Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

The effect of deficit irrigation on fruit quality in wine grape production - Simone D. Castellarin, University of British Columbia

Water availability is arguably one of the major factors limiting canopy growth and grape production in vineyards. Climate change is forecasted to make precipitation more erratic and increase temperatures in many wine regions, making drought events more frequent in vineyards. In dry wine regions, growers often apply sub-optimal irrigation levels, known as deficit irrigation strategies to limit the canopy growth and improve grape and wine quality. In red grape varieties, deficit irrigation improves the accumulation of phenolics in the grapes and the quality of wines. Recent studies have indicated that deficit irrigation strategies could also affect the quality of white grapes and wines. Indeed, water deficit induces the accumulation of grape terpenes that characterize the aroma of white wines such as Viognier, Riesling, Gewürztraminer, and Muscats. Our study in the Okanagan Valley has shown that deficit irrigation strategies can be used as a strategy to save irrigation water and improve wine aroma in white grape varieties.

  • Be the first to comment

  • Be the first to like this

The effect of deficit irrigation on fruit quality in wine grape production - Simone D. Castellarin, University of British Columbia

  1. 1. The effect of deficit irrigation on fruit quality in wine grape production Simone Diego CASTELLARIN Wine Research Centre, University of British Columbia, Vancouver BC Agricultural Climate Adaptation Research, Provincial Workshop December 2-3, 2019, Kelowna, BC, Canada
  2. 2. Lanzarote, Spain
  3. 3. Kelowna, BC, Canada
  4. 4. → reduces growth, → limits transpiration and photosynthesis, → increases ABA levels in the leaf and the berry, → reduces fruit growth and yield (particularly if applied before veraison), → modulates berry metabolism and quality. Effects of water deficit on vine and grape physiology Deficit irrigation (DI): To apply sub-optimal volumes of water to vines in order to modulate growth and improve fruit quality without severe reductions of yield. It has to be managed carefully (e.g., models for evapotranspiration, soil sensors, pressure chambers)!
  5. 5. Treatment Color Density Total anthocyanin Total phenols Yield (A420+A520) (mg l-1 ) (mg l-1 ) (kg vine-1 ) 1984 Early Deficit 9.79 167 1630 4.8 1984 Late Deficit 9.02 136 1470 5.2 1984 Continual 8.51 132 1310 5.7 1985 Early Deficit 8.24 318 1930 4.6 1985 Late Deficit 5.75 281 1520 6.8 1985 Continual 5.50 232 1350 9.2 Matthews et al. 1987, 1988, 1989, 1990 [or size] Deficit irrigation (DI) is good for red wine (Cabernet Franc)
  6. 6. Supplemental Table 1 (Continue). Effect of water management and shoot trimming on ‘Merlot’ wine sensory attributes in 2011 and 2012 vin were analysed four months after alcoholic fermentation in both years. Colour attributes Intensity Hue 2011 2012 2011 2012 Water management (WM) *** *** * *** Irrigated (I) 6.0 4.2 5.0 6.6 Deficit (D) 7.8 7.3 4.2 4.1 Shoot trimming (ST) ns * ns ns High canopy (HC) 6.8 5.9 4.8 5.0 Short canopy (SC) 7.0 5.5 4.4 5.6 Judge (J) ns ns * * WM x ST ** ** * ** J x WM ns ns * * J x ST ns ns ns ns Within a column, *, **, ***, ns: significant at P < 0.05, 0.01, 0.001, or not significant, respectively from a mixed-model ANOVA (n = 12 judges (random) x four w x four reps/wine, in both years). Table S1. Effect of water management and shoot trimming on Merlot wine sensory attributes in 2011 and 2012 vintages. Wines were ana alcoholic fermentation in both years. Aroma attributes Retronasal attrib Intensity Red fruit Jam Herbaceous Spicy Intensity Persistence F 2011 2012 2011 2012 2011 2012 2011 2012 2011 2012 2011 2012 2011 2012 2011 Water management (WM) ** ** ns ** *** * ns ns ns ns ns ns ns * ns Irrigated (I) 5.7 4.5 4.7 4.8 2.9 4.7 3.1 3.5 2.6 3.8 4.8 4.3 4.8 4.1 3.6 Deficit (DI) 6.3 5.7 4.8 5.9 3.6 5.9 3.1 4.2 2.8 4.5 5.0 5.0 4.8 5.1 3.9 Shoot trimming (ST) ns ns * ns ns ns ns ns ns ns ns ns ns ns ns High canopy (HC) 6.0 5.3 5.1 5.4 3.2 5.3 3.2 3.9 2.8 4.3 4.8 4.7 4.8 4.6 3.9 DI affects wine color and aroma in red wine (Merlot) Herrera et al (2015) Australian J. of Grape and Wine Research 21:254 Irrigated (I), 80-100ETc, Ψstem  - 0.8MPa Deficit (D), Ψstem  - 1.4MPa
  7. 7. DI improves berry quality by reducing berry size (yes, but...) Gambetta, Castellarin, Matthews 2008
  8. 8. DAA 0 20 30 40 50 60 70 80 90 100 110 120 -terpineol(µgkg -1 ) 0 2 4 6 8 10 12 14 16 C D * DI applied to white grapes can improve terpenes (key aromatics) C D Savoi et al (2016) BMC Plant Biology 16:67
  9. 9. Free Terpenes Bound Terpenes DI increases terpenes in wines linalool linalool_oxide_A linalool_oxide_B citronellol alpha-terpineol diendiol I (µgL -1 ) 0 10 20 30 40 500 1000 1500 C D * * * linalool linalool_oxide_A linalool_oxide_B cis-8-O H -linalool trans-8-O H -linalool geraniol 7-O H -geraniol nerol (µgL-1) 0 25 50 75 100 200 400 600 C D * * * * * More intense retronasal aroma
  10. 10. CN ED PD DAA 0 30 40 50 60 70 80 90 100 110 Relativeexpression 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 CN ED PD VviPNLinNer1 a a b a bb Viognier (Vitis vinifera L.) Vineyard Early Deficit Prolonged Deficit Full Irrigation Wang et al. 2019, Food Research International DI increases terpenes in Viognier
  11. 11. 7-year old field-grown Vitis vinifera cv. Gewürztraminer Clone 47 scion 3309 rootstock (V.riparia x V. rupestris) N-S oriented rows ~ 3,333 vines hec-1 49°14'N, 119°33'W, 420 m a.s.l. 2016, 2017, 2018 Oliver, BC 1,600 GDD; 190 mm rain (Apr-Oct) 7-year old Gewürztraminer (cl. 47) 3309 rootstock N-S oriented rows 2.5 m x 1.2 m vine spacing 3,333 vines hectare-1 Randomized block design 10-15 vines per plot Effect of DI on Aroma in Gewürztraminer Grapes
  12. 12. Four irrigation treatments: • Control treatment (CN) • Early deficit (ED) from 30 DAA to veraison • Late deficit (LD) from veraison to harvest • Prolonged deficit (PD) from 30 DAA to harvest -0.8 MPa -0.8 MPa -0.8 MPa -1.3 MPa -1.3 MPa -1.3 MPa Leaf Water Potential (LWP) DI treatments DAA 19 DAA 50 DAA 60 DAA 83-105 DAA 105-119 E L 10 mm10 mm 10 mm 10 mm 10 mm
  13. 13. a b c -2.00 -1.60 -1.20 -0.80 -0.40 0.00 ΨLeaf(MPa) 0 80 160 240 320 400 Days after anthesis Irrigationapplied(L/vine) d e f Treatments CN ED LD PD Treatments CN ED LD PD * ******* *** ** ** ** *** * *** * ** * Irrigation volumes (%): CN 100% ED 70% LD 62% PD 50% 2016 2017 2018
  14. 14. LD did not affect vine yield Berries per Cluster Berry Weight (g) Clusters per Vine Cluster Weight (g) Yield (t/ha) DI Treatment 0.0745 9.03 · 10-10 n.s. 6.80 · 10-6 2.35 · 10-6 Mean SE Mean SE Mean SE Mean SE Mean SE CN 105 5 1.48 0.04 25 2 154.0 7 a 12.40 0.70 a ED 92 4 1.21 0.05 24 1 110.8 5 b 8.82 0.53 b LD 97 3 1.41 0.04 26 1 136.8 6 ab 11.68 0.75 a PD 103 6 1.19 0.05 23 1 120.9 6 b 9.36 0.59 b Year 3.03 · 10-5 2.61 · 10-16 7.54 · 10-6 3.39 · 10-5 3.64 · 10-7 2016 86 2 b 1.38 0.03 21 1 c 118.2 5 b 8.39 0.37 b 2017 108 4 a 1.15 0.05 28 1 a 123.9 6 b 11.43 0.68 a 2018 104 4 a 1.44 0.04 24 1 b 149.8 7 a 11.89 0.55 a DI x Year Interaction n.s. 0.0364 n.s. n.s. n.s. 1
  15. 15. DI increased free terpenes (e.g., geraniol, citronellol) Free Volatile Terpenes Glycoside Bound Terpenes [Total] (ng/g berry FW) Total per Berry (ng) [Total] (ng/g berry FW) Total per Berry (ng) DI Treatment 0.0654 0.0251 n.s. n.s. Mean SE Mean SE Mean SE Mean SE CN 177.0 26.7 245.0 45.8 ab 5144.9 517.8 7041.8 658.8 ED 179.1 23.1 216.5 30.1 b 6433.3 799.1 7327.8 918.7 LD 223.2 22.9 288.4 39.4 a 6264.9 824.2 7983.9 941.8 PD 203.2 28.9 243.1 39.9 ab 7250.0 828.6 7706.8 809.5 Year 1.84 · 10-10 1.21 · 10-12 1.33 · 10-4 3.80 · 10-4 2016 181.1 13.8 b 214.5 16.0 b 8336.4 623.3 a 9853.9 690.8 a 2017 118.2 9.5 c 128.8 11.3 c 5801.3 679.5 b 6152.1 667.2 b 2018 287.5 15.8 a 401.5 23.2 a 4682.1 211.9 b 6539.3 320.3 b DI x Year Interaction n.s. n.s. n.s. n.s.
  16. 16. - DI reduces berry size and increases the concentration of skin compounds in wine - DI directly promotes the synthesis of anthocyanins (red pigments) - DI can increase the concentration of aroma in grapes and in wines - Severe deficits reduce berry size and yield, but moderate deficits can increase quality without limitations on yield (good for whites) - DI (LD) allow to save irrigation water (38%) - Varietal and seasonal effects as well as wine outputs deserve further investigation (particularly for white grape varieties) Conclusion Summary
  17. 17. Acknowledgements Yevgen Kovalenko Lab: Ricco Tindjau, Marie Nosten, Lina Madilao Industry: Kate Durisek, Steve McDonald, Mark Antonello, Kirk Seggie, Scott Carlson, Ruiping Cheng, Michael Watson, Troy Osbrone
  18. 18. Osoyoos, BC, Canada Nk'Mip Desert (shrub-steppe) Questions?
  19. 19. Hannah et al (2013) PNAS, 110:6907 Wine grape production & climate change
  20. 20. TSS(Brix) 0 6 12 18 24 30 DAA 0.00 4.00 8.00 12.00 16.00 20.00 Photosynthesis(µmolCO2m2/s) 2016 2017 2018 ba c ed f Treatments CN ED LD PD Treatments CN ED LD PD * ** * * * * ** * * * * * * * * * * * * * DI reduces photosynthesis but had a limited effect on sugar levels
  21. 21. winefruit Grape Composition and Wine Quality
  22. 22. SKIN PULP SEED • TERPENES • NORISOPRENOIDS • METHOXYPYRAZINES • ANTHOCYANINS • FLAVAN-3-OLS • PROANTHOCYANIDINS • FLAVONOLS • SUGARS • ORGANIC ACIDS • FLAVAN-3-OLS • PHENOLIC ACIDS • FLAVAN-3-OLS • PROANTHOCYANIDINS Major Grape Metabolites

×