range of masses MνR , MWR . Tuesday, August 30, 2011
  97. 97. eful to invert the seesaw formula (4) following [27, 28] and to parameterize the Yukawags by only one complex parameter.3 We thus have the relations  i√M (U √mν cos z + U √mν sin z) , NH (mν = 0),  i∗ T i2 2 i3 3 1 vyT = (9)  i√MT (Ui1 √mν cos z + Ui2 √mν sin z) , IH (mν = 0), 1 2 3  −i√M (U √mν sin z − U √mν cos z) , NH (mν = Ibarra, Ross ’04  i∗ S i2 2 i3 3 1 0), vyS = √ √ ν √ ν (10) ν  −i MS (Ui1 m sin z − Ui2 m cos z) , IH (m = 0). 1 2 3 z = complexs another solution with the opposite sign of the second terms in (9), (10). The majorage of this parameterization is to allow us to untangle the contributions of yT and yS , one can separately explore the correlations between these Yukawa couplings and theo oscillation parameters, as we will demonstrate next. singlet Yukawa couplings yS are less useful for our consideration since one does not ithe singlet to be produced at the LHC. The Yukawa couplings |yT | are invarianthe operations Tuesday, August 30, 2011

×