Cerebral Edema


Published on

Presentation by Dr Papadakos
Knowledge resources at Scribe : www.scribeofegypt.com

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Cerebral Edema

  1. 1. Cerebral Edema A Review and Management PJ Papadakos MD FCCP FCCM Professor Anesthesiology, Surgery and Neurosurgery Director Critical Care Medicine University of Rochester
  2. 2. HOW DO PATIENTS PRESENT ? <ul><li>Obvious--motor vehicle accident, car vs pedestrian, fall from height, etc </li></ul><ul><li>Less obvious--sports injuries (football), delayed deterioration (epidural) </li></ul><ul><li>Hidden--shaken baby syndrome, older child maltreatment </li></ul><ul><li>Post Surgical </li></ul><ul><li>Post Cardiac Arrest, Hypoxic Injury </li></ul><ul><li>Electrolyte Imbalance </li></ul>
  3. 3. CAVEATS IN BRAIN INJURY <ul><li>Neurologic examination - the most important information you have </li></ul><ul><li>Accurate history is often unavailable or inaccurate </li></ul><ul><li>Potential for associated injuries or illness (cardiovascular, respiratory, </li></ul><ul><li>cervical spine) </li></ul>
  4. 4. CEREBRAL RESUSCITATION <ul><li>Primary survey - airway, breathing, and circulation </li></ul><ul><li>Neurologic evaluation </li></ul><ul><li>Secondary survey - “head to toe” </li></ul><ul><li>Neuroradiologic evaluation </li></ul><ul><li>Ongoing evaluation and transport </li></ul>
  5. 5. MECHANISMS OF INJURY-PRIMARY <ul><li>Impact: epidural, subdural, contusion, intracerebral hemorrhage, skull fractures </li></ul><ul><li>Inertial: concussion, diffuse axonal injury </li></ul><ul><li>Hypoxic Ischemic </li></ul>
  6. 6. MECHANISMS OF 2 nd INJURY <ul><li>Global </li></ul><ul><ul><li>Hypoxia and ischemia of brain </li></ul></ul><ul><ul><li>Decreased cerebral blood flow due to increased intracranial pressure </li></ul></ul><ul><li>Local </li></ul><ul><ul><li>impairment of cerebral blood flow or extra cellular milieu due to the presence of injured brain </li></ul></ul>
  7. 7. PATHOPHYSIOLOGY <ul><li>Primary damage – the only treatment is by prevention . </li></ul><ul><li>Secondary damage – multifactorial and time dependent. </li></ul>
  8. 8. Brain trauma BBB disruption diffuse axonal injury edema formation Eicosanoids endocannabinoids necrosis energy failure cytokines SOME of the SECONDARY EVENTS IN TRAUMATIC BRAIN INJURY apoptosis inflammation ROS polyamines Calcium Acetyl Choline ischemia Shohami, 2000 Green – pathophysiological processes; Yellow – various mediators
  9. 9. Time is Important
  10. 10. <ul><li>Hours </li></ul>Dynamic Changes Following Stroke/Trauma Days Weeks / Months Weeks/Months Ca , Na + Glut, ROS 8 hrs 7 Necrosis Apoptosis Repair Remodeling Plasticity Functional Recovery I N J U R Y 14 2 Inflammation Barone &Feuerstein JCBF, 1999
  11. 11. Pathophysiology
  12. 12. MONRO-KELLIE DOCTRINE <ul><li>V intracranial vault =V brain +V blood + V csf </li></ul>
  13. 13. BRAIN: CEREBRAL EDEMA-VASOGENIC (Caused mainly by activation of NMDA receptors by glutamate)
  14. 14. BRAIN: CEREBRAL EDEMA-CYTOTOXIC (Caused mainly by activation of cytokines, ROS and other pro-inflammatory mediators)
  15. 15. <ul><ul><li>The brain has the ability to control its blood supply to match its metabolic requirements </li></ul></ul><ul><ul><li>Chemical or metabolic byproducts of cerebral metabolism can alter blood vessel caliber and behavior </li></ul></ul>BLOOD: CEREBRAL BLOOD FLOW
  16. 16. BLOOD: CEREBRAL BLOOD FLOW (VOLUME) <ul><li>Increases in cerebral metabolic rate </li></ul><ul><ul><li>Hyperthermia </li></ul></ul><ul><ul><li>Seizures </li></ul></ul><ul><ul><li>Pain, anxiety </li></ul></ul>
  17. 17. CSF: CEREBROSPINAL FLUID <ul><li>10% of intracranial volume </li></ul><ul><li>Initial displacement of CSF from ventricles </li></ul><ul><li>Ventriculostomy to drain CSF </li></ul>
  18. 18. Intracranial Compliance <ul><li>Calvarium is composed of three fluid compartments: Cerebral Blood Volume, CSF, and cerebral parenchyma </li></ul>
  19. 20. GUIDELINES – GENERAL ASPECTS <ul><li>Standards: accepted principles of patient management that reflect a high degree of clinical certainty </li></ul><ul><li>Guidelines: strategies that reflect moderate clinical certainty </li></ul><ul><li>Options: unclear clinical certainty </li></ul>
  20. 21. Prehospital
  21. 22. PREHOSPITAL AIRWAY MANAGEMENT <ul><li>Hypoxia must be avoided, and correct immediately . 13%-27%  O 2 </li></ul><ul><li>Supplemental oxygen should be administered </li></ul><ul><li>No advantage of ETI (ET intubation) Vs. BVM (Bag / valve / mask) ventilation for the pre-hospital airway in pediatric TBI 420 TBI; 115 BVM; 177 ETI  no change ( Gausche, JAMA 2000 ) </li></ul><ul><li>TBI + ETI  ETCO 2 </li></ul>
  22. 23. RESUSCITATION OF BP AND O 2 AND PREHOSPITAL BRAIN-SPECIFIC TX’S FOR SPTBI PATIENTS <ul><li>Hypotension should be identified and corrected as rapidly as possible with fluid resuscitation. (G) </li></ul><ul><li>Hypotension on arrival to ER (Pigula, J Ped Surg 1993) 18% ER: mortality 61% Vs. 22%, ↓ BP+ ↓ O 2 – mortality  85% ! </li></ul><ul><li>Levine (Neurosurg 1992) : TBI 0-4y ↓ BP – 32% poor outcome. </li></ul><ul><li>Laurssen (J Neurosurg 1988) : ↑ BP  ↓ EX; White (CCM 2001) : syst BP > 135  X19 in survival ! </li></ul>
  23. 24. PREHOSPITAL TREATMENTS <ul><li>No evidence of efficacy: sedation, NMB, Mannitol, saline 3%, hyperventilation. </li></ul><ul><li>The prophylactic administration of mannitol is not recommended. </li></ul><ul><li>Mannitol may be considered for use in euvolemic patients who show signs of cerebral herniation or acute neurological deterioration. </li></ul>
  24. 25. PREHOSPITAL TREATMENTS <ul><li>Mild prophylactic hyperventilation is not recommended . </li></ul><ul><li>Hyperventilation may be considered in patients who show signs of </li></ul><ul><ul><li>Imminent cerebral herniation or </li></ul></ul><ul><ul><li>acute neurological deterioration </li></ul></ul><ul><li>After correcting hypotension or hypoxemia </li></ul>
  25. 26. CT SCANS and X-rays
  26. 27. Skull fracture
  27. 29. Intracranial Hemorrhage
  28. 31. Coup-Contrecoup <ul><li>focal injury consisting of contusions and hematoma at the site of the blow, opposite side of the brain </li></ul>
  29. 33. Reversible high T2 signal abnormalities in pre-eclampsia
  30. 34. Monitoring
  31. 35. INDICATIONS FOR ICP MONITORING IN PATIENTS WITH SEVERE TBI <ul><li>↑ ICP ≡ ↓ Outcome; Aggressive Tx ≡ ↑ Outcome </li></ul><ul><li>Intra-cranial pressure monitoring (ICP) is appropriate in all patients with severe traumatic brain injury (TBI) (Glasgow Coma [GCS] score ≤ 8) </li></ul><ul><li>The presence of open fontanels and/or sutures in an infant with severe TBI does not preclude the development of intracranial hypertension or negate the utility of ICP monitoring. </li></ul>
  32. 36. INTRACRANIAL PRESSURE MONITORING <ul><li>STBI (GCS ≤ 8) + Abnormal CT ≡ 53-63% ↑ ICP (adult data). </li></ul><ul><li>Intra-cranial pressure monitoring is not routinely indicated in infants and children with mild or moderate head injury. </li></ul><ul><li>However, a physician may choose to monitor ICP in certain conscious patients with </li></ul><ul><li>traumatic mass lesions or </li></ul><ul><ul><li>serial neurological examination is precluded by sedation, neuromuscular blockade, or anesthesia. </li></ul></ul>
  33. 37. THRESHOLD FOR TREATMENT OF INTRA-CRANIAL HYPERTENSION <ul><li>ICP>20-40mmHg ≡ Mort. 28%; ICP>40mmHg ≡ 100% </li></ul><ul><li>Treatment for intracranial hypertension, defined as a pathologic elevation in intracranial pressure (ICP), should begin at an ICP ≥ 20 mm Hg. (O) </li></ul><ul><li>Patients may herniate at ICP < 20-25mmHg. </li></ul><ul><li>Is there a lower ICP threshold for younger children ? </li></ul><ul><li>Interpretation and treatment of ↑ ICP based on any ICP threshold should be corroborated by frequent </li></ul><ul><ul><li>clinical examination </li></ul></ul><ul><ul><li>monitoring of physiologic variables (CPP, Compliance) </li></ul></ul><ul><ul><li>cranial imaging. </li></ul></ul>
  34. 38. INTRACRANIAL PRESSURE MONITORING TECHNOLOGY <ul><li>ICP monitoring: a ventricular catheter; external strain gauge transducer (??); catheter tip pressure transducer device  All accurate & reliable (O) </li></ul><ul><li>Ventricular cath. device most accurate, reliable, low cost + enables therapeutic (CSF) drainage . </li></ul><ul><li>No report of meningitis  ICP monitoring. Jensen: 7% +tip; positive > 7.5 days </li></ul>
  35. 39. CEREBRAL PERFUSION PRESSURE (CPP) <ul><li>A cerebral perfusion pressure (CPP) >40 mm Hg </li></ul>
  36. 40. THE ROLE OF CSF DRAINAGE <ul><li>Cerebrospinal fluid (CSF) drainage can be considered as an option in the management of elevated ICP Drainage: Ventriculostomy ± Lumber puncture. </li></ul>
  37. 41. <ul><li>Mannitol ( 2 X Class III ) Vs. Hypertonic Saline ( 3 X Class II; 1 X Class III ). </li></ul><ul><li>Mannitol is effective. </li></ul><ul><li>Euvolemia + Folly catheter </li></ul><ul><li>Accepted osmolarity: Mannitol < 320mOsm/L; Hyper NS < 360mOsm/L </li></ul><ul><li>Mannitol   blood viscosity   arteriolar diameter and  osmotic effect. </li></ul><ul><li>Hyper NS  Osmolar grad; membrane pot.; cellular volume;  ANP;  Inflammation;  C.O. </li></ul>USE OF HYPEROSMOLAR THERAPY
  38. 42. HYPEROSMOLAR THERAPY <ul><li>Hypertonic saline is effective for control of increased ICP after severe head injury </li></ul><ul><li>Effective doses: cont. infusion of 3% saline 0.1 - 1.0 ml/kg/h, a sliding scale. </li></ul><ul><li>Goal minimum dose maintain ICP <20 mmHg. </li></ul><ul><li>Mannitol bolus dose: 0.25g/Kg – 1g/Kg. </li></ul>
  39. 43. USE OF HYPERVENTILATION in the ACUTE MANAGEMENT <ul><li>Mild or prophylactic hyperventilation (paco 2 <35 mm hg) should be avoided . </li></ul><ul><li>Mild hyperventilation (paco 2 30-35 mm hg) may be considered for longer periods for intra-cranial hypertension refractory to </li></ul><ul><ul><li>Sedation and analgesia </li></ul></ul><ul><ul><li>Neuromuscular blockade </li></ul></ul><ul><ul><li>Cerebrospinal fluid drainage </li></ul></ul><ul><ul><li>hyperosmolar therapy </li></ul></ul>
  40. 44. HYPERVENTILATION <ul><li>Aggressive hyperventilation (Paco 2 < 30 mm Hg) may be considered as a second tier option in the setting of refractory hypertension (O). </li></ul><ul><li>Cerebral blood flow (CBF), jugular venous oxygen saturation, or brain tissue oxygen monitoring is suggested to help identify cerebral ischemia in this setting. </li></ul><ul><li>Aggressive hyperventilation therapy titrated to clinical effect may be necessary for BRIEF PERIODS in cases of cerebral herniation or acute neurologic deterioration. </li></ul>
  41. 45. THE USE of BARBITURATES in the CONTROL of INTRA-CRANIAL HYPERTENSION <ul><li>High-dose barbiturate therapy may be considered in hemodynamically stable patients with salvageable severe head injury and refractory intracranial hypertension. </li></ul><ul><li>If high-dose barbiturate therapy is used, then appropriate hemodynamic monitoring (CVP, Swan-Ganz, repeated ECHOs) and cardiovascular support (Dopamine, Adrenaline) are essential. </li></ul>
  42. 46. THE USE of BARBITURATES in the CONTROL of INTRA-CRANIAL HYPERTENSION <ul><li>Gold standard – continuous EEG to achieve a state of burst suppression. </li></ul><ul><li>Serum barbiturate levels are NOT GOOD for monitoring that therapy. </li></ul><ul><li>Prophylactic therapy is not recommended (side effects). </li></ul>
  43. 47. THE ROLE OF TEMPERATURE CONTROL <ul><li>Extrapolated from the adult data, hyperthermia should be avoided in children with severe traumatic brain injury (TBI) (O). </li></ul><ul><li>Despite the lack of clinical data in children, hypothermia may be considered in the setting of refractory intracranial hypertension </li></ul>
  44. 48. Calcium Channel Blockers
  45. 49. Ca2+ inf lux Voltag e- Operated Ca2+ specific Receptor- O perated Ca2+ / Cation Ligand-Operated Ca2+/Cation Plasma membrane channels Ca2+ Mitochondrial Ca Uptake Sarco-/Endo-plasmic reticulum Ca Uptake Ca/Mg pump Na-Ca exchg.
  46. 50. Calcium Channel blockers <ul><li>May be membrane protective </li></ul><ul><li>Affect Vasospasm </li></ul>
  47. 51. Coronary/Cerebral Steal The detrimental redistribution of blood flow in patients with atherosclerotic disease from underperfused areas toward better perfused areas Before Vasodilator Stenosis After Vasodilator
  48. 52. Surgical Decompression
  49. 54. DECOMPRESSIVE CRANIECTOMY <ul><li>Decompressive craniectomy appears to be less effective in patients who have experienced extensive secondary brain insults </li></ul><ul><li>Patients who experience </li></ul><ul><ul><li>Secondary deterioration on the Glasgow coma scale (GCS) and/or evolving cerebral herniation syndrome within the first 48 hrs after injury may represent a favorable group </li></ul></ul><ul><ul><li>Unimproved GCS of 3 may represent an unfavorable group </li></ul></ul>
  50. 55. THE USE OF CORTICOSTEROIDS IN THE TREATMENT TBI <ul><li>With the lack of sufficient evidence for beneficial effect and the potential for increased complications and suppression of adrenal production of cortisol, the routine use of steroids is not recommended for patients following severe traumatic brain injury. </li></ul>
  51. 56. NUTRITIONAL SUPPORT <ul><li>Replace 130-160% of resting metabolism expenditure after TBI in patients. Weight-specific resting metabolic expenditure guidelines can be found in Talbot's tables. </li></ul><ul><li>Based on the adult guidelines, nutritional support should </li></ul><ul><ul><li>begin by 72 hrs </li></ul></ul><ul><ul><li>with full replacement by 7 days. </li></ul></ul>
  52. 57. THE ROLE of ANTI-SEIZURE PROPHYLAXIS FOLLOWING STBI <ul><li>Prophylactic anti-seizure therapy may be considered as a treatment option to prevent increased oxygen utilization </li></ul>
  53. 58. Thank You