Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Identification of NeSL-1 in Caenorhabitis

204 views

Published on

Description of my initial results to identify NeSL-1 full length and truncated elements. Previously only identified in C elegans, multiple copies were identified in C brenneri, C japonica, and C remanei. A single truncated copy was seen ijn C briggsae. Completed in 2010.

Published in: Technology
  • Be the first to comment

  • Be the first to like this

Identification of NeSL-1 in Caenorhabitis

  1. 1. N M-Coffee: combining multiple sequence alignment methods with T-Coffee.Wallace IM, OSullivan O, Higgins DG, Notredame C.Nucleic Acids Res. 2006 Mar 23;34(6):1692-9. Print 2006.The M-Coffee web server: a meta-method for computing multiple sequencealignments by combining alternative alignment methods.Moretti S, Armougom F, Wallace IM, Higgins DG, Jongeneel CV, Notredame C.Nucleic Acids Res. 2007 Jul;35(Web Server issue):W645-8. Epub 2007 May 25
  2. 2. Tcoffee@igs: A web server for computing, evaluating and combining multiple sequencealignments.Poirot O, OToole E, Notredame C.Nucleic Acids Res. 2003 Jul 1;31(13):3503-6.T-Coffee: A novel method for fast and accurate multiple sequence alignment.Notredame C, Higgins DG, Heringa J.J Mol Biol. 2000 Sep 8;302(1):205-17.
  3. 3. R-Coffee: a web server for accurately aligning noncoding RNAsequences.Moretti S, Wilm A, Higgins DG, Xenarios I, Notredame C.Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W10-3. Epub2008 May 15.R-Coffee: a method for multiple alignment of non-coding RNA.Wilm A, Higgins DG, Notredame C.Nucleic Acids Res. 2008 May;36(9):e52. Epub 2008 Apr 17.
  4. 4. C elegans/C remanei
  5. 5. C japonica/C brenneri
  6. 6. C elegans
  7. 7. C brenneri
  8. 8. C remanei
  9. 9. C japonica
  10. 10. C elegans;1-115 | C brenneri 1-115C remanei; 1-115 | C japonica 1-115
  11. 11. C elegans;1-115 | C brenneri 1-115C remanei; 1-115 | C japonica 1-115
  12. 12. C elegans;1-115 | C brenneri 1-115C remanei; 1-115 | C japonica 1-115
  13. 13. C elegans;1-115 | C brenneri 1-115C remanei; 1-115 | C japonica 1-115
  14. 14. C elegans;1-115 | C brenneri 1-115C remanei; 1-115 | C japonica 1-115
  15. 15. 1. Cross-Genome Screening of Novel Sequence-Specific Non-LTR Retrotransposons: Various Multicopy RNA Genes and Microsatellites Are Selected as Targets; Kenji K. Kojima and Haruhiko Fujiwara; Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo12. S. Janssen and R. Giegerich. Faster computation of exact RNA shape probabilities. Bioinformatics, 26(5), 2010.3. P. Steffen, B. Voß, M. Rehmsmeier, J. Reeder, and R. Giegerich. RNAshapes: an integrated RNA analysis package based on abstract shapes.Bioinformatics, 22(4), 2006.4. J. Reeder and R. Giegerich. Consensus shapes: an alternative to the Sankoff algorithm for RNA consensus structure prediction. Bioinformatics, 21(17),2005.5. R. Giegerich, B. Voß and M. Rehmsmeier. Abstract Shapes of RNA, Nucl. Ac. Res., 32(16), 2004.6. B. Voß, R.Giegerich and M. Rehmsmeier. Complete probabilistic analysis of RNA shapes, BMC Biology, 4:5, 2006.

×