Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Decreasing the Uncertainty of Peak Assignments for the Chromatographic Separation of Emerging Drugs

53 views

Published on

Dr. Ira Lurie of The George Washington University's presentation to the Emerging Drugs of Abuse Roundtable, June 2018.

Published in: Science
  • Be the first to comment

  • Be the first to like this

Decreasing the Uncertainty of Peak Assignments for the Chromatographic Separation of Emerging Drugs

  1. 1. Decreasing the Uncertainty of Peak Assignments for the Chromatographic Separation of Emerging Drugs Ira S. Lurie The project pertaining to UHPSFC separations was supported by Awards No. 2014-R2-CX-K009, 2016-DN-BX-0169 and 2017- R2-CX-0028 awarded by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice. The opinions findings and conclusions or recommendations expressed in the lecture are those of the author(s) and do not necessarily reflect those of the Department of Justice. In addition studies pertaining to separations pertaining to GC and UHPLC were supported by Perkin Elmer (GWU proposal# 13-04142).
  2. 2. SWG Drug Methods of Analysis SWG Drug Category A Category B Category C Infrared Spectroscopy Capillary Electrophoresis Color Tests Mass Spectrometry Gas Chromatography Fluorescence Spectroscopy Nuclear Magnetic Resonance Spectroscopy Ion Mobility Spectrometry Immunoassay Raman Spectroscopy Liquid Chromatography Melting Point X-ray Diffractometry Microcrystalline Tests Ultraviolet Spectroscopy Pharmaceutical Identifiers Thin Layer Chromatography Cannabis only: Macroscopic Examination Microscopic Examination
  3. 3. Wohlfarth A, Weinmann W (2010). "Bioanalysis of new designer drugs". Bioanalysis. 2 (5): 965–79. An emerging drug is a structural or functional analog of a controlled substance that has been designed to mimic the pharmacological effects of the original drug, while avoiding classification as illegal and/or detection in standard drug tests
  4. 4. Synthetic Cannabinoids D9-THC JWH-018 HU 210 CP47, 497 AM694UR144
  5. 5. Positional Positional Isomers of JWH-018 JWH-016 JWH-018 2’-napthyl isomer 2’-napthyl- N-(1,1- dimethylpropyl)isomer 2’-napthyl- N-(1,2- dimethylpropyl)isomer 2’-napthyl- N-(2,2- dimethylpropyl)isomer 2’-napthyl- N-(1 ethylpropyl)isomer 2’-napthyl- N-(1 methylbutyl)isomer 2’-napthyl- N-(2 methylbutyl)isomer 2’-napthyl- N-(3 methylbutyl)isomer
  6. 6. CP-47, 497 3-epi-CP47, 497 CP-47, 497 C8 3-epi -CP47, 497 C8 Diastereomers HU 210 HU 211
  7. 7. Synthetic Cathinones Cathinone Buphedrone Methcathinone Methylone Butyloneα-PBP
  8. 8. Mass 191 Positional Isomers Pentedrone 4-Methylethcathinone Isopentedrone 2,3-Dimethylmethcathinone 2-Ethylmethcathinone 2,4-Dimethylmethcathinone 3,4-Dimethylmethcathinone 4-Methylbuphedrone
  9. 9. Fentanyl and Related Compounds https://en.wikipedia.org/wiki/Fentanyl Fentanyl Ortho-Fluorofentanyll Meta-Methylfentanyl Crotonyl fentanyl Despropionyl ortho- Fluorofentanyl
  10. 10. Mass 350 Positional Isomers Meta-MethylfentanylOrtho-Methylfentanyl Para-Methylfentanyl β-Methylfentanyl Butyrylfentanyl Isobutyrylfentanyl
  11. 11. 2,4-Dimethylmethcathinone 3,4-Dimethylmethcathinone2,3-Dimethylmethcathinone EI MS Mass 191 Synthetic Cathinones 4-Methylethcathinone 4-Methylbuphedrone http://swgdrug.org/
  12. 12. EI MS Mass 348 Fentanyl Analogs Cyclopropyl fentanyl Crotonyl fentanyl
  13. 13. EI MS Mass 350 Fentanyl Analogs Β-methylfentanyl Butyryl fentanyl Isobutyryl fentanyl
  14. 14. EI MS Mass 350 Fentanyl Analogs Ortho-methylfentanyl Meta-methylfentanyl Para-methylfentanyl
  15. 15. HU211HU 210 EI MS Synthetic Cannabinoid Diastereomers https://www.caymanchem.com/Home
  16. 16. UHPLC VS GC Controlled Synthetic Cannabinoids 15/23 15/23 14/23 17/23 Resolution ≥1 a) JWH-200 b) AB-Fubinaca c) 5-Fluoro PB-22 d) AM694 e) AM-2201 f) RXS-4 g) PB-22 h) JWH-250 i) JWH-073 j) CP-47 497 k) XLR-11 l) JWH-203 m) JWH-018 n) CP-47, 497 homologue o) JWH-081 p) 3-epi CP47, 497 q) JWH-122 r) HU-210 s) RCS-8 t) JWH-019 u) UR-144 v) 3-epi-CP47, 497 C8 homologue w) AKB-48 1a) Marginean, Rowe, and Lurie Forensic Sci. Int. 249 (2015) 83-91 TOF MS EI MS EIC’s TICElite5-MS
  17. 17. UHPLC VS GC JWH-018 and Positional Isomers 3/10 0/10 3/10 4/10 Resolution ≥1 1) JWH-016 m) JWH-018 2) 2’-napthyl isomer 3) 2’-napthyl-N-(1,1-dimethylpropyl) isomer 4) 2’-napthyl-N-(1,2-dimethylpropyl) isomer 5) 2’-napthyl-N-(2,2-dimethylpropyl) isomer 6) 2’-napthyl-N-(1 ethylpropyl) isomer 7) 2’-napthyl-N-(1 methylbutyl) isomer 8) 2’-napthyl-N-(2 methylbutyl) isomer 19 9 9) 2’-napthyl-N-(3 methylbutyl) isomer) Marginean, Rowe, and Lurie Forensic Sci. Int. 249 (2015) 83-91 TIC EIC
  18. 18. Advantages of UHPSFC Provides for comparable limits of detection and robustness to that of UHPLC with up to > four times the separation speed. Provides for normal phase separations with significantly greener mobile phases (high carbon dioxide content). Excellent for the separation of positional and stereoisomers.
  19. 19. Ultra High Performance Supercritical Fluid Chromatography Density (kg/m3) Viscosity (µPa.s) Diffusivity (mm2/s) Gases 1 10 1-10 Supercritical Fluids 100- 1000 50-100 0.01-0.1 Liquid 1000 500-1000 0.001 Ultra high performance supercritical fluid chromatography (UHPSFC) which uses typically a large percentage of carbon dioxide in the supercritical or subcritical state with an acidic or basic additive and/or organic modifier with sub micron particle or equivalent stationary phases. carbon dioxide phase diagram https://en.wikipedia.org/wiki/Supercritical_fluid
  20. 20. UHPSFC Achiral Columns 3.0 mm x 100 mm http://www.waters.com/waters/en_US/ACQUITY-UPC2-Trefoil- and-Torus-Columns/nav.htm?cid=134696052&locale=en_US
  21. 21. UHPSFC Chiral Columns 3.0 mm x 150 mm Chiral SelectorsChiral polysaccharide coating on silica particle Courtesy Waters
  22. 22. Controlled Synthetic Cannabinoids a) CP47, 497 b) 3-epi CP47, 497 c) 3-epi CP47, 497 C8 d) UR-144 e) CP47, 497 C8 f) XLR11 g) HU-210 h) AKB48 i) AB-Fubinaca j) RCS-4 k) AM694 l) JWH203 m) JWH018 n) JWH 250 o) JWH 073 p) JWH 019 q) JWH 122 r) AM2201 s) RCS-8 t) PB-22 ti) PB-22 u) JWH 200 v) JWH 081 ui) JWH 081 possible breakdown product PDA 215 nm QDA EIC’s CEL1 APBR 2200 PSI T = 55°C 20%-31% isopropanol 10.3 min. flow 1.25 mL/min. resolved 11/22 Breitenbach, Rowe, McCord and Lurie J. Chromatogr. A 1440 (2016) 201-211
  23. 23. UHPSFC JWH-018 and Positional Isomers 1) JWH 016 m) JWH 018 2) 2’-napthyl isomer 3) 2’-napthyl-N-(1,1-dimethylpropyl) isomer 4) 2’-napthyl-N-(1,2-dimethylpropyl) isomer 5) 2’-napthyl-N-(2,2-dimethylpropyl) isomer 6) 2’-napthyl-N-(1 ethylpropyl) isomer 7) 2’-napthyl-N-(1 methylbutyl) isomer 8) 2’-napthyl-N-(2 methylbutyl) isomer 9) 2’-napthyl-N-(3 methylbutyl) isomer CEL1 APBR 2200 PSI T = 55°C 20%-31% isopropanol 10.3 min. flow 1.25 mL/min. Breitenbach, Rowe, McCord and Lurie J. Chromatogr. A 1440 (2016) 201-211
  24. 24. Synthetic Cannabinoids Diastereomers AM1 APBR 2200 PSI T = 45°C 18%-53% isopropanol 5 min. hold 1 min flow 1.25 ml/min. Breitenbach, Rowe, McCord and Lurie J. Chromatogr. A 1440 (2016) 201-211
  25. 25. Synthetic Cannabinoids Enantiomers AM1 APBR 2200 PSI T = 45°C 15%-65% methanol 5 min. hold 1 min flow 1.25 ml/min. Breitenbach, Rowe, McCord and Lurie J. Chromatogr. A 1440 (2016) 201-211
  26. 26. Figures of Merit Synthetic Cannabinoids Solute %RSD RT (concentration µg/mL) GC UHPLC C18 UHPSFC JWH-200 0.11 (30) 0.37 (2) 0.05 (4) AM-2201 0.05 (68) 0.17 (4) 0.06 (4) XLR-11 0.01 (68) 0.10 (2) 0.05 (4) JWH-018 0.03 (68) 0.11 (4) 0.03 (4) CP 47, 497 0.03 (68) 0.09 (4) 0.23 (2)
  27. 27. Figures of Merit Synthetic Cannabinoids Solute Limit of Detection (ng/mL) GC EI (TICa) UHPLC ES+ TOF (bEIC) UHPSFC UV MS ES+ SQ (EIC) JWH-200 9610 1.2 330 6.0 AM-2201 3880 1.3 38 5.0 XLR-11 6410 2.0 76 2.0 JWH-018 1920 9.1 80 4.0 CP 47, 497 5230 9.1 330 33 aTIC (total ion chromatogram) bEIC (extracted ion chromatogram)
  28. 28. PCA Synthetic Cannabinoids Breitenbach, Rowe, McCord and Lurie J. Chromatogr. A 1440 (2016) 201-211
  29. 29. a) alpha-PVP b) alpha-PBP c) MDPV d) Naphyrone e) 4-MePPP f) Pentedrone g) Buphedrone h) 3-Fluoromethcathinone i) 4-Methylethcathinone j) 4-Fluoromethcathinone k) Pentylone l) Methcathinone m) Butylone n) Mephedrone o) Methylone resolved 13/15 GC Controlled Synthetic Cathinones TIC EI MS Carnes, O’Brien, Szewczak, Tremeau-Cayel, Rowe, McCord, and Lurie. J. Sep. Sci. 40 (2017) 3545-3556 Elite5-MS
  30. 30. UHPLC Controlled Synthetic Cathinones a) alpha-PVP b) alpha-PBP c) MDPV d) Naphyrone e) 4-MePPP f) Pentedrone g) Buphedrone h) 3-Fluoromethcathinone i) 4-Methylethcathinone j) 4-Fluoromethcathinone k) Pentylone l) Methcathinone m) Butylone n) Mephedrone o) Methylone resolved 12/15 resolved 5/15 RPC HILIC TOF MS TOF MS EIC’s EIC’s Carnes, O’Brien, Szewczak, Tremeau-Cayel, Rowe, McCord, and Lurie. J. Sep. Sci. 40 (2017) 3545-3556
  31. 31. Synthetic Cathinones Mass191 Positional Isomers f) Pentedrone i) 4-Methylethcathinone 1) Isopentedrone 2) 4-Methylbuphedrone 3) 2-Ethylmethcathinone 4) 2,3-Dimethylmethcathinone 5) 2,4-Dimethylmethcathinone 6) 3,4-Dimethylmethcathinone RPC HILIC resolved 1/8 resolved 5/8 GC resolved 6/8 EIC EIC TIC Carnes, O’Brien, Szewczak, Tremeau-Cayel, Rowe, McCord, and Lurie. J. Sep. Sci. 40 (2017) 3545-3556
  32. 32. Controlled Synthetic Cathinones a) α-PVP b) α-PBP c) MDPV d) Naphyrone e) 4-MePPP f) Pentedrone g) Buphedrone h) 3-Fluoromethcathinone hi) 3-Fluoromethcathinone i) 4-Methylethcathinone j) 4-Fluoromethcathinone ji) 4-Fluoromethcathinone k) Pentylone ki) Pentylone l) Methcathinone m) Butylone n) Mephedrone o) Methylone p) Cathinone PDA 215 nm QDA EIC’s DIOL APBR 2200 PSI T = 40°C 3% methanol, 10 mM ammonium formate flow 1.25 mL/min. resolved 11/15
  33. 33. UHPSFC Mass 191 Positional Isomers f) Pentedrone i) 4-Methylethcathinone 1) Isopentedrone 2) 4-Methylbuphedrone 3) 2-Ethylmethcathinone 4) 2,3-Dimethylmethcathinone 5) 2,4-Dimethylmethcathinone 6) 3,4-Dimethylmethcathinone DIOL APBR 2200 PSI T = 40°C 3% methanol, 10 mM ammonium formate flow 1.25 mL/min. resolved 6/8
  34. 34. Synthetic Cathinones Enantiomers AM1 APBR 2200 PSI T = 45°C 15%-65% methanol 5 min. hold 1 min flow 1.25 ml/min. a) α-PVP b) α-PBP c) MDPV d) Naphyrone e) 4-MePPP f) Pentedrone g) Buphedrone h) 3-Fluoromethcathinone hi) 3-Fluoromethcathinone i) 4- Methylethcathinone j) 4-fluoromethcathinone ji) 4-fluoromethcathinone k) Pentylone ki) Pentylone l) Methcathinone m) Butylone n) Mephedrone o) Methylone p) Cathinone CEL-2 APBR 2200 PSI T = 45°C 9% methanol, 20 mM ammonium hydroxide flow 1.25 mL/min.
  35. 35. Figures of Merit Synthetic Cathinones Solute Limit of Detection (ng/mL) GC EI (TICa) UHPLC ES+ TOF (bEIC) UHPSFC UV MS ES+ SQ (EIC) Buphedrone 5770 81 94 3.6 4-methylethcathinone 1316 129 94 3.6 α-PBP 1290 76 94 1.2 Pentylone 1410 26 190 1.2 aTIC (total ion chromatogram) bEIC (extracted ion chromatogram)
  36. 36. PCA Controlled Synthetic Cathinones
  37. 37. Tandem UHPSFC a) α- PVP b) α-PBP c) MDPV d) Naphyrone e) 4-MePPP f) Pentedrone g) Buphedrone h) 3-Fluoromethcathinone i) 4-Methylethcathinone j) 4-Fluoromethcathinone k) Pentylone l) Methcathinone m) Butylone n) Mephedrone o) Methylone 2PIC 6/15 DIOL_2PIC 15/15 2PIC 6/15 UV 230 nm ABPR 2200 PSI T = 40°C 3% methanol, 10mM ammonium formate in methanol Flow 1.25 mL/min DIOL 10/15 UV 230 nm ABPR 2200 PSI T = 40°C 3% methanol, 10mM ammonium formate in methanol Flow 1.25 mL/min UV 230 nm ABPR 1800 PSI T = 40°C 3% methanol, 10mM ammonium formate in methanol Flow 1.00 mL/min Lurie, Tremeau-Cayel, and Rowe LC GC 35 (2017) 878-883
  38. 38. Tandem UHPSFC Mass 191 Positional Isomers UV 224nm APBR 1800 PSI T = 40°C 3% methanol, 10 mM ammonium formate flow 1.00 mL/min. DIOL_2PIC 8/8 ff) Pentedrone f1) Isopentedrone i) 4-Methylethcathinone i1) 2,3-Dimethylmethcathinone i2) 2,4-Dimethylmethcathinone i3) 3,4-Dimethylmethcathinone i4) 2-Ethylmethcathinoone i5) 4-methylbuphedrone
  39. 39. Multi-Dimensional LC 2𝐷 𝑛 𝑐 ℎ𝑒𝑎𝑟𝑡 𝑐𝑢𝑡 = 1 𝑛 𝑐 1 + 𝑆2 2 𝑛 𝑐 − 1 gain factor 𝑆2 = 1 − 𝑅2 Neuea selectivity factor R² = 0.4732 2.5 3 3.5 4 4.5 5 5.5 6 6.5 1 3 5 7 9 11 RT PFP HILIC RT C8 RPC C8 vs HILIC PFP 10cm 𝑛 𝑐 = ሺ 𝑡 𝑓 − 𝑡𝑖 ) ÷ 𝑤 𝑎𝑣 time end of last peak time end of first peak average peak width at 0.67 base aNeue, O’Gara, and Mendex, J. Chromatogr. A. 1127 (2006) 161-174 Ochoa, Schoenmakers, Mallet and. Lurie, Anal. Methods, 2018, DOI: 10.1039/C8AY00565F
  40. 40. Multi-Dimensional UHPLC Solute 1 𝑛 𝑐 2 𝑛 𝑐 𝑆2 Gain Factor 2𝐷 𝑛 𝑐 𝑎𝑐𝑡𝑢𝑎𝑙 Controlled Synthetic Cannabinoids 69 (C8) 54 (PFPRP) 0.9250 49 3352 JWH-018 Positional Positional Isomers 5 (C8) 20 (PFPRP) 0.4839 10 53 Controlled Synthetic Cathinones 51 (C8) 24 (PFPHILIC) 0.5268 13 662 Pentedrone Positional Positional Isomers 9 (C8) 11 (PFPHILIC) 0.8971 10 88
  41. 41. Synthetic Cathinones (a) Cathinone (d1) 4-Fluoromethcathinone (f) Methylone (i) α-PVP (b) Methcathinone (d2) 3-Fluoromethcathinone (g1) 4-MePPP (j) Pentylone (c1) Mephedrone (e1) Pentedrone (g4) α-PBP (k) 3,4-MDPV (c4) Buphedrone (e2) 4-Methylethcathinone (h) Butylone (l) Naphyrone RPC HILIC Time Ochoa, Schoenmakers, Mallet and. Lurie, Anal. Methods, 2018, DOI: 10.1039/C8AY00565F
  42. 42. JWH-018 Positional Isomers (i1) JWH-018 (i6) 2’-naphthyl-N-(2,2-dimethylpropyl) isomer (i2) JWH-016 (i7) 2’-naphthyl-N-(1-ethylpropyl) isomer (i3) 2’-naphthyl isomer (i8) 2’-naphthyl-N-(1-methylbutyl) isomer (i4) 2’-naphthyl-N-(1,1-dimethylpropyl) isomer (i9) 2’-naphthyl-N-(2-methylbutyl) isomer (i5) 2’-naphthyl-N-(1,2-dimethylpropyl) isomer (i10) 2’-naphthyl-N-(3-methylbutyl) isomer RPC RPC
  43. 43. 3-MePBP 4-MePBP , 13-Nov-2015 + 05:59:54 34 44 54 64 74 84 94 104 114 124 134 144 154 164 174 184 194 204 214 224 234 m/z0 100 % 111215_emily_ mix 8 1623 (7.612) Cm (1619:1625-1724:1773) Scan EI+ 9.93e8126 77 5542 39 5143 6956 6763 76 84 80 10597 9189 94 103 124 110 115 127 160128 145 133 156 188170 167 184 229200 214 210 225 2-MePBP EI MS Mass 231 Positional Isomers alpha-PVP
  44. 44. UV Mass 231 Positional Isomers a) alpha-PVP a1) 2-MePBP a2) 3-Me PBP a3) 4-MePBP a a1 a2 a3 Wavelength nm NormalizedAbsorbance
  45. 45. UV Mass 191 Positional Isomers f) Pentedrone i) 4-Methylethcathinone f1) Isopentedrone i1) 4-Methylbuphedrone i2) 2-Ethylmethcathinone i3) 2,3-Dimethylmethcathinone i4) 2,4-Dimethylmethcathinone i5) 3,4-Dimethylmethcathinone f1 f i i1 i2 i3 i4 i5 Wavelength nm NormalizedAbsorbance Rowe, Marginean, Carnes and. Lurie, Drug Test. Anal. 9 (2017), 1512-1521
  46. 46. Vacuum UV Detector 125-240 nm
  47. 47. VUV Detection Vacuum ultraviolet absorbance (VUV) spectroscopy is a powerful tool for characterizing the vibronic transitions of organic and inorganic compounds in the wavelength region of 125-240 nm# . Unlike UV in the liquid phase which predominantly examines π → π* transitions, VUV examines more the most part enhanced π → π* transitions and σ→σ transitions. Recent advances in vacuum ultraviolet spectroscopy have allowed for the first ever application of this technology for chromatographic systems. VUV detection unlike GC detectors such as FID, provides both quantitative and qualitative information (besides retention time). Allows for the deconvolution of overlapping peaks. # Second generation instrument 120-430 nm
  48. 48. GC-VUV Controlled Synthetic Cathinones a) α-PVP b) α-PBP c) 3,4-MDPV d) Naphyrone e) 4-MePPP f) Pentedrone g) Buphedrone h) 3-Fluoromethcathinone i) 4-Methylmethcathinone j) 4-Fluoromethcathinone k) Pentylone l) Methcathinone m) Butylone n) Mephedrone o) Methylone GC conditions: column- Perkin Elmer Elite-5MS column (30 m, 0.25 mm, 0.25 µm); inlet temperature - 230°C; injection- size 2 uL (1:10 split); oven program- The oven program included 80°C initial temperature for 1.0 minutes, a ramp to 320°C at a rate of 20°C/minute, and a temperature hold for 1.5 minutes. VUV conditions: system temperature- 300°C; makeup gas pressure- 0.5 psi VUV 170-200 nm Skultety, Frycak, Qiu, Smuts, Shear-Laude, Lemr, Mao, Krull, Schug, Szewczak, Vaught, Lurie and Havlicek. Anal. Chim. Acta 971 (2017) 55-67 Absorbance Time min.
  49. 49. VUV Synthetic Cathinone Sub Classes smoothing polynomial order 3 and nR & nL value of 37 Wavelength nm Wavelength nm Wavelength nm Wavelength nm NormalizedAbsorbanceNormalizedAbsorbance NormalizedAbsorbanceNormalizedAbsorbance
  50. 50. VUV Mass 177 Positional Isomers b1 - Buphedrone b2 – Ethcathinone b3 – N,N-Dimethylcathinone b4 – Mephedrone b5 – 2-Methylmethcathinone b6 – 3-Methylmethcathinone Wavelength nm b1 b2 b3 b4 b5 b6 NormalizedAbsorbance
  51. 51. VUV Mass191 Positional Isomers 1 3 5 7 2 6 4 8 1) Isopentedrone 2) 2-Ethylmethcathinone 3) Pentedrone 4) 2,4-Dimethylmethcathinone 5) 4-Methylethcathinone 6) 2,3-Dimethylmethcathinone 7) 4-Methylbuphedrone 8) 3,4-Dimethylmethcathinone Skultety, Frycak, Qiu, Smuts, Shear-Laude, Lemr, Mao, Krull, Schug, Szewczak, Vaught, Lurie and Havlicek. Anal. Chim. Acta 971 (2017) 55-67 NormalizedAbsorbance Wavelength nm
  52. 52. VUV Mass 231 Positional Isomers d2 d8 j1 – α-PVP j2 – 2-MePBP j3 – 3-MePBP j4 – 4-MePBP Wavelength nm j1 j2 j3 j4 NormalizedAbsorbance
  53. 53. VUV Detection is an Excellent Alternative to FID Detection VUV library search
  54. 54. Mass 191 Positional Isomers Peak Deconvolution 1) Isopentedrone 2) 2-Ethylmethcathinone 3) Pentedrone 4) 2,4-Dimethylmethcathinone 5) 4-Methylethcathinone 6) 2,3-dimethylmethcathinone 7) 4-Methylbuphedrone
  55. 55. GC VUV Controlled Synthetic Cannabinoids VUV 1900-240 nm 300 ppm each except for HU-210 and CP series 1000 ppm each Time min. AU
  56. 56. VUV Synthetic Cannabinoids Sub Classes Wavelength nm Wavelength nm Wavelength nm Wavelength nm Wavelength nm Wavelength nm smoothing polynomial order 3 and nR & nL value of 37 NormalizedAbsorbanceNormalizedAbsorbance NormalizedAbsorbanceNormalizedAbsorbance NormalizedAbsorbanceNormalizedAbsorbance HU 210 CP 47, 497 JWH 018 UR-144 AM694 RCS-4
  57. 57. GC-VUV JWH018 Positional Isomers a) JWH 016 b) 2’-napthyl-N-(1 ethylpropyl) isomer c) 2’-napthyl-N-(1 methylbutyl) isomer d) 2’-napthyl-N-(1,2-dimethylpropyl) isomer e) 2’-napthyl-N-(2,2-dimethylpropyl) isomer f) JWH 018 g) 2’-napthyl-N-(1,1-dimethylpropyl) isomer h) 2’-napthyl-N-(2 methylbutyl) isomer i) 2’-napthyl-N-(3 methylbutyl) isomer j) 2’-napthyl isomer GC conditions: column- Perkin Elmer Elite-5MS column (30 m, 0.25 mm, 0.25 µm); inlet temperature - 250°C; injection size 1 uL splitless; oven program- The oven program included 100°C initial temperature for 2.5 minutes, a ramp to 320°C at a rate of 25°C/minute, and a temperature hold for 16.7 minutes. VUV conditions: system temperature- 300°C; makeup gas pressure- 0.5 psi AU Time min.
  58. 58. JWH-018 Positional Isomers a) JWH 016 b) 2’-napthyl-N-(1 ethylpropyl) isomer c) 2’-napthyl-N-(1 methylbutyl) isomer d) 2’-napthyl-N-(1,2-dimethylpropyl) isomer e) 2’-napthyl-N-(2,2-dimethylpropyl) isomer f) JWH 018 g) 2’-napthyl-N-(1,1-dimethylpropyl) isomer h) 2’-napthyl-N-(2 methylbutyl) isomer i) 2’-napthyl-N-(3 methylbutyl) isomer j) 2’-napthyl isomer NormalizedAbsorbance Wavelength nm
  59. 59. VUV JWH018 Positional Isomers NormalizedAbsorbance Wavelength nm
  60. 60. VUV Diastereomers Epi-CP 47, 497 CP 47, 497 Wavelength nm NormalizedAbsorbance
  61. 61. Linearity Synthetic Cathinones 0.0000 0.5000 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000 4.0000 0 1000 2000 3000 MeanAreaRatioComponent/Internal Standard Concentration (ppm) Buphedrone Solute Linearity Range (µg/mL)a R2 LOD (µg/mL) Buphedrone 16-2000 0.9998 4 Pentylone 62-2000 0.9992 14 2-MePPP 31-2000 0.9992 8 3,4-MDPV 62-2000 0.9998 15 a internal standard ethcathinone at 300 ppm
  62. 62. Conclusion Based on the relatively high resolving power for synthetic cannabinoids and synthetic cathinones and orthogonality to GC and UHPLCLC, UHPSFC belongs in the arsenal of chromatographic methods for forensic analysis. VUV detection for GC, as a complementary technique to MS detection, is particularly useful for differentiating positional isomers, de-convoluting co-eluting peaks and for quantitative analysis. VUV detection is useful to distinguish between different drug classes and subclasses VUV and UV detection should at least be included as a category B test for SWG Drug
  63. 63. Acknowledgements We are grateful for Waters for the loan of the UHPSFC instrumentation. We appreciate the loan of the gas chromatograph from PerkinElmer.
  64. 64. Collaborators Claude Mallet Peter Schoenmakers Walter Rowe, Bruce McCord, Stephanie Breitenbach, Ioan Marginean Lauriane Cayel, Angelica Szewczak, Mathew Levitas, Cory Vaught, Sarah Streit Cecilia Ochoa, Sydney Buchalter
  65. 65. Questions? Contact Information: Ira S. Lurie Ph.D. Research Professor The George Washington University Department of Forensic Sciences (202) 994-3791 islurie@gwu.edu

×