The effect of deficit irrigation on fruit quality in wine grape production - Simone D. Castellarin, University of British Columbia

BC Agricultural Climate Adaptation Research Network
BC Agricultural Climate Adaptation Research NetworkBC Agricultural Climate Adaptation Research Network
The effect of deficit irrigation on fruit quality in wine
grape production
Simone Diego CASTELLARIN
Wine Research Centre, University of British Columbia, Vancouver
BC Agricultural Climate Adaptation Research, Provincial Workshop
December 2-3, 2019, Kelowna, BC, Canada
Lanzarote, Spain
Kelowna, BC, Canada
→ reduces growth,
→ limits transpiration and photosynthesis,
→ increases ABA levels in the leaf and the berry,
→ reduces fruit growth and yield (particularly if applied before veraison),
→ modulates berry metabolism and quality.
Effects of water deficit on vine and grape physiology
Deficit irrigation (DI):
To apply sub-optimal volumes of water to vines in order to modulate growth and improve fruit quality
without severe reductions of yield.
It has to be managed carefully (e.g., models for evapotranspiration, soil sensors, pressure chambers)!
Treatment
Color
Density
Total
anthocyanin
Total
phenols Yield
(A420+A520) (mg l-1
) (mg l-1
) (kg vine-1
)
1984 Early Deficit 9.79 167 1630 4.8
1984 Late Deficit 9.02 136 1470 5.2
1984 Continual 8.51 132 1310 5.7
1985 Early Deficit 8.24 318 1930 4.6
1985 Late Deficit 5.75 281 1520 6.8
1985 Continual 5.50 232 1350 9.2
Matthews et al. 1987, 1988, 1989, 1990
[or size]
Deficit irrigation (DI) is good for red wine (Cabernet Franc)
Supplemental Table 1 (Continue). Effect of water management and shoot trimming on ‘Merlot’ wine sensory attributes in 2011 and 2012 vin
were analysed four months after alcoholic fermentation in both years.
Colour attributes
Intensity Hue
2011 2012 2011 2012
Water management
(WM)
*** *** * ***
Irrigated (I) 6.0 4.2 5.0 6.6
Deficit (D) 7.8 7.3 4.2 4.1
Shoot trimming (ST) ns * ns ns
High canopy (HC) 6.8 5.9 4.8 5.0
Short canopy (SC) 7.0 5.5 4.4 5.6
Judge (J) ns ns * *
WM x ST ** ** * **
J x WM ns ns * *
J x ST ns ns ns ns
Within a column, *, **, ***, ns: significant at P < 0.05, 0.01, 0.001, or not significant, respectively from a mixed-model ANOVA (n = 12 judges (random) x four w
x four reps/wine, in both years).
Table S1. Effect of water management and shoot trimming on Merlot wine sensory attributes in 2011 and 2012 vintages. Wines were ana
alcoholic fermentation in both years.
Aroma attributes Retronasal attrib
Intensity Red fruit Jam Herbaceous Spicy Intensity Persistence F
2011 2012 2011 2012 2011 2012 2011 2012 2011 2012 2011 2012 2011 2012 2011
Water management
(WM)
** ** ns ** *** * ns ns ns ns ns ns ns * ns
Irrigated (I) 5.7 4.5 4.7 4.8 2.9 4.7 3.1 3.5 2.6 3.8 4.8 4.3 4.8 4.1 3.6
Deficit (DI) 6.3 5.7 4.8 5.9 3.6 5.9 3.1 4.2 2.8 4.5 5.0 5.0 4.8 5.1 3.9
Shoot trimming (ST) ns ns * ns ns ns ns ns ns ns ns ns ns ns ns
High canopy (HC) 6.0 5.3 5.1 5.4 3.2 5.3 3.2 3.9 2.8 4.3 4.8 4.7 4.8 4.6 3.9
DI affects wine color and aroma in red wine (Merlot)
Herrera et al (2015) Australian J. of Grape and Wine Research 21:254
Irrigated (I), 80-100ETc, Ψstem  - 0.8MPa
Deficit (D), Ψstem  - 1.4MPa
DI improves berry quality by reducing berry size (yes, but...)
Gambetta, Castellarin, Matthews 2008
DAA
0 20 30 40 50 60 70 80 90 100 110 120
-terpineol(µgkg
-1
) 0
2
4
6
8
10
12
14
16
C
D
*
DI applied to white grapes can improve terpenes (key aromatics)
C
D
Savoi et al (2016) BMC Plant Biology 16:67
Free Terpenes Bound Terpenes
DI increases terpenes in wines
linalool
linalool_oxide_A
linalool_oxide_B
citronellol
alpha-terpineol
diendiol I
(µgL
-1
)
0
10
20
30
40
500
1000
1500
C
D
*
*
*
linalool
linalool_oxide_A
linalool_oxide_B
cis-8-O
H
-linalool
trans-8-O
H
-linalool
geraniol
7-O
H
-geraniol
nerol
(µgL-1)
0
25
50
75
100
200
400
600
C
D
*
*
*
*
*
More intense retronasal aroma
CN
ED
PD
DAA
0 30 40 50 60 70 80 90 100 110
Relativeexpression
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
CN
ED
PD
VviPNLinNer1 a
a
b
a bb
Viognier (Vitis vinifera L.) Vineyard
Early Deficit
Prolonged Deficit
Full Irrigation
Wang et al. 2019, Food Research International
DI increases terpenes in Viognier
7-year old field-grown Vitis vinifera
cv. Gewürztraminer
Clone 47 scion
3309 rootstock (V.riparia x V.
rupestris)
N-S oriented rows
~ 3,333 vines hec-1
49°14'N, 119°33'W, 420 m
a.s.l.
2016, 2017, 2018
Oliver, BC
1,600 GDD; 190 mm rain (Apr-Oct)
7-year old Gewürztraminer (cl. 47)
3309 rootstock
N-S oriented rows
2.5 m x 1.2 m vine spacing
3,333 vines hectare-1
Randomized block design
10-15 vines per plot
Effect of DI on Aroma in Gewürztraminer Grapes
Four irrigation treatments:
• Control treatment (CN)
• Early deficit (ED) from 30 DAA to veraison
• Late deficit (LD) from veraison to harvest
• Prolonged deficit (PD) from 30 DAA to harvest
-0.8 MPa
-0.8 MPa
-0.8 MPa
-1.3 MPa
-1.3 MPa
-1.3 MPa
Leaf Water Potential (LWP)
DI treatments
DAA 19 DAA 50 DAA 60 DAA 83-105 DAA 105-119
E
L
10 mm10 mm 10 mm 10 mm 10 mm
a b c
-2.00
-1.60
-1.20
-0.80
-0.40
0.00
ΨLeaf(MPa)
0
80
160
240
320
400
Days after anthesis
Irrigationapplied(L/vine)
d e f
Treatments
CN
ED
LD
PD
Treatments
CN
ED
LD
PD
* ******* *** ** ** ** *** * *** * ** *
Irrigation volumes (%):
CN 100%
ED 70%
LD 62%
PD 50%
2016 2017 2018
LD did not affect vine yield
Berries per
Cluster
Berry
Weight (g)
Clusters per
Vine
Cluster
Weight (g)
Yield
(t/ha)
DI
Treatment
0.0745 9.03 · 10-10
n.s. 6.80 · 10-6
2.35 · 10-6
Mean SE Mean SE Mean SE Mean SE Mean SE
CN 105 5 1.48 0.04 25 2 154.0 7 a 12.40 0.70 a
ED 92 4 1.21 0.05 24 1 110.8 5 b 8.82 0.53 b
LD 97 3 1.41 0.04 26 1 136.8 6 ab 11.68 0.75 a
PD 103 6 1.19 0.05 23 1 120.9 6 b 9.36 0.59 b
Year 3.03 · 10-5
2.61 · 10-16
7.54 · 10-6
3.39 · 10-5
3.64 · 10-7
2016 86 2 b 1.38 0.03 21 1 c 118.2 5 b 8.39 0.37 b
2017 108 4 a 1.15 0.05 28 1 a 123.9 6 b 11.43 0.68 a
2018 104 4 a 1.44 0.04 24 1 b 149.8 7 a 11.89 0.55 a
DI x Year
Interaction
n.s. 0.0364 n.s. n.s. n.s.
1
DI increased free terpenes (e.g., geraniol, citronellol)
Free Volatile Terpenes Glycoside Bound Terpenes
[Total]
(ng/g berry FW)
Total per Berry
(ng)
[Total]
(ng/g berry FW)
Total per Berry
(ng)
DI Treatment 0.0654 0.0251 n.s. n.s.
Mean SE Mean SE Mean SE Mean SE
CN 177.0 26.7 245.0 45.8 ab 5144.9 517.8 7041.8 658.8
ED 179.1 23.1 216.5 30.1 b 6433.3 799.1 7327.8 918.7
LD 223.2 22.9 288.4 39.4 a 6264.9 824.2 7983.9 941.8
PD 203.2 28.9 243.1 39.9 ab 7250.0 828.6 7706.8 809.5
Year 1.84 · 10-10
1.21 · 10-12
1.33 · 10-4
3.80 · 10-4
2016 181.1 13.8 b 214.5 16.0 b 8336.4 623.3 a 9853.9 690.8 a
2017 118.2 9.5 c 128.8 11.3 c 5801.3 679.5 b 6152.1 667.2 b
2018 287.5 15.8 a 401.5 23.2 a 4682.1 211.9 b 6539.3 320.3 b
DI x Year
Interaction
n.s. n.s. n.s. n.s.
- DI reduces berry size and increases the concentration of skin compounds in wine
- DI directly promotes the synthesis of anthocyanins (red pigments)
- DI can increase the concentration of aroma in grapes and in wines
- Severe deficits reduce berry size and yield, but moderate deficits can increase quality
without limitations on yield (good for whites)
- DI (LD) allow to save irrigation water (38%)
- Varietal and seasonal effects as well as wine outputs deserve further investigation
(particularly for white grape varieties)
Conclusion
Summary
Acknowledgements
Yevgen Kovalenko
Lab: Ricco Tindjau, Marie Nosten, Lina Madilao
Industry: Kate Durisek, Steve McDonald, Mark Antonello, Kirk Seggie, Scott Carlson, Ruiping Cheng, Michael Watson, Troy Osbrone
Osoyoos, BC, Canada
Nk'Mip Desert (shrub-steppe)
Questions?
Hannah et al (2013) PNAS, 110:6907
Wine grape production & climate change
TSS(Brix)
0
6
12
18
24
30
DAA
0.00
4.00
8.00
12.00
16.00
20.00
Photosynthesis(µmolCO2m2/s)
2016 2017 2018
ba c
ed f
Treatments
CN
ED
LD
PD
Treatments
CN
ED
LD
PD
* ** *
* * *
**
* * *
*
* * * *
*
*
*
*
*
DI reduces photosynthesis but had a limited
effect on sugar levels
winefruit
Grape Composition and Wine Quality
SKIN
PULP
SEED
• TERPENES
• NORISOPRENOIDS
• METHOXYPYRAZINES
• ANTHOCYANINS
• FLAVAN-3-OLS
• PROANTHOCYANIDINS
• FLAVONOLS
• SUGARS
• ORGANIC ACIDS
• FLAVAN-3-OLS
• PHENOLIC ACIDS
• FLAVAN-3-OLS
• PROANTHOCYANIDINS
Major Grape Metabolites
1 of 22

More Related Content

Featured(20)

ChatGPT webinar slidesChatGPT webinar slides
ChatGPT webinar slides
Alireza Esmikhani30.2K views
More than Just Lines on a Map: Best Practices for U.S Bike RoutesMore than Just Lines on a Map: Best Practices for U.S Bike Routes
More than Just Lines on a Map: Best Practices for U.S Bike Routes
Project for Public Spaces & National Center for Biking and Walking6.9K views
Barbie - Brand Strategy PresentationBarbie - Brand Strategy Presentation
Barbie - Brand Strategy Presentation
Erica Santiago25K views
9 Tips for a Work-free Vacation9 Tips for a Work-free Vacation
9 Tips for a Work-free Vacation
Weekdone.com7.1K views
I Rock Therefore I Am. 20 Legendary Quotes from PrinceI Rock Therefore I Am. 20 Legendary Quotes from Prince
I Rock Therefore I Am. 20 Legendary Quotes from Prince
Empowered Presentations142.8K views
How to Map Your FutureHow to Map Your Future
How to Map Your Future
SlideShop.com275.1K views
Read with Pride | LGBTQ+ ReadsRead with Pride | LGBTQ+ Reads
Read with Pride | LGBTQ+ Reads
Kayla Martin-Gant1.1K views
The Student's Guide to LinkedInThe Student's Guide to LinkedIn
The Student's Guide to LinkedIn
LinkedIn87.8K views

The effect of deficit irrigation on fruit quality in wine grape production - Simone D. Castellarin, University of British Columbia

  • 1. The effect of deficit irrigation on fruit quality in wine grape production Simone Diego CASTELLARIN Wine Research Centre, University of British Columbia, Vancouver BC Agricultural Climate Adaptation Research, Provincial Workshop December 2-3, 2019, Kelowna, BC, Canada
  • 4. → reduces growth, → limits transpiration and photosynthesis, → increases ABA levels in the leaf and the berry, → reduces fruit growth and yield (particularly if applied before veraison), → modulates berry metabolism and quality. Effects of water deficit on vine and grape physiology Deficit irrigation (DI): To apply sub-optimal volumes of water to vines in order to modulate growth and improve fruit quality without severe reductions of yield. It has to be managed carefully (e.g., models for evapotranspiration, soil sensors, pressure chambers)!
  • 5. Treatment Color Density Total anthocyanin Total phenols Yield (A420+A520) (mg l-1 ) (mg l-1 ) (kg vine-1 ) 1984 Early Deficit 9.79 167 1630 4.8 1984 Late Deficit 9.02 136 1470 5.2 1984 Continual 8.51 132 1310 5.7 1985 Early Deficit 8.24 318 1930 4.6 1985 Late Deficit 5.75 281 1520 6.8 1985 Continual 5.50 232 1350 9.2 Matthews et al. 1987, 1988, 1989, 1990 [or size] Deficit irrigation (DI) is good for red wine (Cabernet Franc)
  • 6. Supplemental Table 1 (Continue). Effect of water management and shoot trimming on ‘Merlot’ wine sensory attributes in 2011 and 2012 vin were analysed four months after alcoholic fermentation in both years. Colour attributes Intensity Hue 2011 2012 2011 2012 Water management (WM) *** *** * *** Irrigated (I) 6.0 4.2 5.0 6.6 Deficit (D) 7.8 7.3 4.2 4.1 Shoot trimming (ST) ns * ns ns High canopy (HC) 6.8 5.9 4.8 5.0 Short canopy (SC) 7.0 5.5 4.4 5.6 Judge (J) ns ns * * WM x ST ** ** * ** J x WM ns ns * * J x ST ns ns ns ns Within a column, *, **, ***, ns: significant at P < 0.05, 0.01, 0.001, or not significant, respectively from a mixed-model ANOVA (n = 12 judges (random) x four w x four reps/wine, in both years). Table S1. Effect of water management and shoot trimming on Merlot wine sensory attributes in 2011 and 2012 vintages. Wines were ana alcoholic fermentation in both years. Aroma attributes Retronasal attrib Intensity Red fruit Jam Herbaceous Spicy Intensity Persistence F 2011 2012 2011 2012 2011 2012 2011 2012 2011 2012 2011 2012 2011 2012 2011 Water management (WM) ** ** ns ** *** * ns ns ns ns ns ns ns * ns Irrigated (I) 5.7 4.5 4.7 4.8 2.9 4.7 3.1 3.5 2.6 3.8 4.8 4.3 4.8 4.1 3.6 Deficit (DI) 6.3 5.7 4.8 5.9 3.6 5.9 3.1 4.2 2.8 4.5 5.0 5.0 4.8 5.1 3.9 Shoot trimming (ST) ns ns * ns ns ns ns ns ns ns ns ns ns ns ns High canopy (HC) 6.0 5.3 5.1 5.4 3.2 5.3 3.2 3.9 2.8 4.3 4.8 4.7 4.8 4.6 3.9 DI affects wine color and aroma in red wine (Merlot) Herrera et al (2015) Australian J. of Grape and Wine Research 21:254 Irrigated (I), 80-100ETc, Ψstem  - 0.8MPa Deficit (D), Ψstem  - 1.4MPa
  • 7. DI improves berry quality by reducing berry size (yes, but...) Gambetta, Castellarin, Matthews 2008
  • 8. DAA 0 20 30 40 50 60 70 80 90 100 110 120 -terpineol(µgkg -1 ) 0 2 4 6 8 10 12 14 16 C D * DI applied to white grapes can improve terpenes (key aromatics) C D Savoi et al (2016) BMC Plant Biology 16:67
  • 9. Free Terpenes Bound Terpenes DI increases terpenes in wines linalool linalool_oxide_A linalool_oxide_B citronellol alpha-terpineol diendiol I (µgL -1 ) 0 10 20 30 40 500 1000 1500 C D * * * linalool linalool_oxide_A linalool_oxide_B cis-8-O H -linalool trans-8-O H -linalool geraniol 7-O H -geraniol nerol (µgL-1) 0 25 50 75 100 200 400 600 C D * * * * * More intense retronasal aroma
  • 10. CN ED PD DAA 0 30 40 50 60 70 80 90 100 110 Relativeexpression 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 CN ED PD VviPNLinNer1 a a b a bb Viognier (Vitis vinifera L.) Vineyard Early Deficit Prolonged Deficit Full Irrigation Wang et al. 2019, Food Research International DI increases terpenes in Viognier
  • 11. 7-year old field-grown Vitis vinifera cv. Gewürztraminer Clone 47 scion 3309 rootstock (V.riparia x V. rupestris) N-S oriented rows ~ 3,333 vines hec-1 49°14'N, 119°33'W, 420 m a.s.l. 2016, 2017, 2018 Oliver, BC 1,600 GDD; 190 mm rain (Apr-Oct) 7-year old Gewürztraminer (cl. 47) 3309 rootstock N-S oriented rows 2.5 m x 1.2 m vine spacing 3,333 vines hectare-1 Randomized block design 10-15 vines per plot Effect of DI on Aroma in Gewürztraminer Grapes
  • 12. Four irrigation treatments: • Control treatment (CN) • Early deficit (ED) from 30 DAA to veraison • Late deficit (LD) from veraison to harvest • Prolonged deficit (PD) from 30 DAA to harvest -0.8 MPa -0.8 MPa -0.8 MPa -1.3 MPa -1.3 MPa -1.3 MPa Leaf Water Potential (LWP) DI treatments DAA 19 DAA 50 DAA 60 DAA 83-105 DAA 105-119 E L 10 mm10 mm 10 mm 10 mm 10 mm
  • 13. a b c -2.00 -1.60 -1.20 -0.80 -0.40 0.00 ΨLeaf(MPa) 0 80 160 240 320 400 Days after anthesis Irrigationapplied(L/vine) d e f Treatments CN ED LD PD Treatments CN ED LD PD * ******* *** ** ** ** *** * *** * ** * Irrigation volumes (%): CN 100% ED 70% LD 62% PD 50% 2016 2017 2018
  • 14. LD did not affect vine yield Berries per Cluster Berry Weight (g) Clusters per Vine Cluster Weight (g) Yield (t/ha) DI Treatment 0.0745 9.03 · 10-10 n.s. 6.80 · 10-6 2.35 · 10-6 Mean SE Mean SE Mean SE Mean SE Mean SE CN 105 5 1.48 0.04 25 2 154.0 7 a 12.40 0.70 a ED 92 4 1.21 0.05 24 1 110.8 5 b 8.82 0.53 b LD 97 3 1.41 0.04 26 1 136.8 6 ab 11.68 0.75 a PD 103 6 1.19 0.05 23 1 120.9 6 b 9.36 0.59 b Year 3.03 · 10-5 2.61 · 10-16 7.54 · 10-6 3.39 · 10-5 3.64 · 10-7 2016 86 2 b 1.38 0.03 21 1 c 118.2 5 b 8.39 0.37 b 2017 108 4 a 1.15 0.05 28 1 a 123.9 6 b 11.43 0.68 a 2018 104 4 a 1.44 0.04 24 1 b 149.8 7 a 11.89 0.55 a DI x Year Interaction n.s. 0.0364 n.s. n.s. n.s. 1
  • 15. DI increased free terpenes (e.g., geraniol, citronellol) Free Volatile Terpenes Glycoside Bound Terpenes [Total] (ng/g berry FW) Total per Berry (ng) [Total] (ng/g berry FW) Total per Berry (ng) DI Treatment 0.0654 0.0251 n.s. n.s. Mean SE Mean SE Mean SE Mean SE CN 177.0 26.7 245.0 45.8 ab 5144.9 517.8 7041.8 658.8 ED 179.1 23.1 216.5 30.1 b 6433.3 799.1 7327.8 918.7 LD 223.2 22.9 288.4 39.4 a 6264.9 824.2 7983.9 941.8 PD 203.2 28.9 243.1 39.9 ab 7250.0 828.6 7706.8 809.5 Year 1.84 · 10-10 1.21 · 10-12 1.33 · 10-4 3.80 · 10-4 2016 181.1 13.8 b 214.5 16.0 b 8336.4 623.3 a 9853.9 690.8 a 2017 118.2 9.5 c 128.8 11.3 c 5801.3 679.5 b 6152.1 667.2 b 2018 287.5 15.8 a 401.5 23.2 a 4682.1 211.9 b 6539.3 320.3 b DI x Year Interaction n.s. n.s. n.s. n.s.
  • 16. - DI reduces berry size and increases the concentration of skin compounds in wine - DI directly promotes the synthesis of anthocyanins (red pigments) - DI can increase the concentration of aroma in grapes and in wines - Severe deficits reduce berry size and yield, but moderate deficits can increase quality without limitations on yield (good for whites) - DI (LD) allow to save irrigation water (38%) - Varietal and seasonal effects as well as wine outputs deserve further investigation (particularly for white grape varieties) Conclusion Summary
  • 17. Acknowledgements Yevgen Kovalenko Lab: Ricco Tindjau, Marie Nosten, Lina Madilao Industry: Kate Durisek, Steve McDonald, Mark Antonello, Kirk Seggie, Scott Carlson, Ruiping Cheng, Michael Watson, Troy Osbrone
  • 18. Osoyoos, BC, Canada Nk'Mip Desert (shrub-steppe) Questions?
  • 19. Hannah et al (2013) PNAS, 110:6907 Wine grape production & climate change
  • 20. TSS(Brix) 0 6 12 18 24 30 DAA 0.00 4.00 8.00 12.00 16.00 20.00 Photosynthesis(µmolCO2m2/s) 2016 2017 2018 ba c ed f Treatments CN ED LD PD Treatments CN ED LD PD * ** * * * * ** * * * * * * * * * * * * * DI reduces photosynthesis but had a limited effect on sugar levels
  • 22. SKIN PULP SEED • TERPENES • NORISOPRENOIDS • METHOXYPYRAZINES • ANTHOCYANINS • FLAVAN-3-OLS • PROANTHOCYANIDINS • FLAVONOLS • SUGARS • ORGANIC ACIDS • FLAVAN-3-OLS • PHENOLIC ACIDS • FLAVAN-3-OLS • PROANTHOCYANIDINS Major Grape Metabolites