Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Marshalltown Wastewater Treatment 
Plant Phosphorus Removal Upgrade

         Iowa State University
            Steven Dic...
Overview
•   Marshalltown overview
•   Problem statement and proposal
•   Biowin modeling results
•   Recommendation
•   Q...
Marshalltown, Iowa


           Marshalltown




     Des Moines
Marshalltown Water Pollution Control 
                Plant
• Began service in 1940
• Currently serves 26,000 people
• Pla...
Population Projection
Mechanical Plant 1
Mechanical Plant 2
Mechanical Plant 3
Sequencing Batch Reactor Plant
Aging Infrastructure
Problem Selection and Goals
  1.0 mg/L effluent limit for total phosphorus

• Minimize construction by utilizing existing ...
SBR Plant Proposal
SBR Plant
• Need
  – 1.6 MGD wastewater from a local hog processing 
    plant
  – Hog waste caused “foaming” in biologica...
Current SBR Configuration
Influent                                      Effluent




     Stage 1     Stage 2    Stage 3  ...
SBR During Aeration
SBR During Settle/Decant
SBR During Settle/Decant
SBR with BPR Process



                                Table 8‐25 Metcalf & Eddy Wastewater Engineering

                ...
Proposed SBR Process
Influent                          Alum Addition                     Effluent




      Stage 1     St...
Expected Performance
                                      SBR 

            Flow     VSS      TSS         BOD       TKN  ...
Process Comparison
Existing SBR Process       Proposed SBR Process
• 2 MGD capacity           • 1.33 MGD capacity
• Note: ...
Mechanical Plant Design
• Treats municipal waste
• Conventional activated sludge system divided 
  into 3 separate plants
...
Plant 1 and Plant 2 Identical
Biological Process Plan View
          Tank 1

          Tank 2
                                             Final
       ...
Plant 1 Flow Diagram
                                                           Waste Activated Sludge
                   ...
Flow Distribution




  Jetflow Injection Points
Mechanical Plant 3
Plant 3
• No modifications
• Still available for periods of high flow
• Available to reduce ammonia‐N levels if 
  necessa...
BPR Systems Considered
•   Anaerobic‐Anoxic‐Oxic (A2/O) 
•   Virginia Initiative Plant (VIP)
•   University of Cape Town (...
Preliminary VIP and A²/O Comparison 
         VIP                           A²/O
  Benefits                       Benefits...
BOD:P Ratio Comparison
          BPR Process                     BOD/P ratio
          VIP                             15‐...
VIP Process Outline




                                   Table 8‐25 Metcalf & Eddy Wastewater Engineering

             ...
VIP Process Plan View


                   Anaerobic

                   Anoxic                   Final
                  ...
VIP Flow Diagram
                                                             Waste Activated Sludge
                     ...
A2/O Process Outline




                                     Table 8‐25 Metcalf & Eddy Wastewater Engineering


         ...
A2/O Process Plan Layout


                Anaerobic

                Anoxic                  Final
                      ...
A²/O Flow Diagram
                                                          Waste Activated Sludge
                      R...
BPR Model Performance
                               Max Month Influent
              Flow     VSS       TSS        BOD   ...
BPR Model Performance
                               Average Annual Influent
              Flow     VSS         TSS       ...
Equipment Requirements
           VIP                         A2/O
• 4 Additional recycle pumps   • 2 Additional recycle p...
Chemical Treatment
• Alum addition considered for all plants
• A²/O required no alum addition for any 
  model simulation
...
Mechanical Plant: Current Flow
          Average Annual Flow                 Max Month Flow
 Biological         Alum Dosag...
Mechanical Plant: Projected Flow
        Average Annual Flow                  Max Month Flow
  Biological       Alum Dosag...
SBR Plant
          Existing Process                  Proposed Process
Biological        Alum Dosage       Biological     ...
Comparative Analysis
                Qualitative Cost Analysis
                 Initial Cost               Operational
A2/...
Recommendation
           Implement A²/O system

•   Lowest relative cost
•   Most operator flexibility
•   Least construc...
Design Objective Achieved?
• Minimum construction
  – SBR system remain physically unaltered
  – Construction in areas of ...
Special Thanks
•   Lance Aldrich ‐ Design information
•   Eric Evans ‐ Biown
•   Kris Evans ‐ Mentor
•   Fred Beyer
    – ...
Questions?
WEFTEC Presentation
WEFTEC Presentation
WEFTEC Presentation
WEFTEC Presentation
WEFTEC Presentation
WEFTEC Presentation
WEFTEC Presentation
WEFTEC Presentation
WEFTEC Presentation
WEFTEC Presentation
WEFTEC Presentation
WEFTEC Presentation
WEFTEC Presentation
Upcoming SlideShare
Loading in …5
×

WEFTEC Presentation

Marshalltown Wastewater Treatment Plant Phosphorus Removal Upgrade

Related Audiobooks

Free with a 30 day trial from Scribd

See all
  • Be the first to comment

  • Be the first to like this

WEFTEC Presentation

  1. 1. Marshalltown Wastewater Treatment  Plant Phosphorus Removal Upgrade Iowa State University Steven Dickey Dan Fleege
  2. 2. Overview • Marshalltown overview • Problem statement and proposal • Biowin modeling results • Recommendation • Questions
  3. 3. Marshalltown, Iowa Marshalltown Des Moines
  4. 4. Marshalltown Water Pollution Control  Plant • Began service in 1940 • Currently serves 26,000 people • Plant divided into 2 processes – Mechanical plant to treat municipal waste – Sequencing Batch Reactor to treat hog waste • Effluent combined before UV disinfection • Methane capture from stabilization basins • Sludge land applied after stabilization
  5. 5. Population Projection
  6. 6. Mechanical Plant 1
  7. 7. Mechanical Plant 2
  8. 8. Mechanical Plant 3
  9. 9. Sequencing Batch Reactor Plant
  10. 10. Aging Infrastructure
  11. 11. Problem Selection and Goals 1.0 mg/L effluent limit for total phosphorus • Minimize construction by utilizing existing  process equipment and configuration where  possible • Meet simulated permit limits for phosphorus • Biowin v3 Model similar or better effluent • Flexibility for plant operator
  12. 12. SBR Plant Proposal
  13. 13. SBR Plant • Need – 1.6 MGD wastewater from a local hog processing  plant – Hog waste caused “foaming” in biological  reactors – High Organic Nitrogen Content: 200 mg/L • Two Sequencing Batch Reactors – Operational in 1992 – 2 MGD capacity
  14. 14. Current SBR Configuration Influent Effluent Stage 1 Stage 2 Stage 3 Stage 4 Anaerobi Aerobic Settle Decant c 120 min 60 min 60 min 120 min Total Cycle Time: 360 min (6 hr) Current 15 – 25% P removal
  15. 15. SBR During Aeration
  16. 16. SBR During Settle/Decant
  17. 17. SBR During Settle/Decant
  18. 18. SBR with BPR Process Table 8‐25 Metcalf & Eddy Wastewater Engineering System Properties • Anaerobic HRT: 1.5 ‐ 3 hr • SRT range: 20 ‐ 40 days • Aerobic HRT: 2 ‐ 4 hr • Settle/decant: 2 hr • Anoxic HRT: 1 ‐ 3 hr • HRT range: 6.5 ‐ 12 hr
  19. 19. Proposed SBR Process Influent Alum Addition Effluent Stage 1 Stage 2 Stage 3 Stage 4 Stage 3 Stage 4 Anaerobic  Aerobic Anoxic  Aerobic Settle Decant 120 min 180 min 110 min 10 min 60 min 60 min Cycle time: 540 min = 9 hr HRT range: 6.5 – 12 hr
  20. 20. Expected Performance SBR  Flow  VSS  TSS BOD TKN NH3‐N Total P (MGD) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) Influent 1.66 308 367 372 200 160 34 • Process cannot be simulated in Biowin • BOD:P ratio 18:1 • Compare to Metcalf and Eddy ratios • Expect 40 ‐ 60% P Removal
  21. 21. Process Comparison Existing SBR Process Proposed SBR Process • 2 MGD capacity • 1.33 MGD capacity • Note: 1.6 MGD average  • 33% flow diversion to  annual flow Mechanical Plant • 5 Stages • 7 Stages • No anoxic phase • Anoxic phase • Total cycle time: 6 hr • Plant operator flexibility • No flow diversion to  – Max cycle time: 9 hr Mechanical Plant – HRT range: 6.5 ‐ 9 hr • 10 – 25% P removal • 40 – 60% P removal
  22. 22. Mechanical Plant Design • Treats municipal waste • Conventional activated sludge system divided  into 3 separate plants • 14 MG Equalization basin • 14 MGD firm capacity for facility • Modifications in 1965, 1972, 1982, 1987 and  2001
  23. 23. Plant 1 and Plant 2 Identical
  24. 24. Biological Process Plan View Tank 1 Tank 2 Final Tank 5 Clarifier Tank 3 Tank 4 • Tank 1‐4: 90ft x 19ft x 12ft (27.4m x 5.8m x 3.7m) • Tank 5: 42 ft x 84 ft x 13 ft (12.8m x 25.6m x 4m) • Total available volume: 128,000 ft³
  25. 25. Plant 1 Flow Diagram Waste Activated Sludge Return Activated Sludge P Influent Aerobic Aerobic Aerobic Influent Final Clarifier Influent Aerobic Influent Aerobic Effluent Influent Flow Splitter
  26. 26. Flow Distribution Jetflow Injection Points
  27. 27. Mechanical Plant 3
  28. 28. Plant 3 • No modifications • Still available for periods of high flow • Available to reduce ammonia‐N levels if  necessary • Alum addition to treat Phosphorus
  29. 29. BPR Systems Considered • Anaerobic‐Anoxic‐Oxic (A2/O)  • Virginia Initiative Plant (VIP) • University of Cape Town (UCT) • Bardenpho™ (5‐stage) • Initial evaluation – Compare HRT to available tank volume – Eliminated UCT and Bardenpho ™ processes
  30. 30. Preliminary VIP and A²/O Comparison  VIP A²/O Benefits Benefits • Good nitrogen removal • Good nitrogen removal • Low oxygen requirement • Low oxygen removal • Higher Phosphorus  • Lower HRT Removal • Less Reactor volume  required • More process flexibility Drawbacks • Additional Recycle Line  Drawbacks required • Less phosphorus removal  • Higher HRT capability
  31. 31. BOD:P Ratio Comparison BPR Process BOD/P ratio VIP 15‐20 A2/O 20‐25 Table 8‐24 Metcalf & Eddy Wastewater Engineering Max Month Flow  Average Annual  BPR Process BOD/P Flow BOD/P Mechanical Influent 56 39 Mechanical with 33% SBR  44 28 Influent
  32. 32. VIP Process Outline Table 8‐25 Metcalf & Eddy Wastewater Engineering System Properties • Anaerobic HRT: 1 ‐ 2 hr • SRT range: 5 ‐ 10 days • Anoxic HRT: 1 ‐ 2 hr • RAS: 80 ‐ 100% • Aerobic HRT: 4 ‐ 6 hr • Anoxic recycle: 100 ‐ 200% • HRT range: 6 ‐ 10 hr • Aerobic recycle: 100 ‐ 300%
  33. 33. VIP Process Plan View Anaerobic Anoxic Final Aerobic Clarifier Aerobic Aerobic Flow Splitter
  34. 34. VIP Flow Diagram Waste Activated Sludge Return Activated Sludge P Anaerobic P Anoxic P Aerobic Final Clarifier Aerobic Aerobic Influent Effluent Flow Splitter
  35. 35. A2/O Process Outline Table 8‐25 Metcalf & Eddy Wastewater Engineering System Properties • Anaerobic HRT: 0.5 ‐ 1.5 hr • SRT range: 5 ‐ 25 days • Anoxic HRT: 0.5 ‐ 1 hr • RAS: 25‐100% • Aerobic HRT: 4 ‐ 8 hr • Internal Recycle: 100‐400% • HRT range: 5 ‐ 10.5 hr
  36. 36. A2/O Process Plan Layout Anaerobic Anoxic Final Aerobic Clarifier Aerobic Aerobic Flow Splitter
  37. 37. A²/O Flow Diagram Waste Activated Sludge Return Activated Sludge P Anaerobic Anoxic P Aerobic Final Clarifier Aerobic Aerobic Influent Effluent Flow Splitter
  38. 38. BPR Model Performance Max Month Influent Flow  VSS  TSS BOD TKN NH3‐N Total P (MGD) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) Projected  10.5 196 249 213 26 11 5.0 Mechanical Max Month Effluent VSS TSS  BOD  COD  TKN  NH3‐N  Total P  (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) VIP 5.1 7.6 3.6 34 2.9 0.93 0.56 A2/O 7.1 11 4.0 37 2.8 0.71 0.75
  39. 39. BPR Model Performance Average Annual Influent Flow  VSS  TSS BOD TKN NH3‐N Total P (MGD) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) Projected  7.5 162 206 185 35 11 5.0 Mechanical Average Annual Effluent VSS TSS  BOD  COD  TKN  NH3‐N  Total P  (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) VIP 11 14 5.0 25 4.3 2.2 0.86 A2/O 5.3 7.5 3.7 30 3.5 0.87 0.79
  40. 40. Equipment Requirements VIP A2/O • 4 Additional recycle pumps • 2 Additional recycle pumps • Power: 450 HP • Power: 400HP • 6 New Recycle Pipes • 2 New Recycle Pipes • 3000 Siemens DualAir® • 3000 Siemens DualAir® Diffusers Diffusers • 16 Hayward Gordon ST® • 16 Hayward Gordon ST® Mixers Mixers
  41. 41. Chemical Treatment • Alum addition considered for all plants • A²/O required no alum addition for any  model simulation • VIP process required alum addition during  winter months • SBR requires a constant chemical addition
  42. 42. Mechanical Plant: Current Flow Average Annual Flow Max Month Flow Biological  Alum Dosage Biological  Alum Dosage Removal  Removal  ppd ppd Percentage Percentage 1.5 2.0 1.5 2.0 0 399 532 0 530 707 10 359 478 10 477 636 20 319 425 20 424 565 30 279 372 30 371 495 40 239 319 40 318 424 50 199 266 50 265 353 60 159 213 60 212 283 70 120 159 70 159 212 80 80 106 80 106 141 90 40 53 90 53 71 100 0 0 100 0 0
  43. 43. Mechanical Plant: Projected Flow Average Annual Flow Max Month Flow Biological  Alum Dosage Biological  Alum Dosage Removal  Removal  ppd ppd Percentage Percentage 1.5 2.0 1.5 2.0 0 480 640 0 626 835 10 432 576 10 563 751 20 384 512 20 501 668 30 336 448 30 438 584 40 288 384 40 376 501 50 240 320 50 313 417 60 192 256 60 250 334 70 144 192 70 188 250 80 96 128 80 125 167 90 48 64 90 63 83 100 0 0 100 0 0
  44. 44. SBR Plant Existing Process Proposed Process Biological  Alum Dosage Biological  Alum Dosage Removal  Removal  ppd ppd Percentage Percentage 1.5 2.0 1.5 2.0 0 727 970 0 486 648 10 655 873 10 438 584 20 582 776 20 389 519 30 509 679 30 340 454 40 436 582 40 292 389 50 364 485 50 243 324 60 291 388 60 195 259 70 218 291 70 146 195 80 145 194 80 97 130 90 73 97 90 49 65 100 0 0 100 0 0
  45. 45. Comparative Analysis Qualitative Cost Analysis Initial Cost Operational A2/O $$ $ VIP $$$ $$ Chemical $ $$$ Operational Performance Flexibility Simplicity A2/O ** ** VIP * * Chemical *** ***
  46. 46. Recommendation Implement A²/O system • Lowest relative cost • Most operator flexibility • Least construction required • Capable of meeting effluent standard • Better ammonia‐N removal in winter models
  47. 47. Design Objective Achieved? • Minimum construction – SBR system remain physically unaltered – Construction in areas of aging concrete – Only two new recycle pumps needed for the  recommended A2/O design • A2/O meets proposed permit limits • Flexibility for plant operator  – Recycle rates – SRT – SBR phases 
  48. 48. Special Thanks • Lance Aldrich ‐ Design information • Eric Evans ‐ Biown • Kris Evans ‐ Mentor • Fred Beyer – Monthly monitoring reports – Plant tours – Design information • IWPCA
  49. 49. Questions?

×