Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Scimore CommunityDays 2011

669 views

Published on

  • Be the first to comment

  • Be the first to like this

Scimore CommunityDays 2011

  1. 1. YesSQL<br />
  2. 2. Evolution of database – birth of NoSQL<br />15 year ago :<br />Availability requirements was different from today (ATM shutdown 2 AM, services maintenance windows). <br />Small amount of data.<br />Database loads was small.<br />Today internet has changed the game:<br /> 24x7 availability.<br />Large data.<br />Insane database loads<br />Tomorrow<br />Switching to hosted apps and thin clients. Even larger load<br />
  3. 3. NoSQL – mosaic of options<br />key‐value‐caches<br />memcached, repcached, coherence, infinispan, eXtreme scale, jboss cache, velocity, terracoqa<br />key‐value‐store<br />keyspace, flare, schema‐free, RAMCloud<br />eventually‐consistent key‐value‐store<br />dynamo, voldemort, Dynomite, SubRecord, Mo8onDb, Dovetaildb<br />ordered‐key‐value‐store<br />tokyo tyrant, lightcloud, NMDB, luxio, memcachedb, actord<br />data‐structures server<br />redis<br />tuple‐store<br />gigaspaces, coord, apache river<br />object database<br />ZopeDB, db4o, Shoal<br />document store<br />CouchDB, Mongo, Jackrabbit, XML Databases, ThruDB, CloudKit, Perservere, Riak Basho, Scalaris<br />wide columnar store<br />BigTable, Hbase, Cassandra, Hypertable, KAI, OpenNeptune, Qbase, KDI<br />
  4. 4. Best of two worlds<br />SQL<br />Transactions<br />Consistency<br />Ad-hoc query language<br />Common language<br />No-SQL<br />Scales horizontally<br />Super fast<br />Always available<br />Comodity hardware<br />
  5. 5. History of ScimoreDB<br />Driven by demand:<br />1999 Jubii - memory based / COM interface<br />2003 transaction/disc enabled<br />2004 distributed and DQL <br />2005 Scimore founded<br />2007 sql<br />2009 embedded<br />2010 replication, merge/bi-directional<br />2011 new distributied version for massive scale, fault tolerant.<br />
  6. 6. ScimoreDB v.4<br />Native SQL Database for Windows<br />Distributed<br />Elastic<br />Fault tolerant<br />Transactional / consistent<br />Scale on commodity hardware<br />
  7. 7. Going distributed is easy<br />Used to select primary key and indexes pr. Table. Now you additionally need to select distribution pr. table.<br />All existing sql queries continue to run.<br />There is no magic – its just doing it how you would program your own sharding and map-reduce layer!<br />
  8. 8. Partition Groups (shard)<br />Group1<br />Group2<br />Group3<br />Node #6<br />Node #4<br />Node #1<br />Node #2<br />Node #5<br />Node #3<br />
  9. 9. Distributed data over large amount of partition groups<br /><ul><li>Scale horizontally for writes
  10. 10. Scale for large data sets</li></ul>Group<br />Group<br />Group<br />Group<br />Group<br />Group<br />Group<br />Group<br />Group<br />Node<br />Node<br />Node<br />Node<br />Node<br />Node<br />Node<br />Node<br />Node<br />Node<br />Node<br />Node<br />Node<br />Node<br />Node<br />Node<br />Node<br />Node<br />
  11. 11. Many nodes in each group – higher replication<br /><ul><li>Safety – decide how safe do you want to be?
  12. 12. Slower on insert/update – more machines needs to be updated
  13. 13. Fast reads – more machines with same data</li></ul>Group<br />Group<br />Node<br />Node<br />Node<br />Node<br />Node<br />Node<br />Node<br />Node<br />Node<br />Node<br />Node<br />Node<br />
  14. 14. Partitioning<br />Distribute to all – replicated on all groups.<br />Partition by column hash value.<br />Round-robin.<br />Relation.<br />
  15. 15. Partitioning by column hash value<br />Column [col1]>hash(100)MOD 1024<br />Select * from table where col1 = 100<br />0<br />1024<br />512<br />Group2<br />Group1<br />Node #3<br />Node #1<br />Node #4<br />Node #2<br />
  16. 16. Demo on Amazon EC2<br />Customer<br />c_id bigint<br />c_name varchar<br />c_zip varchar<br />Products<br />p_id bigint<br />p_Name varchar<br />p_price money<br />Orders<br />o_id autobigint<br />o_c_id bigint<br />o_p_id bigint<br />o_amount int<br />o_date datetime<br />o_price money<br />
  17. 17. Performance<br />Single machine 8 core Simple select:<br />75.000 queries/s (10 client threads)<br />Vodafone cluster of 6 machines: <br />21.000 transactions inserting 1 row<br />DTU cluster of 31 small machines TPC-C :<br />140.000 transactions/s (35% insert, 35% update, 30% select)<br />
  18. 18. ACID transactions<br />Crash safe recovery<br />Row & tabel level locking<br />Dynamic phase commit (D2PC)<br />Dynamic group commit<br />Transactions isolation levels (read commit, read repeatable)<br />In-Doubt transaction state<br />Multiversioning Concurrency control MVCC<br />Local and distributed deadlock detection<br />Write ahead logging<br />Fuzzy checkpoint - non blocking checkpoints<br />B+-Tree<br />Page compression<br />TEXT/NTEXT field compression<br />System tables: performance, monitoring, schema<br />T-SQL<br />Recursive queries/CTE<br />Security – users & roles<br />Free text (lucene)<br />ScimoreOS, fiber based tasks scheduling<br />100% asynchronious, io-completion based<br />NUMA aware<br />Distributed query optimizer<br />Distributed tree execution<br />Query prioritization and throttling<br />
  19. 19. Questions<br />

×