Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Direct imaging of extrasolar planets (Part II) - Jean-Luc Beuzit

80 views

Published on

Brave new worlds
May 29-June 03, 2016 – Lake Como School of Advanced Studies

Published in: Education
  • Be the first to comment

  • Be the first to like this

Direct imaging of extrasolar planets (Part II) - Jean-Luc Beuzit

  1. 1. Direct imaging of extrasolar planets (Part 2) Jean-Luc Beuzit CNRS/IPAG, Grenoble, France Brave new worlds - Lake Como - May 29 to June 03, 2016
  2. 2. Outline l Direct imaging of extrasolar planets l Motivation and challenges l How to build the perfect imaging instrument ? l SPHERE, a dedicated ground based instrument l Concept, observing modes and strategy l Actual on-sky performance l First science results l Perspective from the ground l Perspective from space l Conclusions
  3. 3. Age, (< 0.1 – 1.0 Gyr) . Young Giant Planets are hotter & brighter Distance, (< 20 – 200pc) . 0.1” – 1.0”: 5 – 50 AU (@50 pc) Mass, (BAFGKM) . GKM dwarfs, fainter, more favorable in terms of contrast . AF stars, could form massive EGPs? Kenyon & Hartman 08 IR Excess, RV trends, very nearby… Targets for Planet Imaging
  4. 4. Shkolnik et al. 12 Targets for Planet Imaging Young stars near the Sun, Ù 1983. TW Hya, isolated T Tauri star (Rucinski & Krautter 1983) Ù 1997. 5 additional members of TWA (Kastner et al. 1997)
  5. 5. Young stars near the Sun, Ù 1983. TW Hya, isolated T Tauri star (Rucinski & Krautter 1983) Ù 1997. 5 additional members of TWA (Kastner et al. 1997) Ù 2012. About 10 new associations, (TWA, β Pic, AB Dor, Tuc/Hor, η Cha, e Cha, Carina, Columba...) Ù 2015. Unveiling low-mass members (< 1.0 Gyr), nearby Moving Groups, Today, 500+ known Young (<100 Myr) & Nearby (<100 pc) stars Ù Extension to Intermediate-old (< 1.0 Gyr), nearbyMovingGroups, (Castor, Herculis-Lyra, Argus, Octantis…. and in the Field) Age & membership diagnostics: isochrone, (Li, Hα), X-ray, kinematics... Zuckerman, Song et al.; Torres, de la Reza et al.; Mamajek et al.; Montes et al. Shkolnik et al. 12; Gagné et al. 14, 15 Targets for Planet Imaging
  6. 6. Direct Imaging Surveys See Chauvin et al. 2015
  7. 7. Discoveries Timeline • Gl229 B (Nakajima et al. 94) • TWA5 B (Lowrance et al. 99) • HR7329 B (Lowrance et al. 00) • GSC8047B (Chauvin et al. 03) • 2m1207 b (Chauvin et al. 04, 05) • DH Tau b (Itoh et al. 05) • CHXR73 b (Luhman et al. 05) • AB Pic b (Chauvin et al. 05) • GQ Lup b (Neuhauser et al. 05) • RXJ1609 b (Lafrenière et al. 08) • HR8799bcd (Marois et al. 08) • Fomalhaut b (Kalas et al. 08) • Beta Pic b (Lagrange et al. 08, 10) • CT Cha b (Schmidt et al. 10) • HD95086 b (Rameau et al. 13, 14) • GJ504 b (Kuzuhara et al. 13) • HR8799 e (Marois et al. 10) • Kappa And b (Carson et al. 13) • 2M0103 b (Delorme et al. 13) First Imaged substellar companion (Nakajima et al. 94) 1994 1998 2002 2006 2010 2014 2018 2022 (not exhaustive: between 7 – 50 imaged exoplanets; http://exoplanet.eu/) IR detectors/coronography • 51 Eri b (Macintosh et al. 15)
  8. 8. Discoveries Timeline • Gl229 B (Nakajima et al. 94) • TWA5 B (Lowrance et al. 99) • HR7329 B (Lowrance et al. 00) • GSC8047B (Chauvin et al. 03) • 2m1207 b (Chauvin et al. 04, 05) • DH Tau b (Itoh et al. 05) • CHXR73 b (Luhman et al. 05) • AB Pic b (Chauvin et al. 05) • GQ Lup b (Neuhauser et al. 05) • RXJ1609 b (Lafrenière et al. 08) • HR8799bcd (Marois et al. 08) • Fomalhaut b (Kalas et al. 08) • Beta Pic b (Lagrange et al. 08, 10) • CT Cha b (Schmidt et al. 10) • HD95086 b (Rameau et al. 13, 14) • GJ504 b (Kuzuhara et al. 13) • HR8799 e (Marois et al. 10) • Kappa And b (Carson et al. 13) • 2M0103 b (Delorme et al. 13) First Planetary mass companion (Chauvin et al. 04, 05) 1994 1998 2002 2006 2010 2014 2018 2022 (not exhaustive: between 7 – 50 imaged exoplanets; http://exoplanet.eu/) IR detectors/coronography + 10m Telescope + AO • 51 Eri b (Macintosh et al. 15)
  9. 9. Discoveries Timeline • Gl229 B (Nakajima et al. 94) • TWA5 B (Lowrance et al. 99) • HR7329 B (Lowrance et al. 00) • GSC8047B (Chauvin et al. 03) • 2m1207 b (Chauvin et al. 04, 05) • DH Tau b (Itoh et al. 05) • CHXR73 b (Luhman et al. 05) • AB Pic b (Chauvin et al. 05) • GQ Lup b (Neuhauser et al. 05) • RXJ1609 b (Lafrenière et al. 08) • HR8799bcd (Marois et al. 08) • Fomalhaut b (Kalas et al. 08) • Beta Pic b (Lagrange et al. 08, 10) • CT Cha b (Schmidt et al. 10) • HD95086 b (Rameau et al. 13, 14) • GJ504 b (Kuzuhara et al. 13) • HR8799 e (Marois et al. 10) • Kappa And b (Carson et al. 13) • 2M0103 b (Delorme et al. 13) low-mass ratio planets at less than 100 AU around A stars Marois+08; Kalas+08; Lagrange+08 1994 1998 2002 2006 2010 2014 2018 2022 (not exhaustive: between 7 – 50 imaged exoplanets; http://exoplanet.eu/) IR detectors/coronography + 10m Telescope + AO + Differential techniques • 51 Eri b (Macintosh et al. 15)
  10. 10. Discoveries Timeline • Gl229 B (Nakajima et al. 94) • TWA5 B (Lowrance et al. 99) • HR7329 B (Lowrance et al. 00) • GSC8047B (Chauvin et al. 03) • 2m1207 b (Chauvin et al. 04, 05) • DH Tau b (Itoh et al. 05) • CHXR73 b (Luhman et al. 05) • AB Pic b (Chauvin et al. 05) • GQ Lup b (Neuhauser et al. 05) • RXJ1609 b (Lafrenière et al. 08) • HR8799bcd (Marois et al. 08) • Fomalhaut b (Kalas et al. 08) • Beta Pic b (Lagrange et al. 08, 10) • CT Cha b (Schmidt et al. 10) • HD95086 b (Rameau et al. 13, 14) • GJ504 b (Kuzuhara et al. 13) • HR8799 e (Marois et al. 10) • Kappa And b (Carson et al. 13) • 2M0103 b (Delorme et al. 13) 1994 1998 2002 2006 2010 2014 2018 2022 (not exhaustive: between 7 – 50 imaged exoplanets; http://exoplanet.eu/) IR detectors/coronography + 10m Telescope + AO + Differential techniques +XAO imagers (GPI/SPHERE) • 51 Eri b (Macintosh et al. 15) First GPI planet, 2 MJup @ 14 AU Macintosh+15
  11. 11. SPHERE/GPI surveys GPIES, GPI Exoplanet Survey • Sample of 600 A-M stars, • Young (<100 Myr, <75 pc) and adolescent (<300 Myr, < 35pc) • 890 hours over 3 years, service mode SHINE, Sphere High-ImagiNg of Exoplanets • Sample of 600-800 A-M stars, • Moving groups members and young field stars (<150 pc and < 1 Gyr), • 2000 hours (200 nights) over 5 years, started in Feb 2015, visitor mode (+ 200 hrs for DISK science + 180 hrs for REFLECTED LIGHT planets) Chauvin, Desidera+SHINE-team 2016, in prep; Vigan+15; Zurlo+16; Bonnefoy+16; Maire+16; Lagrange+16 Garufi+16; Olofsson+16; Perrot+16; Milli+16, subm.; Mesa+16, subm.; deBoer+16, subm.…. SCExAO, building on the SEEDS Legacy… Entering the Era of Systematic searches
  12. 12. SPHERE GTO status May 2014 SPHERE@UT3 •  Science Verifica3on in Dec. 2014 o  Fully operated by ESO team, valida/ng actual opera/ons of various modes o  Public data, covering a variety of science topics •  Open 3me with SPHERE: o  1st Call in Sep. 2014 (from instrument valida/on aÉer 2 commissionning runs only): for observa/ons Apr – Sept 2015 o  2nd call in March 2015: 204 night proposed, covering all SPHERE modes o  Now, 3rd call in Oct. 1st, 2015 •  Guarantee Time Observa3ons: o  260 nights over 5 years, started in Feb 2015 o  Organised as a project in its own, with 4 science programs: ! NIRSUR (200 nights): Survey for Exoplanets of 400-600 stars in NIR ! DISK (20 nights): Suvey for Proto-planetary & Debris Disks Study ! REFPLANETS (18nights): Planets in Visible/Reflected Light ! OSCIENCE (12 nights): Solar systems, Evolved stard, Clusters, X-Gal… Since 1st Light… II- VLT/SPHERE – Descrip/on & Status
  13. 13. SPHERE GTO status May 2014 SPHERE@UT3 Guaranteed Time Observa3ons •  Observing runs in visitor mode •  Current status (Oct 2015) Executed GTO nights: 49 nights (Oct. 2015) -> 83 nights (March 2016) (20% of total GTO) (-> 33% of total GTO) NIRSUR (200n): 37.5n -> 75 nights DISK (20n): 5n -> 11 nights REFPLANETS (18n): 2n -> 3 nights OSCIENCE (12n): 3n -> 4.5 nights •  Down3me sta3s3cs Weather loss (mostly humidity and wind) ~ 25% SPHERE (+ VLT) technical loss < 5% •  Obtained data NIRSUR: 120+ targets in good or very good condi/ons (known and new targets) DISK: 10 targets (known disks) REFPLANETS: 1 target (alpha Cen) OSCIENCE: 10 targets (Ceres, clusters, evolved stars) Since 1st Light… II- VLT/SPHERE – Descrip/on & Status
  14. 14. 1. Protoplanetary Disks o HD142527, MWC758 (…) 2. Debris disks o AU Mic, HD106906 (…) 3. Brown dwarfs o GJ758, 2M0122-2439 (…) 4. Exoplanetary systems o HR8799bcde, β Pic b (…) 5. And more… o Titan, Betelgeuse, R Aquarii, … SPHERE/ZIMPOL Hα imaging R Aquarii, Symbiotic binary (42mas) Schmid et al. 2016, A&A, in prep 400mas Overview of early results
  15. 15. Spirals & Planetary perturbers HD142527 Herbig F6 star, 3-7 Myr d = 145+15pc; Sco OB2-2 member ALMA/NICI/NACO/HiCIAO Huge continuum cavity CO gas in Keplerian rotation Cassasus et al. (2012, 2013) Rameau et al. (2012; Fujiwara et al. (2006) Comm-2, July 2014; ZIMPOL 1 – 1.5hr Telescope time Double-based-difference R+I Color Polarimetry Cassasus et al. (2013) Protoplanetary disk
  16. 16. Spirals & Planetary perturbers HD142527 Herbig F6 star, 3-7 Myr d = 145+15pc; Sco OB2-2 member ALMA/NICI/NACO/HiCIAO Huge continuum cavity CO gas in Keplerian rotation Cassasus et al. (2012, 2013) Rameau et al. (2012; Fujiwara et al. (2006) Comm-2, July 2014; ZIMPOL 1 – 1.5hr Telescope time Double-based-difference R+I Color Polarimetry Cassasus et al. (2013) Protoplanetary disk VLT/NaCo Lp Rameau et al. (2012)
  17. 17. Spirals & Planetary perturbers HD142527 Herbig F6 star, 3-7 Myr d = 145+15pc; Sco OB2-2 member ALMA/NICI/NACO/HiCIAO Huge continuum cavity CO gas in Keplerian rotation Cassasus et al. (2012, 2013) Rameau et al. (2012; Fujiwara et al. (2006) Comm-2, July 2014; ZIMPOL 1 – 1.5hr Telescope time Double-based-difference R+I Color Polarimetry Ménard et al. 2016, A&A, in prep. Protoplanetary disk SPHERE/ZIMPOL R+I Color Polarized intensity 1’’
  18. 18. 0.5’’ Spirals & Planetary perturbers MWC758 Herbig A5 star, 3.5 Myr; d=240 pc 73-AU cavity seen in mm, i~21°, PA~65° (Isella et al. 2010) SPHERE SVT (Dec 5th, 2014) IRDIS –DPI, Y band (1.04µm), ALC_YJH_S corono (185 mas ø) 18min on Target! Spiral structures resolved Contrast and pitch angle explained by a marginally unstable disk with embedded planets? Benisty et al. 2015, A&A, 578, L6 Pohl et al. 2015, MNRAS, 453, 1758 SPHERE/IRDIS-DPI Polarized intensity Protoplanetary disk
  19. 19. HD106906AB Lowe Centaurus Cruxc Group Member Age = 13+-2 Myr; d= 98.2pc Resolved as a tight binary (VLTI/PIONIER) 11+-2Mjup Planetary Mass Companion Located at 650 AU (Bailey et al. 2014) IRDIS DBI_H23, NIRSUR, March 30th, 2015 Discovering new systems! 1’’ HD106906 AB HD106906 b IRDIS DBI_H23 Debris disk
  20. 20. Discovering new systems! 1’’ 1’’ IRDIS DBI_H23 HD106906 HD106906 AB HD106906 b HD106906AB Lowe Centaurus Cruxc Group Member Age = 13+-2 Myr; d= 98.2pc Resolved as a tight binary (VLTI/PIONIER) 11+-2Mjup Planetary Mass Companion Located at 650 AU (Bailey et al. 2014) IRDIS DBI_H23, NIRSUR, March 30th, 2015 New edge-on & narrow ring resolved, r0~66+-1.8AU, i~85.4+-0.1°, PA~104.4+-0.3°, g = 0.6+-0.1 (HR4796, The Moth, HD15115 analogues) Strong brightness asymmetry Lagrange et al., A&A, 16 Debris disk
  21. 21. AU Mic M1Ve star Beta Pictoris Moving Group Member Age = 23+-3 Myr; d= 9.94pc Debris disk resolved by Kalas et al. (2004) Emblematic system observed with HST, Keck, NaCo, NICI… see Liu et al. (2004); Krist et al. (2005); Fitzgerald et al. (2007); Graham et al. (2007); Schneider et al. (2014) IRDIS coronographic sequence in BB-J August 10th, 2014 (Comm-3) Discovering the unexpected! Kalas et al. (2004) Debris disk
  22. 22. ABCDE 13’’ Debris disk
  23. 23. A, B (E, C, D) are moving in time… 13’’ Debris disk
  24. 24. 13’’ Debris disk
  25. 25. Origin? • Gaz-induced structures: wind disk, photophoresis, jets… BUT, low content of gas (Roberge et al. 2005) • Interaction with another body? o Giant collisions: (Kral et al .2014): triggers eccentric rings. Clumps if edge-on but localized in the plane of collision. Timescale of ~ 100 yrs. Patterns on Keplerian orbits. o spiral waves triggered by self-gravity or planets: need gas … but how much? o outflow (sporadic) from a planet : ü planet/disk interaction: circumplanetary disk (Fendt et al. 2003). requires the planet axis to be tilted and again gas to form the disk ü star/planet/disk interaction: plasma from a magnetosphere (Kivelson et al. 2005). Boccaletti et al. 2015, Nature (Oct 8th, 2015 - Press Release) Debris disk Discovering the unexpected!
  26. 26. A super-solar metallicity atmosphere for GJ758 B? GJ758, G9V, 15.8pc metal-rich dwarf, BD companion @46AU (Thalman et al. 2009) IRDIS DBI (Y23, H23, K12) Aug 13-14th, 2014 (Comm-3) 3.2’’ B bkg Brown dwarfs
  27. 27. 3.2’’ Brown dwarfs GJ758, G9V, 15.8pc metal-rich dwarf, BD companion @46AU (Thalman et al. 2009) IRDIS DBI (Y23, H23, K12) Aug 13-14th, 2014 (Comm-3) A super-solar metallicity atmosphere for GJ758 B?
  28. 28. 3.2’’ Brown dwarfs A super-solar metallicity atmosphere for GJ758 B? GJ758, G9V, 15.8pc metal-rich dwarf, BD companion @46AU (Thalman et al. 2009) IRDIS DBI (Y23, H23, K12) Aug. 13-14th, 2014 (Comm-3)
  29. 29. Brown dwarfs A super-solar metallicity atmosphere for GJ758 B? GJ758, G9V, 15.8pc metal-rich dwarf, BD companion @46AU (Thalman et al. 2009) IRDIS DBI (Y23, H23, K12) Aug 13-14th, 2014 (Comm-3) SED Analysis (1-5 mm) Confirmed T8 SpT, but no good empirical Comparison. Atmosphere fit: Teff = 600+-100K, and probably metal-rich (but lack of grids). Vigan et al., A&A, 16
  30. 30. Revisiting HR8799bcde A5V Columba member (30-40 Myr), d = 39.4pc Planets bcde imaged (Marois et al. 2008, 2010) IRDIS (+IFS) observations Comm-2 and -3, SVT (Jul – Dec, 2014) Planets
  31. 31. Revisiting HR8799bcde Combining SPHERE/IFS and IRDIS with GPI/OSIRIS/P1640/LBT Planets b and c: reproduced by SED of peculiar or young, L9-T2 brown-dwarfs dereddened with Corundum grains. Planets d and e: share similar properties with population of young, dusty L6-L8 dwarfs. Atmospheric fits: (BT-SETTL14, Exo-REM4, Cloud AE-60): Teff = 1100 – 1300 K Log(g) = 3.5-4.5 Bad fit for Planet b > clouds? Planets
  32. 32. Revisiting HR8799bcde Orbital fitting: Planets @68, 42, 27 and 14 AU Coplanarity and circular orbits for e, b and c; d non-coplanar and higher eccentricity (<0.3) Dynamical Stability: Unstable or chaotic solutions for d and e masses > 13 Mjup; Possible mean motion resonances : • b – c: 5:2 or 3:1 • c – d: 2:1 • d – e: 3:2 or 2:1 Soummer et al. 11; Esposito et al. 13; Pueyo et al. 15 Zurlo et al. 15, A&A, submitted Planets
  33. 33. 2003.9 2009 - now β Pic b monitoring NaCo + SPHERE data since 2003 Planet@9AU, ecc < 0.2, (i = 88.9±0.7o) Lagrange et al. 10; Chauvin et al. 12 Bonnefoy et al. 14; Waffle Calibration: (2% stability - 2hrs) β Pic b: 0.05 mag & 2mas precision Waffles IRDIS-DBI (H23) β Pic b 500mas Pushing the limit of Astrometric/Photometric monitoring Planets
  34. 34. 2003.9 2009 - now Pushing the limit of Astrometric/Photometric monitoring 2010.0 2010.4 2009.9 2010.9 20110 2011.2 2011.9 2012.2 2012.9 2013.2 2014.9 (SPHERE) 2010.7 β Pic b monitoring NaCo + SPHERE data since 2003 Planet@9AU, ecc < 0.2, (i = 88.9±0.7o) Lagrange et al. 10; Chauvin et al. 12 Bonnefoy et al. 14; Waffle Calibration: (2% stability - 2hrs) β Pic b: 0.05 mag & 2mas precision Waffles IRDIS-DBI (H23) β Pic b 500mas Planets
  35. 35. First GPI new planet Star: 20 My (B Pic moving group) F0 star at 29 pc T=650 K No CPM but P(background) < 10-5 Mass: 2 MJup Discovered by GPI in Dec. 2014 Macintosh et al. (2015) 51 Eridani b
  36. 36. Outline l Direct imaging of extrasolar planets l Motivation and challenges l How to build the perfect imaging instrument ? l SPHERE, a dedicated ground based instrument l Concept, observing modes and strategy l Actual on-sky performance l First science results l Perspective from the ground l Perspective from space l Conclusions
  37. 37. Where to go next ?
  38. 38. Where to go next ?
  39. 39. Where to go next ?
  40. 40. (1) Fine characterization of known EGPs • Goals and typical numbers: SNR 100 to 1000 – Photometric monitoring (1% to 0.1%) à towards exoplanet meteorology ! – Orbital motion follow-up (dynamical masses, orbit perturbations..) – Molecular absorption in NIR: • Exact shape and depth of absorption (composition, dust content) • Absorption at high resolution (several thousands) – Polarisation • Needs: Similar sensitivity and contrast with much higher SNR, stability. Higher spectral resolution. No need for survey capability, rather pointed observations.
  41. 41. Where to go next ?
  42. 42. (2) Detecting fainter planets • Goals: – Either same planet mass around older stars (possibly closer): • Complete the general planet content statistics (star mass, age, separation) • Monitor the complementarities with astrometry (e.g. GAIA) – Sub-Jupiter masses around young (107 – 108 yr) stars: • Can be critical for planets (expectedly lighter) around low-mass stars • Revisit on-going surveys for more complete exoplanet census – Natural learning curve from existing capabilities and path finder for future instruments • Needs: – Can be started NOW on existing 8-m telescopes – From contrast 10-6 to 10-8 – potential use in survey mode: distinguish potential restriction on selected targets (brightest or specific targets for planet multiplicity…)
  43. 43. Where to go next ?
  44. 44. (3) Similar EGPs closer to stars • Goals: – Complete the mass-separation diagram – Depending on stellar type, may complete or overlap with RV techniques – Complementary with interferometric techniques, pupil masking – Pathfinder for future very ambitious project (towards HZ, and/or space purposes: on smaller telescopes, same separation = smaller # λ/D) • Needs: – Separation range below 100 mas: typically 30 – 100 mas, with contrast > 105 – Can be started without survey approach: long exposures on targets that could be selected from other techniques – Benefit from larger telescope diameter (early moderate contrast on ELT ?) – Towards specific high contrast for short separations (RDI, coherence, dedicated coronos, specific attention to low order aberrations) where usual approaches like ADI and SDI loose efficiency. à specific R&D « à la ScexAO » ?
  45. 45. Where to go next ?
  46. 46. (4) Planets around (very) young stars • Goals: – Stars in star-forming regions: a few 106 yr (instead of 107-108) – Probe EGP content, dynamics and interaction with disks shortly after/during formation – Moderate contrast allows to probe sub-Jupiter masses • Needs: – Star forming regions are not close (few 100 pc) à need access to short separations, and high AO sensitivity (strong interest for NIR: very red objects) – Similar needs to (3), while keeping sensitivity ! Benefit from larger telescope diameter (early moderate contrast on E-ELT ?)
  47. 47. Where to go next ?
  48. 48. (5) Towards imaging planets in HZ • Goals: – Characterization for both emission and reflected light – Need both very short separation (<~30 mas) and very high contrast (in in 108 – 1011 range) – No need for survey approach – Possible space-based / ground based approaches (with slightly different separation/contrast trade-offs) – Probe EGP content, dynamics and interaction with disks shortly after/during formation – Moderate contrast allows to probe sub-Jupiter masses • Needs: – Long term approach, ELT, dedicated techniques for shortest separations – Specific interest from the ground on M stars (interest for sensitive NIR sensors)
  49. 49. The E-ELT project The Telescope • 40-m class telescope: largest optical- infrared telescope in the world. (GMT = 25m; TMT = 30m) • Segmented primary mirror. • Adaptive optics assisted telescope. • Diffraction limited performance: 12mas@K-band Wide field of view: 7arcmin. • Mid-latitude site (Amazones/Chile). Fast instrument changes. VLT level of operation efficiency.
  50. 50. The E-ELT project Instrumentation roadmap (exoplanetary science cases) instruments - First Light AO Mode λ (µm) Resolution FoV / Sampling Add. Mode E-CAM – 2025 SCAO, MCAO - IMG - MRS 0.8 – 2.4 BB, NB 3000 53.0” / 3 mas Astrometry 40mas Coronography E-IFU – 2025 SCAO, LTAO - IFU 0.5 – 2.4 4000 10 000 20 000 0.5×1.0” / 4mas 5.0×10.0” / 40mas Coronography E-MIDIR – 2026 SCAO, LTAO - IMG - MRS - IFU 3 – 13 3 - 13 3 - 5 BB, NB 5000 100 000 18” / 12 mas 0.4”×1.5” / 4 mas Coronography Polarimetry E-HIRES - 2028 SCAO - HRS 0.37 – 0.71 0.84 – 2.50 200 000 120 000 0.82” 0.027”×0.5” Polarimetry E-MOS - 2028 MOAO Slits IFUs IFUs 0.37 – 1.4 0.37 – 1.4 0.8 – 2.45 300- 2500 5000 – 30 000 4000 – 10 000 6.8” / 0.1” 420’ / 0.3” 2” / 40mas Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging? E-PCS - 2030 XAO EPOL IFS 0.6 – 0.9 0.95 – 1.65 125 – 20 000 2.0” / 2.3 mas 0.8“ / 1.5 mas Coronography Polarimetry Low Medium High-priority
  51. 51. Smaller IWA Higher contrast 2014, 8-m 2025+, 37-m 2000s, 8-m Bonavita et al., 2012 Expected detection capability of PCS on E-ELT
  52. 52. Outline l Direct imaging of extrasolar planets l Motivation and challenges l How to build the perfect imaging instrument ? l SPHERE, a dedicated ground based instrument l Concept, observing modes and strategy l Actual on-sky performance l First science results l Perspective from the ground l Perspective from space l Conclusions
  53. 53. Space instrumentation
  54. 54. MIRI monochromatic coronagraphs 4 masks in focal plane JWST PSF MIRI pupil ND Lyot diaph. + 23 µm filter 4Q diaph. + 10.65 µm filter 4Q diaph. + 15.5 µm filter 4Q diaph. + 11.4 µm filter
  55. 55. MIRI: starlight suppression Coronagraphic halo not deep enough for exoplanets/disks detection => need calibration of this halo • Reference star(s): problem of stability and pointing onto the coronagraph (5 ~ 7mas pointing reproducibility) • Roll angle (or multiple rolls like HST): +/-5° => efficient at r>2" @ F1140C and r>2.8" @ F1550C (more appropriate to NIRCAM) • Library of Reference images : Reference star observations used to build a library. Use of specific algorithms (KLIP, Soummer et al. 2012; LOCI, Lafreniere et al. 2007). Reprocessing of the data as the library grows.
  56. 56. MIRI contrast
  57. 57. AFTA Carlotti Alexis - IPAG The WFIRST-AFTA coronagraphic imager 15/05/2014 The WFIRST-AFTA coronagraphic imager Towards rocky planets characterization in the 2020’s
  58. 58. AFTA 15/05/2014The WFIRST-AFTA coronagraphic imagerCarlotti Alexis - IPAG The observatory 6 GEO orbit ; 6 years
 Suggested timeline: 
 2 years for high-latitude observations
 1.5 year for microlensing
 1 year for coronagraphy
  59. 59. AFTA 15/05/2014The WFIRST-AFTA coronagraphic imagerCarlotti Alexis - IPAG Technological demonstrator • Terrestrial planet finder (TPF): a too early attempt? • Several concepts already proposed, including: 
 ACCESS (Belikov et al.), PECO (Guyon et al.), THEIA (Kasdin et al.), SPICES (Boccaletti et al.).
 Also in SPICA (Enya et al.), now cancelled. • Important technological barriers, mostly about wavefront control with deformable mirrors in space • Potential 8-16m space telescope in the 2030’s (ATLAST) 7
  60. 60. 15/05/2014The WFIRST-AFTA coronagraphic imagerCarlotti Alexis - IPAG Imaging properties 9 100-250 mas <=> 3 λ/D between 0.4 and 1μm 0.75-1.8 arcsec to fit the adaptive optics system 10-8 raw contrast
 10-9 contrast after post-process 2x better resolution than SPHERE & GPI (5 λ/D) Also, contrast is 2-3 orders below (10-6-10-7) AFTA
  61. 61. AFTA 15/05/2014The WFIRST-AFTA coronagraphic imagerCarlotti Alexis - IPAG Comparisons 10 Important gain in contrast
 w/ respect to any existing instrument. ! Gain is due to better coronagraph & extreme
 adaptive optics system. No gain in angular 
 separation but a better 
 resolution nonetheless.
  62. 62. MIRI contrast 15/05/2014The WFIRST-AFTA coronagraphic imagerCarlotti Alexis - IPAG Imaging properties 9 100-250 mas <=> 3 λ/D between 0.4 and 1μm 0.75-1.8 arcsec to fit the adaptive optics system 10-8 raw contrast
 10-9 contrast after post-process 2x better resolution than SPHERE & GPI (5 λ/D) Also, contrast is 2-3 orders below (10-6-10-7) 15/05/2014The WFIRST-AFTA coronagraphic imagerCarlotti Alexis - IPAG Take home message • A next generation coronagraph with ExAO in space!
 Jupiters, Neptunes and icy planets down to 2Rearth
 around nearby stars. • Decisive new developments in coronagraphy: 
 there are now pre- and post-AFTA coronagraphs. • E-ELT will benefit from AFTA development phase. • We are getting ready for a large space planet finder! 29
  63. 63. Synergies
  64. 64. Synergies TESS, CHEOPS PLATO ESPRESSO SPHERE E-PCS? JWST E-CAM/IFU/MIDIR GAIA
  65. 65. Synergies TESS, CHEOPS PLATO ESPRESSO SPHERE E-PCS? JWST E-CAM/IFU/MIDIR GAIA • Occurence/Architecture/Periods • Charact. of Giant as cool as Jupiter • Physical properties of young Jupiters • Imaging of super-Earths with PCS? • First detection of bio-signatures…
  66. 66. Direct imaging, a powerfultechnique: • To characterize the population of giant planets at long periods (> 5-10 AU) • To characterize exoplanetary atmospheres • To study the planetary architectures (planet – disk; planet-planet) Relies on a well defined set of technological/innovative steps • XAO, coronography and differential techniques A new era with GPI & SPHERE (starting now!) • Fully dedicated instruments to exoplanets searchand characterization (Orbits, Atmospheres, Disks, Architecture…) • Early science shows impressive results • Large and systematic surveys of 600 stars To improve ourunderstanding of Giant Planet formation & evolution Multi-techniques (RV, Transit, HDS, Astrometry, micro-lensing and Imaging), from ground and space, a key for a global understanding of planetary architectures and the formation of life Conclusions

×