Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Enabling Real-Time Charging for Smart Grid Infrastructures using In-Memory Databases

936 views

Published on

Published in: Technology, Business
  • Could I reach the pdf version just for learning and discussion?
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Be the first to like this

Enabling Real-Time Charging for Smart Grid Infrastructures using In-Memory Databases

  1. 1. Enabling Real-Time Charging for Smart Grid Infrastructures using In-Memory Databases<br />1st LCN Workshop on Smart Grid Networking InfrastructureOct 14, 2010 - Denver, CO, USA<br />Matthieu-P. Schapranow<br />Hasso Plattner Institute<br />
  2. 2. Agenda<br />Key Facts about the Hasso Plattner Institute<br />Motivation<br />Proposed Architecture<br />Simulation Details<br />Benchmarking<br />Business Impacts<br />SGNI/LCN2010, Enabling Real-Time Charging for Smart Grid Infrastructures, Schapranow, Oct 14, 2010<br />2<br />
  3. 3. Key Facts about the Hasso Plattner InstituteInternals<br />Founded as a public-private partnershipin 1998 in Potsdam near Berlin, Germany<br />Institute belongs to theUniversity of Potsdam<br />Ranked 1st in CHE 2009<br />500 B.Sc. and M.Sc. students<br />10 professors, 92 PhD students<br />Course of study: IT Systems Engineering <br />SGNI/LCN2010, Enabling Real-Time Charging for Smart Grid Infrastructures, Schapranow, Oct 14, 2010<br />3<br />
  4. 4. Key Facts about the Hasso Plattner Institute Research Group Hasso Plattner / Alexander Zeier<br />Research focus: real customer data for enterprisesoftware and design of complex applications<br />In-Memory Data Management for Enterprise Applications <br />Human-Centered Software Design and Engineering <br />Maintenance and Evolution of SOA Systems <br />Integration of RFID Technology in Enterprise Platforms <br />Cooperations<br />Academic: Stanford, MIT, etc.<br />Industry: SAP, Siemens, Audi, etc.<br />SGNI/LCN2010, Enabling Real-Time Charging for Smart Grid Infrastructures, Schapranow, Oct 14, 2010<br />4<br />
  5. 5. MotivationHow to measure?<br />“If you cannot measure it,you cannot improve it!”<br />(William Thomson, 1st Lord Kelvin)<br />SGNI/LCN2010, Enabling Real-Time Charging for Smart Grid Infrastructures, Schapranow, Oct 14, 2010<br />5<br />
  6. 6. MotivationState-of-the-art<br />Interval: Mainly annual meter readings<br />Type: Mainly manual or small range wireless readings<br />What is missing?<br />Direct feedback for customers<br />Convenient tracking methods<br />Real-time billing details for cost control<br />How much personnel involvement is required?<br />SGNI/LCN2010, Enabling Real-Time Charging for Smart Grid Infrastructures, Schapranow, Oct 14, 2010<br />6<br />
  7. 7. Proposed Architecture<br />*Advanced Metering Infrastructure was simulated<br />SGNI/LCN2010, Enabling Real-Time Charging for Smart Grid Infrastructures, Schapranow, Oct 14, 2010<br />7<br />
  8. 8. Simulation DetailsMaster Energy Profile<br />SGNI/LCN2010, Enabling Real-Time Charging for Smart Grid Infrastructures, Schapranow, Oct 14, 2010<br />8<br />
  9. 9. Simulation DetailsRealistic Test Data<br />SGNI/LCN2010, Enabling Real-Time Charging for Smart Grid Infrastructures, Schapranow, Oct 14, 2010<br />9<br /><ul><li>Basis: Consumption profile of singlehousehold in Germany in 2009
  10. 10. Variance: +/- 5 percent per profile
  11. 11. 8-digit unique profile number
  12. 12. Each profile stored in an approx. 1.6 MB CSV file</li></li></ul><li>BenchmarkingSetup<br />Intra-day Billing with Time-of-Use Buckets<br />Pro: Prices depend on real energy demand <br />Cons: Billing requires assignment of power consumption time<br />SGNI/LCN2010, Enabling Real-Time Charging for Smart Grid Infrastructures, Schapranow, Oct 14, 2010<br />10<br />
  13. 13. SAP’s Columnar In-Memory DB distributed across 3 blades, each<br />2 x Intel Xeon E5450 CPUs@3GHz, 4 cores, 32 kB L1, 12 MB L2,<br />64 GB DIMM DDR <br />Data compression ratio about 8:1 in-memory<br />BenchmarkingIn-Memory Prototype<br />SGNI/LCN2010, Enabling Real-Time Charging for Smart Grid Infrastructures, Schapranow, Oct 14, 2010<br />11<br />
  14. 14. BenchmarkingQuery Results for 100k households<br />SGNI/LCN2010, Enabling Real-Time Charging for Smart Grid Infrastructures, Schapranow, Oct 14, 2010<br />12<br />
  15. 15. Business ImpactsCurrent State: Post-payment Schema<br />Fix contracts, e.g. for the period of 12 months<br />Annual metering of power consumption<br />Fixed down payments per month or quarter<br />Pros: Not a single huge payment<br />Cons:<br />Over payment, when using less energy (bound money)<br />No convenient way to measure saving impacts<br />Provider changes are only rare<br />SGNI/LCN2010, Enabling Real-Time Charging for Smart Grid Infrastructures, Schapranow, Oct 14, 2010<br />13<br />
  16. 16. Business ImpactsFuture Outlook of Real-Time Charging<br />Tracking of consumption on live data<br />Instant feedback for customers<br />Payments can be accurately adapted each month<br />Basis for alternative payment methods, e.g. pre-paid<br />Switching between energy providers instantly<br />Select a certain provider for a certain time span or device<br />Full cost control possible<br />SGNI/LCN2010, Enabling Real-Time Charging for Smart Grid Infrastructures, Schapranow, Oct 14, 2010<br />14<br />
  17. 17. Thank you for your interest!Keep in contact with us.<br />Ralph Kühne, M.Sc.<br />ralph.kuehne@hpi.uni-potsdam.de<br />Matthieu-P. Schapranow, M.Sc.<br />matthieu.schapranow@hpi.uni-potsdam.de<br />Hasso Plattner InstituteEnterprise Platform & Integration ConceptsMatthieu-P. SchapranowAugust-Bebel-Str. 8814482 Potsdam, Germany<br />Responsible: Deputy Prof. of Prof. Hasso PlattnerDr. Alexander Zeierzeier@hpi.uni-potsdam.de<br />SGNI/LCN2010, Enabling Real-Time Charging for Smart Grid Infrastructures, Schapranow, Oct 14, 2010<br />15<br />

×